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The term “cancer” refers to a group of diseases involving abnormal cell growth with the 
potential to invade or spread to other parts of the body. Epithelial–mesenchymal transi-
tion (EMT), a process whereby epithelial cells lose their cell polarity and cell–cell adhesion 
ability, and acquire migratory and invasive properties to gain mesenchymal phenotype, is 
an important step leading to tumor metastasis. Glycans, such as N-glycans, O-glycans, 
and glycosphingolipids, are involved in numerous biological processes, including inflam-
mation, virus/bacteria–host interactions, cell–cell interactions, morphogenesis, and can-
cer development and progression. Aberrant expression of glycans has been observed 
in several EMT models, and the functional roles of such glycans in cancer development 
and progression has been investigated. We summarize here recent research progress 
regarding the functions of glycans in cancer cells undergoing EMT. Better understanding 
of the mechanisms underlying aberrant glycan patterns in EMT and cancer will facilitate 
the development of such glycans as cancer biomarkers or as targets in design and 
synthesis of anti-tumor drugs.
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BACKGROUnD

The term “cancer” refers to a group of diseases involving abnormal cell growth with the potential to 
invade or spread to other parts of the body. Functioning of proteins in both normal and cancer cells is 
maintained by post-translational modifications (PTSs), which include phosphorylation, ubiquitina-
tion, methylation, N-acetylation, and glycosylation. Glycosylation is the most commonly occurring 
of these PTMs, and is involved in many biological processes.

Glycosylation of proteins (“glycoproteins”) in eukaryotic cells is classified on the basis of various 
linkages of glycans to protein core regions; e.g., N-linked glycan (GlcNAc linkage to Asn), O-linked 
glycan (O-GalNAc linkage to Ser/Thr), and other types of “O-linked glycan” (e.g., O-linked mannose, 
O-linked GlcNAc). Coupling of glycans to lipids results in molecules termed “glycosphingolipids” 
(GSLs) (Figure 1). Glycans participate in numerous biological processes, including signal transduc-
tion, inflammation, virus/bacteria–host interactions, cell–cell interactions, and cancer development 
and progression (1–3).

We review here the roles of glycans in cancer cells undergoing epithelial–mesenchymal transition 
(EMT), a fundamental biological phenomenon that occurs during early embryonic development, 
tissue repair, and cancer metastasis.
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FiGURe 1 | Major classes of glycans involved in eMT process.
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THe eMT PROCeSS

The EMT process is an important step in promotion of tumor 
metastasis, whereby epithelial cells lose cell polarity and cell–cell 
adhesion ability, and acquire migratory and invasive properties to 
gain mesenchymal phenotype (Figure 1) (4). Activation of EMT 
has been implicated in acquisition of malignant phenotypes by 
epithelial cancer cells (5). Malignant carcinoma cells often display 
a mesenchymal phenotype and express “mesenchymal mark-
ers,” such as N-cadherin, vimentin, fibroblast-specific protein 
1 (FSP1), and desmin. Such carcinoma cells acquire migratory 
and invasive properties, and subsequently undergo steps in the 
invasion/metastasis process (5–7).

Multiple signals are responsible for induction of EMT in 
cancer cells; in particular, hepatocyte growth factor (HGF), epi-
dermal growth factor (EGF), and transforming growth factor-β 
(TGF-β) (5, 8). Several in vitro EMT models have been developed 
for elucidation of molecular mechanisms underlying the associa-
tion between inflammation and cancer progression. TGF-β was 
originally described as an inducer of EMT in normal mammary 
epithelial cells (9), and later in other types of cancer cells (10, 11). 
The signaling pathways of ERK/MAPK, Jagged/Notch, WNT/
GSK3/β-catenin, NF-kB, and PI3K clearly cooperate with TGF-β 
to play a role in cancer metastasis (12). HGF and other inducers 
can induce cells to undergo changes in morphology that favor a 
mesenchymal phenotype characteristic of EMT (13, 14). In vitro 
and in vivo models continue to be developed as useful tools for 
addressing crucial, yet-unanswered questions in EMT research.

ROLe OF n-GLYCAnS in eMT

Glycosylation is catalyzed by glycosyltransferases and glycosi-
dases. Over 200 glycosyltransferase genes have been identified. 
These enzymes produce distinctive types of glycans with strict 
substrate specificity. Aberrant glycosylation, associated with 
expression of specific glycosyltransferases, is a hallmark of cancer, 
and reflects cancer-specific cellular changes.

Changes in N-glycan patterns and the related glycosyltrans-
ferases are important in understanding the role of EMT and 
adhesive properties of cancer cells. Xu et al. reported decreased 
expression of β1,4-N-acetylglucosaminyltransferase III (GnT-III) 
and its product (bisecting N-glycans) in a TGF-β1-induced EMT 
model (15). GnT-III modified E-cadherin and inhibited β-catenin 
translocation into the cytoplasm and nucleus resulting from cell–
cell contact (15). Inhibition of N-acetylglucosaminyltransferase 
V (GnT-V) expression prevented liver fibrosis and suppressed 
TGF-β1-induced EMT in hepatocytes by reversal of EMT mark-
ers (16). Yang et al. (17) found that fucosyltransferase IV (FUT4) 
activated PI3K/Akt and NF-κB signaling systems and facilitated 
acquisition of a mesenchymal phenotype during EMT. FUT8, the 
only enzyme that catalyzes α1,6-fucosylation in mammals, was 
up-regulated during EMT through transactivation of β-catenin/
lymphoid enhancer-binding factor-1 (LEF-1) (18). E-cadherin 
with enhanced core fucosylation (through FUT8 overexpression) 
in giant lung carcinoma cell line 95C reduced Src phosphoryla-
tion and inhibited cell migration, whereas E-cadherin with low 
core fucosylation activated Src and induced an EMT-like process 
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(19). Increased expression of β-galactoside α2,6-sialyltranferase 1 
(ST6GAL1), which adds terminal α2,6-sialylation to N-glycans, 
has been observed in a variety of carcinomas and in a TGF-β-
induced EMT model. Up-regulation of ST6GAL1 contributed to 
EMT through a non-Smad signaling pathway (20). Du et al. ana-
lyzed dynamic changes of sialylation in TGF-β1-induced EMT 
in human keratinocyte HaCaT cells. Sialylation was found to be 
down-regulated during EMT, and then reverted (up-regulated) 
in the mesenchymal state following EMT. Global inhibition of 
sialylation by a fluorinated analog of sialic acid promoted the 
EMT process (21).

Many groups have utilized glycomic techniques (mass 
spectrometry, glycogene microarray, and lectin microar-
ray analysis) to evaluate aberrant N-glycosylation in tumor 
progression, particularly during EMT (22, 23). Li et  al. used a 
lectin microarray to analyze cell surface protein glycosylation 
in an HGF-induced EMT model in hepatocellular carcinoma 
cells. Consistent with the microarray findings, mRNA levels of 
glycosyltransferase genes involved in N-glycan synthesis (e.g., 
GnT-III) were reduced, whereas mRNA levels of GnT-V, FUT8, 
and β3GalT5 were increased (14). In a study of TGF-β-stimulated 
breast epithelial cells, Tan et al. (22) observed elevated levels of 
high-mannose-type N-glycans, but reduced levels of antennary 
N-glycans, fucosylation, and bisecting GlcNAc N-glycans. 
Expression of seven N-glycan-related genes was significantly 
altered, and the products of these genes (e.g., ALG9, MGAT3, 
MGAT4B) evidently contributed to the alteration of N-glycans. 
Guo et al. (23) used a combination of mass spectrometry, lectin 
microarray, and GlycoV4 oligonucleotide microarray analysis to 
demonstrate altered expression of five N-glycan-related genes 
and corresponding glycan structures in TGF-β-stimulated blad-
der epithelial cells.

ROLeS OF O-GLYCAnS in eMT

Structural changes of O-linked glycosylation have been cor-
related with tumor development and progression in only a 
few cases (24–26). Overexpression of MUC1 O-glycans was 
observed in breast, prostate, ovary, and pancreatic cancer 
cells (27). Altered MUC1 expression participates in the EMT 
process by interacting with β-catenin to activate the transcrip-
tion factor SNAIL (28, 29). Overexpression of the polypeptide 
N-acetylgalactosaminyltransferase 6 (GALNT6), which is 
involved in the initial step of O-glycosylation, disrupted aci-
nar morphogenesis and produced cellular changes similar to 
those of EMT in normal mammary epithelial MCF10A cells. 
O-glycosylated fibronectin (FN) was stabilized by GALNT6 
and further facilitated the acinar disruption (30). Freire-  
de-Lima et al. (31) found that oncofetal FN (onfFN), a FN iso-
form recognized by mAb FDC6 in fetal and cancer tissues (27), 
was up-regulated in TGFβ-induced EMT (31). FDC6 reactivity 
required O-glycan addition at a specific Thr, GalNAc-T3, and/
or GalNAc-T6 of onfFN in EMT process, whereas inhibition of 
GalNAc-T3 and GalNAc-T6 of onfFN suppressed the EMT pro-
cess. In a follow-up study, only TGF-β-treated cells expressed a 
substantial amount of onfFN, and only O-glycosylated onfFN 

induced EMT-related events (32). Hyperglycemic conditions 
induced EMT in human lung adenocarcinoma A549 cells, 
and also increased onfFN protein levels, thereby promoting 
up-regulation of mRNA levels for ppGalNAc-T6 and the IIICS 
domain of FN (33). The molecular mechanisms triggered 
by this unusual glycoprotein remain unknown; however, 
O-glycosylated onfFN appears to be a possible target for anti-
cancer drug development.

ROLeS OF GSLs in eMT

Glycosphingolipids mediate cell adhesion and modulate cell 
growth through their effects on growth factor receptor tyrosine 
kinases (34, 35). Some GSLs, particularly gangliosides (sialic 
acid-containing GSLs), control cell motility through interactions 
with integrins and tetraspanin CD9 or CD82 (36, 37). The gan-
gliosides GM2, GD2, and GD3 are highly expressed in various 
human tumors (melanomas, gliomas, neuroblastomas), but are 
absent or weakly expressed in normal tissues (38, 39). Guan et al. 
(40) investigated the roles of GSLs in phenotypic changes of cell 
adhesion, motility, and growth during EMT. Specific GSLs were 
shown to participate in EMT in human and mouse mammary 
epithelial cells. Changes in GSL patterns in these cells with and 
without TGF-β treatment were compared, and levels of Gg4 and 
GM2 were found to be greatly reduced or depleted by TGF-β. In 
a follow-up study (41), the functional role of Gg4 in EMT was 
further elucidated using normal mouse mammary gland epithe-
lial cells (NMuMG) in which EMT was induced by hypoxia or 
CoCl2 treatment. Both treatments caused reduced levels of Gg4 
and UDP-Gal:β1-3galactosyltransferase-4 (β3GalT4) mRNA, 
similarly to TGF-β-induced EMT.

Following the initial 2009 report of GSL involvement in EMT, 
several studies described the effects of altered GSL expression on 
EMT processes. Kim et al. (42) reported significantly increased 
expression of GM3 and GM3 synthase mRNA in TGF-β1-induced 
EMT of human lens epithelial cells. Inhibition of GM3 and GM3 
synthase expression in the TGF-β1-stimulated cells resulted in 
reduced cell migration and EMT-related signaling, through inter-
action with TGF-β receptors. Sarkar et al. (43) showed that inhibi-
tion of GD3 synthase, an enzyme involved in GD2 biosynthesis, 
blocked initiation and maintenance of the EMT process. Findings 
from these and other studies clearly indicate that aberrant GSLs 
associated with tumor progression play various different roles in 
initiation or suppression of EMT.

COnCLUSiOn

Glycans often function as essential biosynthesis precursors or 
as structural elements that become attached to proteins or lipids 
to form glycoproteins or glycolipids. Most glycan complexes 
are present on cell surfaces, where they play essential roles in 
cell–cell interactions, signal transduction, receptor activation, 
cell adhesion, and other physiological processes. The EMT 
process is closely associated with glycosylation changes, but our 
knowledge of the molecular mechanisms that underlie altered 
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TABLe 1 | Altered glycans and glycan-related genes in eMT.

Glycan type eMT model Altered glycan or glycan-related gene Reference

Glycan Gene

N-glycan Human hepatocellular carcinoma cell β1,4-N-acetylglucosaminyltransferase III (GnT-
III), β1,4-N-acetylglucosaminyltransferase 
V (GnT-V), fucosyltransferase 8 (FUT8), and 
β1-3-galactosyltransferase, polypeptide 5 
(β3GalT5)

(14)

Human mammary epithelial cell Bisecting N-glycans GnT-III (15)
Non-tumorigenic mouse hepatocyte cell GnT-V (16)
Human mammary epithelial cell fucosyltransferase IV (FUT4) (17)
Human non-small cell lung cancer FUT8 (18)
Human giant lung carcinoma cell Core fucosylation FUT8 (19)

α2,6-sialylated N-glycan β-galactoside α2,6-sialyltransferase 1 (20)
Human keratinocyte cell Sialylated N-glycan (21)
Mouse mammary epithelial cell High-mannose-type; antennary 

N-glycans, fucosylation and 
bisecting GlcNAc N-glycans

α1,2-mannosyltransferase ALG9, 
MGAT3 (GnT-III), and β1,4-N-
acetylglucosaminyltransferase 4B (MGAT4B 
or GnT-IVb)

(22)

Human bladder epithelial cell α2,6-sialyltranferase 1(st6gal1), 
neuraminidase 1 (Neu1), hexosaminidase 
B (HexB), mannosidase, class 2A, member 
1(MAN2A1), fucosidase, α-l-1(Fucα1)

(23)

O-glycan Human breast epithelial cell polypeptide 
N-acetylgalactosaminyltransferase 6 
(GALNT6)

(30)

Human prostate epithelial cell GALNT3, GALNT6 (31)

Glycosphingolipids 
(GSLs)

Human and mouse breast epithelial cell Gg4, GM2 β1,3-galactosyltransferase-4 (β3GalT4) (40, 41)
Human lens epithelial cell GM3 (42)
Human breast cancer cell α2,8-sialyltransferase 1 (GD3 synthase) (43)
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