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Cancer cells do reprogram their energy metabolism to enable several functions, such as 
generation of biomass including membrane biosynthesis, and overcoming bioenergetic 
and redox stress. In this article, we review both established and evolving radioprobes 
developed in association with positron emission tomography (PET) to detect tumor cell 
metabolism and effect of treatment. Measurement of enhanced tumor cell glycolysis 
using 2-deoxy-2-[18F]fluoro-D-glucose is well established in the clinic. Analogs of choline, 
including [11C]choline and various fluorinated derivatives are being tested in several can-
cer types clinically with PET. In addition to these, there is an evolving array of metabolic 
tracers for measuring intracellular transport of glutamine and other amino acids or for 
measuring glycogenesis, as well as probes used as surrogates for fatty acid synthesis 
or precursors for fatty acid oxidation. In addition to providing us with opportunities for 
examining the complex regulation of reprogramed energy metabolism in living subjects, 
the PET methods open up opportunities for monitoring pharmacological activity of new 
therapies that directly or indirectly inhibit tumor cell metabolism.

Keywords: tumor metabolism, positron emission tomography, choline, acetate, methionine, glutamine

iNTRODUCTiON

Mammalian cells possess molecular machineries that regulate their proliferation, differentiation, 
and death. Malignant transformation is a multistep process involving genetic alterations, disruption 
of regulatory circuits, and dynamic changes in the genome. It has been suggested that malignant 
growth is governed by six essential alterations in cell physiology: self-sufficiency in growth signals, 
insensitivity to growth-inhibitory (antigrowth) signals, evasion of programed cell death (apoptosis), 
limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis (1). Recent 
advances led to the notion that progressive evolution of normal cells to a neoplastic state involves not 
only the successive acquisition of hallmark capabilities but also contributions of recruited normal 
cells (which form tumor-associated stroma, constituting the “tumor microenvironment”) (2).

Metabolic reprograming is an important property of the cancer cells. In the presence of 
abundant nutrients, oncogenic signaling facilitates assimilation of carbons into macromolecules, 
such as lipids, proteins, and nucleic acids. The net result of this is to support cell growth and 
proliferation. Glucose and glutamine are abundant nutrients, and both feed into multiple nodes 
of central metabolism. Glutamine also provides two nitrogen atoms for synthesis of hexosamines, 
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nucleotides, and amino acids, all of which are also required for 
growth (3). Among the host of pathways altered in cancer, glu-
cose and glutamine metabolism are consistently reprogramed 
by mutations in MYC, TP53, the Ras-related oncogenes, and the 
LKB1-AMP kinase (AMPK) and PI3 kinase (PI3K) signaling 
pathways. Oncogenic Ras increases both glucose uptake via 
enhanced expression of glucose transporter (GLUT) 1, and 
utilization (4), in addition to regulating glutamine metabolism, 
promoting cell survival and growth (5). Increased MYC also 
enhances glycolysis, and glutamine catabolism, resulting in cell 
growth (6).

The hallmarks of cancer are all linked to proliferation of cancer 
cells, thus making cell proliferation an important capability lead-
ing to immortalization and generation of macroscopic tumors. 
The framework of hallmarks assumes a homogeneous population 
of cancer cells and considers the hallmarks as distinct entities, with 
a one-to-one relation between oncogenic events (the inducers), 
the signaling pathways (transmission), and the hallmarks (the 
effects). However, one oncogenic event, or one signaling cascade, 
could induce several hallmarks accounting for the dynamic and 
spatial heterogeneity of tumors (7). This heterogeneity provides a 
framework to interpret pathological, diagnostic, and therapeutic 
observations of tumors and supports the need for non-invasive 
serial studies on the whole tumor mass and the use of simultane-
ous, multi-targeted therapies for treating cancer.

Routine clinical evaluation of cancer therapeutics involves 
assessment of the change in tumor burden (anatomical measure-
ments). Tumor shrinkage (objective response) and time to disease 
progression are both important endpoints, as these have been 
linked to an improvement in overall survival or other time to 
event measures in randomized phase III studies (8). These meas-
ures also determine the efficacy of drugs under study. In order to 
have standardized and widely accepted criteria for measurement 
of response to allow comparisons to be made across studies, the 
Response Evaluation Criteria in Solid Tumors (RECIST) criteria 
were formulated (9). These criteria have been widely adopted for 
trials where the primary endpoints are objective response or dis-
ease progression. Since the introduction of RECIST in 2000, the 
increasing utilization of imaging technologies, such as MRI, FDG 
positron emission tomography (PET), and targeted cytostatic 
therapies, have prompted an update in the guidelines (RECIST 
v1.1) (10). The definitions of the criteria used to determine objec-
tive tumor response for target lesions are as follows:

 1) Complete response (CR): disappearance of all target lesions. 
Any pathological lymph nodes (whether target or non-target) 
must have reduction in short axis to <10 mm.

 2) Partial response (PR): at least a 30% decrease in the sum of 
diameters of target lesions, taking as reference the baseline 
sum diameters.

 3) Progressive disease (PD): at least a 20% increase in the sum 
of diameters of target lesions, taking as reference the smallest 
sum on study (this includes the baseline sum if that is the 
smallest on study). In addition to the relative increase of 20%, 
the sum must also demonstrate an absolute increase of at least 
5 mm. (Note: the appearance of one or more new lesions is 
also considered progression.)

 4) Stable disease (SD): neither sufficient shrinkage to qualify for 
PR nor sufficient increase to qualify for PD, taking as reference 
the smallest sum diameters while on study.

RECIST has limitations due to its reliance on changes in 
tumor size with therapy. First, uni-dimensional measurements 
may be apparent only after three to four cycles of chemotherapy. 
In non-responders, this means subjecting patients to cumula-
tive toxicity of three to four cycles of treatment with little 
benefit. Moreover, the change in the tumor diameter may be 
non-uniform. Second, changes in measurements of smaller 
lesions are not reliable (11). Third, cytostatic treatments may 
not necessarily cause a decrease in tumor size or volume. Use 
of functional imaging overcomes several of these limitations. 
The use of PET has, for example, resulted in accurate imaging 
of subtle tumor biologic changes and the detection of early 
response to anti-cancer therapy (12). Tumors having increased 
metabolic activity may take up greater amounts of a radioactive 
tracer as compared to adjacent normal tissues; in that regard, 
sub-millimeter tumors have been known to show significant 
radiotracer uptake for certain tracers (13). Similarly, any change 
in metabolic or signaling pathway activity consequent to suc-
cessful treatment could result in changes in uptake of the tracer 
on PET (14). Thus, PET is a useful tool in oncology to image 
certain metabolic pathways and response to therapy.

This review gives an overview of metabolic processes imaged 
by PET focusing on both established and evolving radioprobes 
to detect tumor glycolysis, choline metabolism, intracellular 
transport of glutamine, and other amino acids, as well as fatty 
acid metabolism (Figure  1). In particular, we emphasize the 
role of radiolabeled choline, acetate, and amino acid tracers for 
monitoring efficacy or predicting response to new therapies that 
directly or indirectly inhibit tumor cell metabolism.

MeTHODOLOGY

A comprehensive PubMed literature search was performed, 
identifying articles relating to PET imaging in malignant dis-
ease, particularly those reporting on response assessment with 
radiolabeled tracers, focusing on [11C]- and [18F]-labeled choline, 
acetate, methionine, and glutamine derivatives, up to July 2015. 
Search terms that were used to identify such articles were “acetate,” 
“choline,” “methionine,” “glutamine,” “tryptophan,” “FACBC,” and 
“PET” or “positron emission tomography.” Original publications 
were selected for inclusion in this review.

OveRview OF PATHwAYS TRACeD BY 
PeT iMAGiNG

Glycolysis and Glycolysis-Linked 
Metabolic Pathways
A review of metabolism will be incomplete without reference to 
glycolysis. Energy production in normal cells is predominantly 
the result of oxidative phosphorylation, as opposed to glycolysis. 
However, tumor cells predominantly use glycolysis as a means 
to energy production irrespective of oxygen levels. Aerobic 
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FiGURe 1 | Radioprobes utilized in the imaging of tumor cell metabolism.
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glycolysis (AG) refers to glucose utilization in excess of that 
needed for oxidative phosphorylation, despite sufficient oxygen 
to metabolize glucose to carbon dioxide and water. AG plays an 
important role in the biosynthesis of glycogen, proteins, lipids, 
and nucleic acids (15). AG, also known as the Warburg effect, 
supports the biosynthetic requirements of proliferating cancer 
cells (16). PET using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]

FDG) has been widely used in the evaluation of various tumor 
types on the basis that an increase in AG will be reflected in an 
increase in the total glucose consumption of the tissue.

In a large pooled review of over 18,000 patient studies, it was 
shown that [18F]FDG PET has a sensitivity of 84% and a speci-
ficity of 88% for tumor detection (17). [18F]FDG PET has also 
been evaluated in response assessment following treatment with 
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conventional chemotherapeutic agents both in the preclinical 
(18) and in the clinical setting (19–25), with the premise that 
decreases in glycolysis may occur in tumors that are sensitive 
to the applied cancer therapeutics and that the tumors that are 
resistant to treatment will show unchanged glucose metabolism. 
The prediction of treatment response has also been analyzed 
in many studies following treatment with different targeted 
therapies, e.g., monoclonal antibodies and small molecules 
inhibitors (26). However, [18F]FDG PET has the following limita-
tions: (1) False positive uptake in some benign processes, such 
as infection and inflammatory lesions (27); (2) low sensitivity 
in well-differentiated/low-grade tumors that have relatively low 
glucose metabolism such as carcinoid tumors, bronchoalveolar 
cell carcinoma, and renal cell carcinoma (RCC) (28–30); (3) 
low sensitivity in hypocellular cancers, such as desmoplastic or 
mucinous tumors (31); (4) increased [18F]FDG accumulation in 
some normal body regions, such as lymphoid tissue and brown 
fat (32); and (5) lack of clinical utility due to high urinary excre-
tion and low expression of GLUT in prostate cancer (PCa) (30). 
Thus, newer radiotracers to image tumors accurately are being 
developed to address these shortcomings, as well as explore other 
metabolic pathways of tumors that can be imaged using PET. Two 
evolving imaging strategies somewhat linked to glycolysis will be 
discussed next.

Further to the Warburg effect, the final rate-limiting step in 
AG, catalyzed by pyruvate kinase (PK), controls the balance 
between energy production and metabolic precursor synthesis. 
The M2 isoform of PK (PKM2) is preferentially expressed in 
cancer cells and channels glycolytic intermediates into pentose 
phosphate pathway for nucleotide synthesis (33). PKM2 can be 
allosterically regulated to assume a high- or low-activity state. 
In cancer cells, there is downregulation of PK activity favoring 
a microenvironment that is conducive to cell proliferation. 
1-((2,6-difluorophenyl)sulfonyl)-4-((methoxy-11C)phenoxy)sul-
fonyl)piperazine ([11C]DASA-23) (Figure 1) has been developed 
as a non-invasive PET probe to measure activity of PKM2 in pre-
clinical glioblastoma models (34). Witney and co-workers have 
demonstrated that [11C]DASA-23 improved tumor visualization 
and predicted response to PKM2 activator, which resulted in loss 
of PET signal. The clinical translation of these findings is eagerly 
awaited.

Another glycolysis-linked pathway that has come to the fore 
is glycogenesis. Glycogen, the principal glucose store in mam-
malian cells, is synthesized from uridine diphosphate glucose 
(UDP-glucose) catalyzed by glycogen synthase (GS). Tumor cells 
originating from epithelial tissues, especially in the quiescent 
state also accumulate glycogen, in addition to increased glycolytic 
flux (35, 36). In order to gain biological insight into the role of gly-
cogenesis, PET with [18F]-N-(methyl-(2-fluoroethyl)-1H[1,2,3]
triazole-4-yl) glucosamine ([18F]NFTG) has been studied (37). 
The authors showed that glycogen levels, [18F]NFTG, but not [18F]
FDG uptake, increased proportionately with cell density and G1/
G0 arrest. This increase in glycogen levels and [18F]NFTG uptake 
has potential application in the assessment of oncogenic path-
ways related to glycogenesis and the detection of post-treatment 
tumor quiescence. However, there have been no studies evaluat-
ing response to therapy.

Choline Metabolism: Choline PeT
Choline is a precursor of phosphatidylcholine (PC), an essential 
component of phospholipids in the cell membrane (38) and is 
required for structural stability and cell growth. It is also essential 
for the synthesis of neurotransmitters such as acetylcholine (by 
reaction of choline with acetyl-CoA), and production of potent 
lipid mediators, such as platelet-activating factor. Choline kinase 
(CHK) is the first enzyme in the Kennedy pathway (39), and is 
responsible for the de novo synthesis of PC. CHK phosphorylates 
choline to phosphocholine (PCho), the rate-limiting step in the 
Kennedy pathway. PCho is further phosphorylated to cytidine 
diphosphate-choline (CDP-choline) by the enzyme cytidylyltrans-
ferase and then to other intermediates before being incorporated 
into cell membrane phospholipids as PC. Malignant transformation 
is associated with enhanced choline transport and utilization, char-
acterized in a large part by increased CHKα expression, which leads 
to a phenotype of increased radiolabeled choline uptake (40, 41).

Choline Tracers
Choline has been radiolabeled with [11C], [18F] for tracing choline 
transport and phosphorylation in several tumor types. In one of 
the first studies, Hara and colleagues showed that phosphorylation 
led to intracellular retention of the carbon label [11C] in PCa (42), 
thus enabling imaging of this metabolic pathway. The same group 
also showed that [11C]choline had good uptake in brain tumors 
with almost negligible activity in the blood after 5 min (43). This 
work inspired others to use [11C]choline as a PET radiotracer to 
image other tumors, including renal (30), esophageal (44–48), 
and non-small cell lung cancer (NSCLC) (44). [11C]choline is 
particularly useful in PCa as there is negligible urinary bladder 
excretion, a challenge with [18F]FDG. The utility of [11C]choline in 
visualizing and staging PCa has been extensively reported (42, 49).

[18F]Fluorocholine ([18F]FCH) was developed to overcome the 
short physical half-life of carbon-11 (20.4 min). The longer half-
life (109.8  min) of [18F] was deemed potentially advantageous 
in permitting late imaging of tumors when sufficient clearance 
of parent tracer in systemic circulation had occurred. Since 
DeGrado and co-workers first reported the use of [18F]FCH (50), 
the tracer has proven safe for human administration (51) and has 
been extensively used in patients for diverse pathologies.

[11C]Choline (and fluoro-analog) is, however, readily oxidized 
to [11C]betaine by choline oxidase mainly in kidney and liver tis-
sues, with metabolites detectable in plasma soon after injection of 
the radiotracer (52–54). This makes discrimination of the relative 
contributions of parent radiotracer from catabolites difficult when 
a late imaging protocol is used. A more metabolically stable [18F]
choline analog, [18F]fluoromethyl-[1,2-2H4]choline ([18F]D4-FCH), 
based on the deuterium isotope effect (55) has been developed. The 
simple substitution of deuterium [2D] for hydrogen [1H] and the 
presence of [18F] improve the stability of the compound and reduce 
degradation of the parent tracer (54, 56, 57). This modification is 
hypothesized to increase the net availability of the parent tracer 
for phosphorylation and trapping within cells leading to a better 
signal-to-background contrast, thus improving tumor detection 
sensitivity of PET. [18F]D4-FCH has been validated for imaging 
tumors preclinically (56, 57). [18F]D4-FCH injection was also 
found to be safe and well tolerated in healthy volunteers with a 
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TABLe 1 | Response assessment: preclinical studies.

Cell lines/animal models Outcome

CHOLiNe PeT

Prostate

Hara et al. (59) LNCaP cells, PC3 cells Androgen depletion markedly suppressed the uptake of [3H]choline in androgen-dependent LNCaP cells but not 
in androgen-independent PC3 cells

Al-Saeedi et al. (60) PC3 cells Flutamide inhibited tumor cell growth and proliferation
Flutamide might inhibit proliferation by an androgen-independent mechanism

Holzapfel et al. (64) LNCaP cells, PC3 cells
Dose of RT – 6 Gy

Transient increase in [3H]choline uptake seen in PC3 cells (maximum at 24 h). Significant decrease in uptake 
seen in LNCaP cells (minimum at 48 h)

Krause et al. (62) PC3 cells, subcutaneous 
13 NMRI (nu/nu) mice

Reduction in the mean [11C]choline uptake (tumor-to-muscle ratio: TMR) as early as 1 week after initiation of 
docetaxel
[11C]choline PET/CT might be a useful tool for monitoring responses to taxane-based chemotherapy

Fei et al. (65) PC3, CWR22 cells athymic 
nude mice

For treated tumors, normalized [11C]choline uptake decreased significantly 24 and 48 h after photodynamic 
therapy (PDT), associated with decrease in PSA levels. [11C]Choline PET has the potential to determine whether 
a PDT-treated tumor responds to treatment within 48 h after therapy

Emonds et al. (61) LNCaP, PC346C cells Androgens modulated the uptake of [11C]choline in PC346C cells but not in PC3 cells
PC3, PC346DCC cells Anti-androgen (Bicalutamide) reduced the uptake in PC346C cells

Schwarzenbock et al. 
(63) 

LNCaP cells [11C]choline has the potential for use in the early monitoring of the therapeutic effect of docetaxel
SCID-mice

Breast

Al-Saeedi et al. (83) Incorporation of radiolabeled choline in tumor cells has been shown to be associated with proliferation

ACeTATe PeT

Prostate

Oyama et al. (94) CWR22 androgen- 
dependent cells

[18F]FDG PET detected metabolic changes within days of androgen ablation in a murine model of prostate 
cancer, whilst there was no significant difference in [11C]acetate uptake

Nude mice

Vavere et al. (96) LNCaP, PC3, 22Rv1 Demonstrating that the FASN inhibitor C75 could reduce [11C]acetate SUV by up to 60% in prostate cancer 
xenograftsMale nu/nu mice

Yoshii et al. (95) LNCaP, PC3, 22Rv1, and 
DU145 cells

Evaluated method to predict FASN-targeted therapy outcome using radiolabeled acetate uptake. They 
demonstrated that uptake of radiolabeled acetate reflects FASN expression and sensitivity to FASN-targeted therapy 
with orlistat, indicating uptake of radiolabeled acetate is a useful predictor of FASN-targeted therapy outcome

Emonds et al. (93) LAPC-4 (androgen 
sensitive), 22Rv1 cells 
(androgen-independent)
Nude mice

They found that ADT significantly decreased the uptake of [11C]choline and [18F]FDG but not uptake of [11C]
acetate after 5d of ADT
Concluded that [11C]acetate uptake occurs independently of androgens and thus may be more favorable for 
detecting tumor viability during or following ADT

MeTHiONiNe PeT

Brain

Sato et al. (125) Glioma model The metabolic changes following intraperitoneal chemotherapy were seen immediately as a sharp fall in [14C]
thymidine (dThd) and [18F]fluoro-2′-deoxyuridine ([18F]FUdR) uptake and a moderate fall for [14C]methionine 
whereas decrease in [3H]deoxyglucose (DG) were seen 1 week after chemotherapy

Reinhardt et al. (123) AH109A hepatoma cells 
Donryu rats

[11C]Methionine PET has been sensitive enough to detect and differentiate viable cancer cells in a residual tumor 
mass as compared to FDG and thymidine, 6 days after one to eight doses of 5 Gy 60Co radiotherapy (RT)
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favorable dosimetry profile (58). Further clinical studies are now 
underway to evaluate the utility of [18F]D4-FCH in cancer patients.

As the large proportion of studies evaluating response with 
choline radiotracers has been conducted in PCa – a disease that is 
managed by a plethora of agents, including androgen deprivation 
therapy (ADT), radiotherapy (RT), and chemotherapy – this will 
be the main aspect of the review although other malignancies will 
be briefly discussed.

Preclinical Studies
Radiolabeled choline uptake has been extensively investigated 
in cells and animal models of cancer to determine factors that 

affect intrinsic uptake and allow interpretation of clinical findings 
(Table 1).

Hara and colleagues demonstrated that androgen depletion 
markedly suppressed the uptake of [3H]choline in androgen-
dependent LNCaP cells but not in androgen- independent PC3 
cells (59). Anti-androgens were subsequently shown to modulate 
choline uptake in androgen-dependent cell lines and also inhibit 
proliferation (60, 61). Regarding chemotherapy, the effects of 
docetaxel have been studied by Krause et al. (62), who showed a 
reduction in the mean [11C]choline uptake in PC3 xenograft mouse 
model as early as 1 week after initiation of docetaxel. A significant 
reduction of mean tracer uptake of 45% was associated with a mean 

(Continued)
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Cell lines/animal models Outcome

Sasajima et al. (124) Glioma C6 and C6R cells The [3H]TdR accumulation rate and amino acid tracer trans-1-amino-3-fluoro-1[14C]-cyclobutanecarboxylic acid 
[14C]FACBC and [3H]Met uptake significantly decreased 48 and 72 h, respectively, after temozolomide (TMZ) 
treatment in C6 but not C6R cells. The decrease in uptake was seen before morphological changes on MRI.  
Anti-[14C]FACBC and [3H]Met could be a sensitive and precise imaging biomarker for tumor extent visualization 
and response assessment in glioma patients.

In vitro and in vivo
Sprague-Dawley rats

Ono et al. (121) Human Glioblastoma,  
U87MG (U87) cells

PET with amino acid tracers (1-amino-3-[18F]fluorocyclobutanecarboxylic acid ([18F]FACBC) and [11C]Methionine) 
provides useful information on the early response of glioblastomas to single-agent [TMZ, interferon-β (IFN), and 
bevacizumab (Bev)] and combination therapy in glioblastomaU87 and U87R

F344/N-mu rats

Breast

Paquette et al. (122) MC7-L1 (ER+) and MC7-L1 
ERα-knockdown cell lines

Letrozole and Fulvestrant reduced glucose uptake/consumption (FDG) and protein synthesis ([11C]Methionine) in 
ER+ tumors, but not so in ERαKD tumors

Balb/c mice

Radiotherapy effect

Kubota et al. (118) AH109A hepatoma cells 
Donryu rats

A rapid reduction in [11C]methionine uptake following therapy in animal studies was demonstrated

Schaider et al. (126) SW707 colon cancer cells In an experimental tumor model, MET uptake showed a rapid decrease after irradiation and was followed by 
necrosis and progressive tumor shrinkage

Murayama et al. (120) SCCV11, murine squamous 
cell carcinoma cell line

Tumor uptake was decreased with all the tracers (FDG, [11C]Methionine, FLT, [18F]FMT) after were treated with a 
single dose of x-ray irradiation at 2, 6, 20, or 60 Gy. Significant positive correlations were found between ligand 
uptake and tumor volume for [18F]FMTC3H/HeN mice

Gynecological

Higashi et al. (116) Human ovarian carcinoma  
cell line (HTB77IP3)

Early assessment of human adenocarcinoma response to radiotherapy by FDG, Thymidine, and [11C]methionine 
PET may be confounded by a normal increase in tracer uptake post-irradiation (30 Gy 60Co irradiation), despite a 
6.25-fold decline in viable cell numbers

Trencsenyi et al. (127) A2780AD/A2780 human 
ovarian carcinoma and  
KB-V1/KB-3-1 human 
epidermoid adenocarcinoma 
tumor CB-17 SCID mice

FDG, FLT, [11C]Methionine and [18F]fluoroazomycin-arabinofuranoside ([18F]FAZA) are suitable PET tracers for the 
diagnosis and in vivo follow-up of the efficacy of tumor chemotherapy (doxorubicin) in both Pgp(+) and Pgp(−) 
human tumor xenografts by mini PET

Myeloma

Luckerath et al. (119) OPM2, MM.1S myeloma cell 
lines

[11C]Methionine is superior to FDG (30–79% reduction in [11C]Methionine uptake) in very early assessment  
(24h post) of response to Bortezomib 

NOD.CB17-Prkdcscid/NCrHsd 
mice
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tumor growth inhibition of 20%. They concluded that [11C]choline 
might be a useful tool for monitoring responses to taxane-based 
chemotherapy in patients with advanced PCa. These findings were 
confirmed by Schwarzenbock et al. in a LNCaP-xenograft mouse 
model (63). Thus, labeled choline uptake is intrinsically responsive 
to anti-androgen therapy and chemotherapy.

Regarding RT, Holzapfel et al. have studied the effect of 6 Gy 
of radiation on PC3 and LNCaP cells, in vitro (64). Radiation-
induced effects were variable with a transient increase in radi-
otracer uptake in androgen-independent PC3 cells but a decrease 
in androgen-dependent LNCaP cells. In both cell lines, modula-
tion of tracer uptake was dose-independent following irradiation 
with 2–12 Gy with a mean increase to 120% in PC3 cells and a 
mean decrease to 74% in LNCaP cells. The authors suggested that 
changes of tumor choline uptake monitored by PET after RT may 
be due to a combination of factors, including therapeutic efficacy 
and altered tracer transport in cancer cells as a consequence of 
irradiation. Photodynamic therapy (PDT) responses have also 
been evaluated. Fei and co-workers evaluated the potential use 
of [11C]choline PET to monitor early tumor response to PDT 

in animal models. For treated tumors, normalized [11C]choline 
uptake decreased significantly at 24 and 48 h after PDT, associ-
ated with decreases in prostate-specific antigen (PSA) levels. 
The authors concluded that [11C]choline PET has the potential 
to determine response in a PDT-treated tumor within 48 h after 
therapy (65).

Clinical Studies
To date, only anecdotal reports (50, 66) and two small clinical  studies 
(67, 68) have assessed the role of [11C]choline PET as a method 
to monitor the therapeutic effects of ADT (Table 2). Fuccio et al. 
(67) retrospectively evaluated the effect of 6 months of androgen 
deprivation (Zoladex in 12 and Bicalutamide in 2 patients) in 14 
PCa patients with recurrence after radical prostatectomy. They 
concluded that androgen deprivation significantly decreases [11C]
choline uptake in androgen-sensitive patients. In another study in 
six primary PCa patients having bicalutamide therapy, Giovacchini 
et al. (68) showed an average reduction of 45% in the [11C]choline 
uptake (SUVmax from 11.8 to 6.4) corresponding to a 78% decrease 
in PSA following a median of 4  months of therapy. A similar 

TABLe 1 | Continued
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TABLe 2 | Choline PeT response assessment: clinical studies.

Sample size Outcome

CHOLiNe PeT/CT

Prostate

De Grado et al. (50) 1 60% reduction in choline uptake in the primary tumor and the bony metastases with androgen deprivation therapy 
(ADT) in patient with bone metastases from PCa

Giovacchini et al. (68) 6 45% reduction in the [11C]choline uptake (SUVmax) from 11.8 to 6.4 with a 78% decrease in PSA with a median of 
4 months of bicalutamide therapy in patients with primary prostate cancer

Beheshti et al. (72, 73) 38 Demonstrated that reduced [18F]FCH uptake is seen in PCa patients who respond to the hormone therapy often 
without any significant morphological CT changes

De Waele et al. (66) 1 Initial uptake in prostate and multiple iliac nodes in locally advanced disease, disappeared after 6 months of therapy 
with leuprorelin and flutamide

Fuccio et al. (67) 14 Six months of androgen deprivation significantly decreases [11C]choline uptake in patients with recurrence after radical 
prostatectomy

Casamassima et al. (70) 25 High dose of radiotherapy is effective in eradication of limited nodal recurrences

Kwee et al. (76) 8 Plasma cfDNA content and FCH PET/CT-detected tumor activity are potential candidate markers of therapeutic 
response in castrate resistant prostate cancer (CRPC)

Amani et al. (71) 11 Intra-prostatic [11C]choline uptake (as measured by SUVmax and TMR) significantly decreased during and after RT

Challapalli et al. (69) 10 [11C]choline uptake in prostate tumors, determined by [11C]choline PET/CT, is sensitive to ADT and RT, and could be 
used as an objective quantitative tool for response assessment

De Giorgi et al. (79) 43 Early FCH PET/CT can predict clinical outcome (Progression free and overall survival: PFS and OS) than PSA response 
in patients on Abiraterone

Caffo et al. (77) 31 Enzalutamide induces volume reductions in primary tumors and metabolic changes in metastatic lesions as detected 
by [18F]FCH PET/CT

De Giorgi et al. (78) 36 Combination of changes in [18F]FCH PET/CT and decrease in PSA level in patients on enzalutamide could be a valid 
tool to predict PFS in metastatic CRPC patients

Miyazaki et al. (80) 2 [18F]FCH PET/CT detected changes in bone metastatic activity midway during treatment with radium-223 dichloride. 
Whole-body tumor burden decreased in one patient, while a heterogeneous tumor response was observed in the 
other. Corresponding normalization and persistent elevation in serum alkaline phosphatase levels were observed in 
these cases, respectively

Renal cell cancer

Middendorp et al. (86) 2 [18F]FEC PET/CT before and 10 weeks after two cycles of tyrosine kinase inhibitor therapy showed progression in one 
patient and partial response in the other

Brain

Parashar et al. (81) 14 (various 
tumor sites)

[18F]FCH PET/CT is potentially a predictive biomarker for early detection (after 3–4 weeks) of RT/CRT response in 
patients with lesions in base of tongue, tonsil, nodes, hypopharynx, maxilla, palate, lung, pancreas, brain, uterus, and 
rectum with 88% patients had response (complete and partial response: CR and PR)

Panagiotidis et al. (82) 1 Simultaneous PET/MRI with [18F]choline in a patient with pineal germ cell tumor demonstrated a reduction in both size 
and radiotracer activity of the mass after chemotherapy

Breast

Kenny et al. (85) 2 [11C]choline uptake was lower in two patients responding to trastuzumab treatment, suggesting that [11C]choline PET 
may be useful in detecting the response of breast cancer to trastuzumab treatment
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magnitude of reduction in SUVave and SUVmax in the prostate tumors 
corresponding to 94% reduction in PSA was shown by Challapalli 
and co-workers, in patients having neoadjuvant ADT (69).

There is paucity of data on use of [11C]choline PET to monitor 
response to RT. Based on 2-month post-RT [11C]choline PET/CT 
reductions, Casamassima and colleagues inferred that high-dose 
RT was effective in eradication of limited nodal recurrences (70). 
More recently, in a study of 11 patients with intermediate-risk 
PCa, Amani and co-workers evaluated sequential [11C]choline 
PET/CT scans before and up to 12  months after completion 
of RT (74 Gy/37 fractions). None of the patients received hor-
monal therapy. They concluded that RT significantly decreased 
intra-prostatic [11C]choline uptake (as measured by SUVmax and 
tumor-to-muscle ratio (TMR) (71). Thus, the concern that RT 

might increase labeled choline transport does not appear to 
occur in patients at clinically relevant doses. Furthermore, in 
a proof of concept study, Challapalli and co-workers showed 
that choline uptake in prostate tumors, determined by [11C]
choline PET/CT, is sensitive to ADT and RT, and could be used 
as an objective quantitative tool for response assessment. ADT 
decreased tumor-imaging variables – SUV60,ave, SUV60,max, TMRave, 
and TMRmax – by 26–60%. RT also decreased [11C]choline uptake 
within primary prostate tumors (though of lesser magnitude: 
12–27%), compared to that seen with ADT, except for TMRmax 
where a significant reduction (40%) was seen (Figure 2) (69). 
Similarly, Beheshti and colleagues demonstrated that reduced 
[18F]FCH uptake is seen in PCa patients who respond to the 
hormone therapy often without any significant morphological 
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FiGURe 2 | Axial [11C]choline PeT and fused PeT/CT at level of the prostate. (A,B) Baseline scan with focal activity in the peripheral zone (black and white 
arrows). (C,D) Post-neoadjuvant androgen deprivation therapy (NAD) scan (8–10 weeks after initiating NAD) with a marked reduction in [11C]choline uptake in the 
peripheral zone. (e,F) Post- radiotherapy combined with concurrent androgen deprivation therapy (RT-CAD) scan (4 months after completion of RT-CAD) with a 
further reduction in prostate activity and increased obturator internus muscular activity (black and white asterisk).
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CT changes (72, 73). These studies show the potential of radiola-
beled choline to detect response of early PCa to therapies used 
routinely in the clinic.

Chemotherapy, Radium-223, and drugs interfering with 
androgen receptor (AR) machinery, such as enzalutamide and 
abiraterone, are the main stay of treatments in metastatic castrate 
resistant prostate cancer (mCRPC). Currently, there is excessive 
reliance on changes in serum PSA as an indicator of therapeutic 
efficacy and there are no predictive diagnostic tools to identify 
an early objective response in patients with mCRPC treated with 
abiraterone acetate or enzalutamide, although AR splice variants 
detectable in circulating tumor cells (CTCs) are evolving (74). 
The Prostate Cancer Clinical Trials Working Group recommends 
waiting 12 weeks before the first evaluation of response to ensure 
adequate drug exposure (75). Therefore, studies investigating 
new biomarkers for outcome prediction and disease monitoring 
are urgently needed. To this effect, labeled choline PET is under 
evaluation to assess therapeutic response.

Kwee and colleagues evaluated effects of docetaxel chemother-
apy on circulating cell-free DNA (cfDNA) and [18F]FCH PET/
CT uptake in CRPC. Tumor-derived plasma cfDNA concentra-
tions increased significantly after one and three treatment cycles,  

possibly due to post-chemotherapy necrotic cell lysis. Lower 
cfDNA concentrations at baseline were found to be associated 
with PET responses as measured after the third chemotherapy 
cycle. They concluded that it is feasible to annotate potential 
tumor sources of cfDNA using [18F]FCH PET/CT imaging, and 
that plasma cfDNA content and [18F]FCH PET/CT-detected 
tumor activity are potential response markers in CRPC (76). 
Caffo et al. showed that enzalutamide induces volume reductions 
in primary tumors and metabolic changes in metastatic lesions as 
detected by [18F]FCH PET/CT (77). In a proof of principle study, 
De Giorgi et al. evaluated [18F]FCH PET/CT as an early predictor 
of outcome in mCRPC patients treated with enzalutamide (78). 
They concluded that the combination of [18F]FCH PET/CT and 
decrease in PSA level could be a valid tool to predict progression-
free survival (PFS) in mCRPC patients.

In a similar study with abiraterone, De Giorgi et al. demon-
strated that early [18F]FCH PET/CT can predict clinical outcome 
(PFS and overall survival: OS) than PSA response in patients 
on abiraterone. Using fairly arbitrary thresholds for change in 
SUV (as specified in European Organization for Research and 
Treatment of Cancer (EORTC) guidelines), a PSA decline ≥50% 
was shown to be associated with the [18F]FCH PET/CT response 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


February 2016 | Volume 6 | Article 449

Challapalli and Aboagye PET Imaging of Tumor Metabolism

Frontiers in Oncology | www.frontiersin.org

(12/42)/non-response (18/42) in 71% of patients (79). Miyazaki 
and co-workers evaluated acute changes in net metabolically 
active tumor volume (MATV) and total lesion activity (TLA) 
detected by [18F]FCH PET/CT imaging midway during treatment 
with radium-223 dichloride, in two patients. After the third dose 
of radium-223 dichloride, near-total disappearance of abnormal 
skeletal activity was observed in one case, while a heterogeneous 
tumor response was observed in the other (80). It can be sum-
marized that, while being a proliferation-independent phenotype 
(13), changes in labeled choline uptake reflects response to therapy 
although the optimal time still needs to be clarified.

Non-Prostate Tumors
In addition to PCa, radiolabeled choline has been utilized in other 
tumor histotypes. Parashar et al. explored whether [18F]FCH PET 
could serve as an predictive biomarker for early detection of RT/
chemo-radiotherapy (CRT) response in patients with lesions at 
the base of the tongue, tonsil, nodes, hypopharynx, maxilla, pal-
ate, lung, pancreas, brain, uterus, and rectum. They demonstrated 
reductions in SUVmax in 88% of lesions (CR: 7/16 and PR: 7/16) 
and concluded that changes in SUVmax  after 3–4  weeks of ini-
tiation of RT were predictive of final outcome (81). Panagiotidis 
and co-workers showed that simultaneous PET/MRI with [18F]
FCH in a patient with pineal germ cell tumor demonstrated a 
reduction in both size and radiotracer activity of the mass after 
chemotherapy (82).

While the choline phenotype has been reported as being 
proliferation independent in PCa (13), the phenotype is intrinsi-
cally associated with proliferation in breast cancer cells (83). In 
particular, PCho formation is linked to the activity of mitogen-
activated protein kinase (MAPK) signaling function (84). It was, 
thus, postulated that therapy response in breast cancer might 
be accompanied by predictable changes in the tumor reten-
tion of [11C]choline. In a clinical study involving breast cancer 
patients receiving trastuzumab, [11C]choline uptake decreased 
in two patients responding to trastuzumab compared to non-
responders (85). Regarding targeted therapies, Middendorp 
et al. also evaluated use of [18F]fluoroethylcholine (FEC) PET/CT 
in staging and monitoring therapy response of advanced RCC 
before and 10 weeks after two cycles of tyrosine kinase inhibitor 
(TKI) therapy. FEC PET/CT showed heterogeneous changes, 
with progression in one patient and a PR in the second patient, 
which were concordant with the RECIST response (86). Thus, 
changes in uptake of labeled choline in non-prostate histotypes 
also appear to reflect therapy response.

Fatty Acid Metabolism
Fatty Acid Synthesis: Acetate PET
Cancer cells are dependent on their ability to gain access to 
energy and substrate precursors, by reprograming the normal 
metabolic pathways required for the proliferation and survival of 
tumor cells, to synthesize of proteins, nucleotides, and lipids (87). 
Cancer cells are also characterized by a lipogenic phenotype (88), 
and often require that fatty acids be generated de novo to maintain 
proliferation and viability. As a result, fatty acid biosynthesis has 
gained significance as a potential therapeutic target in multiple 
cancers.

Acetate is metabolized in the tricarboxylic acid (TCA) cycle 
yielding CO2 and water (89). However, in cancer cells, acetate is 
preferentially utilized for fatty acid synthesis as a component of 
acetyl-CoA. Intracellularly, acetate is converted to acetyl-CoA by 
acetyl-CoA synthase (ACeS), and fed into the fatty acid synthesis 
pathway. [11C]Acetate PET was originally used to assess myocar-
dial function (90). In myocardial tissues, carbons derived from 
[11C]acetate are incorporated into CO2 during the TCA cycle, 
allowing for PET visualization of oxygen consumption. However, 
in tumor cells, [11C]acetate is incorporated into membrane 
lipids due to over-expression of fatty acid synthase (FASN). This 
property is exploited for tumor imaging with [11C]acetate (91). 
The majority of studies analyzing the efficacy of [11C]acetate PET 
in tumors have focused on the detection of PCa (91). In addi-
tion to PCa, there are a number of other tumor types in which 
[11C]acetate PET shows high contrast, including hepatocellular 
carcinoma (HCC), thymomas, renal cancers, brain tumors, and 
bronchioloalveolar carcinoma (92). These studies demonstrate 
that [11C]acetate is useful in diagnosis, staging, and predicting 
disease progression in certain cancers, and it is logical that [11C]
acetate could also be used to stratify patients for specific therapies, 
as well as a method to monitor response to therapy.

Preclinical Studies
Emonds et  al. evaluated the effect of 5  days of ADT on the 
uptake of [11C]acetate, together with [18F]FDG and [11C]choline 
in vivo. They found that ADT significantly decreased the uptake 
of [11C]choline and tended to decrease [18F]FDG uptake. [11C]
Acetate uptake was unaffected by ADT in both PCa xenograft 
models [LAPC-4 (androgen sensitive), 22Rv1 cells (androgen-
independent)]. The authors concluded that [11C]acetate uptake 
occurs independently of androgens and, thus, may be more 
favorable for detecting tumor viability during or following ADT 
(93). These findings were corroborated by Oyama et al. who also 
showed that [18F]FDG PET, detected metabolic changes within 
days of androgen ablation, while there was no significant differ-
ence in [11C]acetate uptake in a murine model of PCa (94).

[11C]Acetate PET could potentially be used as a surrogate for 
monitoring FASN activity as the incorporation of [11C]acetate into 
membrane lipids is regulated by FASN expression. There is poten-
tial that this approach may be an effective means to validate FASN 
inhibitors as they progress through clinical development. Yoshii 
et al. (95) evaluated a method to predict FASN-targeted therapy 
outcome using radiolabeled acetate uptake in LNCaP, PC3, 22Rv1, 
and DU145 cells. They demonstrated that uptake of radiolabeled 
acetate reflects FASN expression and sensitivity to FASN-targeted 
therapy with orlistat. Furthermore, Vavere et  al. demonstrated 
that the FASN inhibitor C75 could reduce [11C]acetate uptake by 
up to 60% in PCa xenografts (96). While these studies are promis-
ing (Table 1), it has been noted recently that optimal acquisition 
of [11C]acetate images may require late imaging (~90  min) to 
increase sensitivity toward lipid incorporation (97).

Clinical Studies
Yu and co-workers, tested the feasibility of [11C]acetate PET imag-
ing to assess response to therapy in men with bone metastatic 
PCa. Patients were imaged before and 6–12  weeks after initial 
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TABLe 3 | Acetate PeT response assessment: clinical studies.

Sample  
size

Outcome

Renal cell  
cancer

Maleddu 
et al. 
(100)

1 [11C]acetate PET could predict response to 
sunitinib as early as 2 weeks after therapy 
initiation

Brain
Liu et al. 
(101)

22 [11C]acetate had a good sensitivity in detection, 
of meningioma compared to [18F]FDG. [11C]
acetate performed better in monitoring five 
patients who had received gamma-knife surgery

Prostate
Yu et al. 
(98)

6 [11C]acetate PET scanning was highly accurate 
for determining the response to treatment in 
prostate cancer patients with bone metastases

Gomez 
et al. (99)

19 Changes in [11C]acetate may serve as a tool for 
monitoring radiation therapy response in high risk 
prostate cancer

Myeloma
Lin et al. 
(102)

15 Visual and quantitative analysis showed a higher 
detection rate of myeloma lesions at diagnosis 
than using [18F]FDG. After treatment, a 66% 
reduction in SUVmax was seen in patients with at 
least a very good partial response versus a 34% 
reduction in those with a PR. They concluded 
that [11C]acetate may be valuable for response 
assessment
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ADT for new metastatic PCa or after first-line chemotherapy 
with docetaxel for CRPC. Changes in qualitative assessment and 
tumor:normal uptake ratio correlated with clinical response cri-
teria. They concluded that [11C]acetate PET scanning was highly 
accurate for determining response to treatment in patients with 
bone metastases (98). Regarding therapy planning, Gomez and 
co-workers reported that [11C]acetate PET aids in detection of 
lymph node metastases especially in high risk PCa patients and 
led to changes of radiation therapy treatment field/volume or 
dose in about one-third of the patients (37%). Changes in [11C]
acetate may serve as a tool for monitoring radiation therapy 
response (99).

There are anecdotal reports of [11C]acetate PET monitoring 
response in RCC and meningiomas. Maleddu et al. suggested that 
[11C]acetate PET could predict response to sunitinib as early as 
2 weeks after therapy initiation (100). In the evaluation of men-
ingiomas, Liu RS et al. demonstrated that [11C]acetate had good 
sensitivity for detection of meningiomas compared to [18F]FDG, 
and concluded that [11C]acetate performed better in monitoring 
five patients who had received gamma-knife surgery (101). [11C]
acetate PET has also been used in assessing response to therapy 
in multiple myeloma. Bone marrow histology and whole-body 
(WB) MRI were used as comparators. In 13 patients who had 
repeat examination after induction therapy, visual and quantita-
tive analysis, suggested a higher detection rate for both diffuse 
and focal myeloma lesions at diagnosis. After treatment, a 66% 
reduction in SUVmax was seen in patients with at least a very good 
PR (≥ 90% reduction in M-protein) versus a 34% reduction in 
those with a PR (≥50% reduction in M-protein). They concluded 
that [11C]acetate may be valuable for response assessment (102). 
In aggregate, the initial data with [11C]acetate for monitoring 
response is promising (Table 3) but the short half-life of the tracer 
may reduce sensitivity for imaging lipid incorporation, and its use 
is limited to centers with in-house cyclotron. Moreover, acetate is 
not specific to fatty acid synthesis, it also serves as a substrate for 
protein acetylation, and is utilized in cholesterol synthesis.

[18F]Fluoroacetate
[18F]Fluoroacetate ([18F]FACE), a [18F]fluorinated acetate analog 
(t1/2: 110 min), which is putatively converted to fatty acids and 
incorporated into lipids, has been tested as an alternative PET 
tracer for imaging fatty acid synthesis. However, there are only 
limited clinical reports using [18F]FACE for oncologic diagnosis 
of patients with cancer (103, 104), thus far with no studies evalu-
ating therapy response.

Fatty Acid Oxidation: [18F]Fluoropivalic Acid PET
In addition to fatty acid synthesis, the critical nature of fatty acid 
oxidation for cancer cells survival has been recognized (105). 
Short-chain carboxylates, including acetate, propionate, butyrate, 
and the non-natural substrate pivalate (trimethylacetate) use 
the early steps of the fatty acid oxidation pathway involving 
acyl-CoA and acyl-carnitine synthesis (106). A new radioprobe, 
3-18F-fluoro-2,2-dimethylpropionic acid, also called [18F]fluoro-
pivalic acid ([18F]FPIA), for imaging the early steps of the fatty 
acid oxidation pathway has been validated and has shown prom-
ise for cancer detection (107). Further studies are eagerly awaited.

Amino Acid Metabolism
Amino acids play an important role in the synthesis of a vari-
ety of nitrogen-containing compounds, such as proteins and 
nucleotides during cell growth, and their increased transport and 
utilization are be associated with early events in carcinogenesis 
(108). Natural amino acids are transported into cells by specific 
carrier-mediated transport systems and further incorporated 
into proteins and intermediary metabolites to different extents. 
Thus, investigators have studied the utility of several radiolabeled 
natural amino acids (including methionine, glycine, tyrosine, 
phenylalanine, and leucine) as tumor-imaging agents with PET 
(109). Amino acid scanning provides higher contrast between 
tumor and normal brain compared to [18F]FDG PET, due to 
the low uptake of amino acids in normal brain. However, of the 
several amino acid tracers investigated for tumor imaging, only 
a few have been evaluated beyond the initial feasibility studies in 
human patients.

Glutamine
Glutamine is the most abundant amino acid in plasma and occu-
pies a unique niche in intermediary metabolism by providing a 
major inter-organ shuttle for both nitrogen and carbon (110). This 
makes it essential for cell proliferation by contributing to synthe-
sis of nucleic acids, proteins, and hexosamines. Loss of amino and 
amido groups in glutamine produces alpha-ketoglutarate that also 
promotes cell growth, anaplerosis and adenosine-tri-phosphate 
(ATP) generation (111). Malignant transformation, involving 
enhanced c-Myc expression, increases glutamine metabolism by 
increased expression of cell surface transporters (112, 113).
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TABLe 4 | Methionine PeT response assessment: clinical studies.

Sample 
size

Outcome

Brain

Bergstrom et al. (128) 400 In a large series of pituitary adenomas and in some meningiomas, a decrease in the uptake of [11C]methionine after medical 
therapy has been shown to represent a positive treatment effect. [11C]methionine PET method does have potential for the 
evaluation of treatment effects

Kubota et al. (117) 70 [11C]Methionine seemed to have a higher potential for rapid tumor monitoring than FDG after radiotherapy, and the effect 
was radiation-dose dependent

Sato et al. (159) 1 Serial [11C]methionine PET imaging in low-grade astrocytoma permits evaluation of changes after radio-chemotherapy 
treatment in patients in whom CT has revealed no notable changes

Wurker et al. (169) 5 A dose-dependent decline in [11C]methionine uptake with a greater decrease in tumors with high basal uptake of [11C]
methionine

Voges et al. (167) 10 One year after seed implantation of 125I for brachytherapy in treatment of cerebral glioma, there were no changes in glucose 
metabolism, but a significant decline of [11C]methionine uptake was seen
[11C]methionine PET may improve tumor delineation, and allows monitoring of therapeutic effects following brachytherapy

Roelcke et al. (158) 30 No significant difference in [11C]methionine and [18F]FDG tracer uptake between tumors with or without adjuvant radiotherapy 
after surgery for low-grade astrocytomas

Shintani et al. (161) 1 Serial [11C]methionine PET in a biopsy-proven case of gliomatosis cerebri (GC) suggested initial hypermetabolism, associated 
with increase in cerebral blood flow (shown on [15O]water PET) that normalized 6 months after completion of radiotherapy

Nuutinen et al. (155) 13 [11C]methionine PET improves tumor visualization in patients with low-grade glioma and signifies better prognosis in patients 
with low tumor uptake at baseline. Stable or decreasing uptake of [11C]methionine in tumor area after radiotherapy signifies a 
favorable outcome

Gudjonsson et al. (135) 19 Stereotactic proton beam irradiation of meningiomas had an inhibitory effect (average 19.4% reduction in uptake after 
36-month of follow-up) on the [11C]methionine uptake in meningiomas, although tumor size remained unchanged (CT/MRI)

Sorensen et al. (162) 2 A prompt reduction in [11C]methionine uptake was seen within d of starting therapy in two children with prolactinomas 

Muhr et al. (152) 12 During IFN-alpha treatment, [11C]methionine PET demonstrated a mean relative percentage of reduction in the uptake ratio 
(MRelR) of 22.3% in meningiomas

Herholz et al. (137) 1 Estimated a reduction rate in [11C]methionine defined active tumor volume of approximately 2.4% per day in a case of 
anaplastic oligoastrocytoma after procarbazine, CCNU, and vincristine (PCV) chemotherapy

Tang et al. (164) 7 A significant reduction in [11C]methionine uptake and a semiquantitative index based on both [11C]methionine uptake and 
[11C]methionine defined volume was noted in low-grade oligodendroglioma patients after chemotherapy with PCV regime. 
Prediction of long-term outcome and effect on high-grade gliomas could not be assessed

Ribom et al. (157) 32 [11C]methionine PET may be a promising surrogate endpoint after treatment of grade II gliomas. An increase in [11C]
methionine uptake or [11C]methionine defined volume on follow-up scans was associated with a reduced time to progression 
of disease in patients with histologically confirmed supratentorial WHO grade II gliomas

(Continued)
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Glutamine metabolism lends itself to evaluation by PET 
imaging, most relevant in non-[18F]FDG avid tumors, such as 
prostate, bronchoalveolar carcinomas, carcinoid tumors, and 
low-grade lymphomas. These malignancies may use glutamine as 
an alternative nutrient source and as such are more easily detected 
by a glutamine-based tracer. Venneti and co-workers, for exam-
ple demonstrated that PET imaging in vivo with the glutamine 
analog 4-[18F]-(2S,4R)-fluoroglutamine ([18F]FGln) facilitates 
clear tumor delineation due to high tumor-to-background ratio. 
Chemo/radiation therapy reduced [18F]FGln tumor uptake, which 
was associated with decreased tumor burden, confirmed on auto-
radiography. In contrast, there were no anatomical or structural 
changes seen on T2-weighted MRI sequences, within the same time 
frame. These findings were translated into humans (six patients) 
and an increased [18F]FGln uptake was seen  in  patients with 
progressive brain tumors, but not in patients with SD (114).

Methionine
Methionine, an essential sulfur amino acid, is necessary for 
growth and development. It plays an important role in protein 

synthesis and is a predominant methyl group donor for multi-
ple metabolic pathways. Malignant transformation enhances 
demand for methionine in cancer cells caused by increased 
fluxes in the pathways of protein synthesis, transmethylation, and 
transsulfuration. This forms the basis for higher uptake of labeled 
methionine in tumors.

Currently, PET using L-[methyl-11C]-methionine ([11C]
methionine) is the most popular amino acid imaging modality 
for tumors, although its use is restricted to PET centers with 
an on-site cyclotron facility. [11C]methionine PET has been 
extensively studied in gliomas. Its role in initial diagnosis, dif-
ferentiation of tumor recurrence from radiation injury, grading, 
prognostication, tumor extent delineation, biopsy planning, 
surgical resection and RT planning has been evaluated (115). A 
number of oncologic imaging studies have evaluated the role of 
[11C]methionine in response assessment and have been described 
in detail in the preclinical setting (116–127) (Table  1) and in 
patients (128–170) (Table 4). While most studies have focused 
on non-hematological solid tumors, multiple myeloma also 
represents an evolving area of interest. In this case, preclinical 
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Sample 
size

Outcome

Nariai et al. (153) 194 Patients with high-grade glioma showed a significantly decreased post-irradiation tumor-to-normal tissue ratio of [11C]
methionine uptake compared with the pre-treatment value

Galldiks et al. (131) 15 [11C]methionine PET performed before and after the third cycle of temozolomide (TMZ) chemotherapy in patients with 
malignant gliomas, showed a significantly longer median time to progression in patients with decline in [11C]methionine 
uptake than in those with increasing [11C]methionine uptake (23 versus 3.5 months)

Kawai et al. (143) 3 [11C]methionine PET findings suggested presence of increased tumor activity in patients with germinomas in the basal 
ganglia or thalamus after the initial treatment, which gradually decreased during the course of intensive therapy in these 
patients

Galldiks et al. (132) 1 [11C]methionine PET metabolic activity showed a continuous decline of tumor volume, over a 2-year period, below 
the threshold of significant [11C]methionine uptake in patient with glioblastoma multiforme (GBM), treated with surgery, 
radiosurgery, and maintenance of imatinib and hydroxyurea 

Lee et al. (146) 3 A gradual decrease of [11C]methionine uptake in basal ganglia germinoma during the course of treatment was seen but the 
temporal pattern of [11C]methionine uptake during the treatment was not evaluated

Jang et al. (140) 4 After high-dose methotrexate chemotherapy for primary CNS Lymphoma (PCNSL), [11C]methionine PET displayed complete 
disappearance of abnormal uptake in all four patients, corroborated on post-treatment MRI and clinical follow-up in three 
patients

Galldiks et al. (133) 1 A continuous decline in metabolically active tumor volume after stereotaxy-guided laser-induced interstitial thermotherapy 
(LITT) was observed in a patient with a recurrent GBM, suggesting that [11C]methionine PET could be useful for monitoring 
the short-term therapeutic effects of LITT

Miwa et al. (151) 42 Metastatic lesions demonstrated significant decreases in [11C]methionine uptake (quantitative analysis) following stereotactic 
radiation therapy with intensity modulated radiation therapy (SRT-IMRT: 25–35 Gy in five fractions) in metastatic brain tumors

Chiba et al. (130) 14 A voxel-wise parametric response map (PRM) analysis of [11C]methionine PET could be useful for monitoring treatment 
response in immunotherapy for malignant gliomas

Head and neck

Lindholm et al. (150) 15 In patients with squamous cell carcinomas of the head and neck region treated with preoperative radiotherapy (dose 
of 61–73 Gy), [11C]methionine PET demonstrated a significantly lower [11C]methionine uptake in tumors showing a 
histopathological response when examined before and 5–42 days after radiotherapy

Nuutinen (154) 15 A significant decrease in [11C]methionine uptake was seen during the first 2–3 weeks after radiotherapy of head and neck 
cancer, but the rate of decrease in tracer uptake could not distinguish between relapsing disease and locally controlled 
disease

Chesnay et al. (129) 13 Reduction in [11C]methionine PET accumulation after the completion of one course of chemotherapy for hypopharynx 
squamous cancer correlated significantly with a reduction in the tumor mass, as measured by MRI at the completion of three 
courses of chemotherapy

Hasebe et al. (136) 39 [11C]methionine PET allowed for a prediction of the therapeutic efficacy of carbon-ion radiotherapy (CIRT) in head and neck 
adenocarcinomas. Tumor-to-normal tissue ratio pre-treatment (TNRpre) was significantly associated with metastasis and 
disease-specific survival, while the TNR post-treatment (TNRpost) was associated with the local recurrence, metastasis, and 
disease-specific survival

Toubaru et al. (165) 67 [11C]methionine PET or PET/CT prior to and 1 month after the completion of CIRT for adenoid cystic carcinoma of the head 
and neck, showed a significant decrease in TNR after treatment

Breast

Huovinen et al. (138) 8 A reduction in [11C]methionine uptake predicted clinical target stability or regression of metastasis, while an increase uptake 
predicted progressive disease when evaluated at 7 weeks after radiotherapy, hormonal therapy, or chemotherapy for 
metastatic breast cancer

Jansson et al. (141) 16 [11C]methionine PET predicted response in 67% (8/12) of clinical responders as early as 6–13 days after the first course of 
chemotherapy.

Lindholm et al. (149) 13 [11C]methionine PET showed significant reduction in uptake (30–54%) in all six responding metastatic sites, whereas the 
decrease in uptake was lower in magnitude or showed an increase in stable or non-responding lesions, in metastatic breast 
cancer patients treated with polychemotherapy or hormones

Bladder

Letocha et al. (148) 4 [11C]methionine PET identified patients who progressed after chemotherapy for localized or metastatic bladder cancer

Katz et al. (142) 1 In a patient with metastatic transitional cell carcinoma (TCC) unfit for platinum-based chemotherapy, being treated with 
Sunitinib, [11C]methionine PET showed a significantly decreased metabolic uptake in bone and lymph nodes 28 days 
after sunitinib initiation without any objective morphological changes, corroborated by objective tumor reduction on CT at 
2 months after therapy initiation
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Sample 
size

Outcome

Choroidal melanoma

Tamura K (163) 1 [11C]methionine PET uptake when evaluated visually and semiquantitatively showed a significant decrease in tumor-to-brain 
ratio at ≥6 months after therapy and disappeared in 50% of the patients at 12 months after carbon-ion therapy

Soft tissue sarcoma

Zhang et al. (170) [11C]methionine PET was of prognostic value in patients with bone and soft tissue sarcoma treated by CIRT

Ghigi et al. (134) 9 The percentage variation in histological response (tumor grade regression) and SUVmax of [18F]FDG before and after 
neoadjuvant chemo-radiotherapy seems to discriminate between partial and complete response better than [11C]methionine

Rectal cancer

Wieder et al. (168) 26 [11C]methionine PET aided tumor visualization, but the degree of reduction in [11C]methionine uptake post chemo-radiation 
did not correlate with the tumor response measured by pathologic evaluation. [11C]methionine PET may not be a good 
method for evaluating the response of radiotherapy in rectal cancer

Koizumi et al. (144) 53 [11C]methionine PET uptake decreased with CIRT but there were no significant correlations between imaging variables (SUV, 
tumor-to-normal tissue ratio) and other clinical parameters (distant metastasis and survival) in patients with rectal cancer

Lung cancer

Kubota et al. (145) 21 A significant decrease in [11C]methionine uptake in responding human lung tumors 2 weeks after radiotherapy or 
chemotherapy, and the decrease preceded the shrinkage in tumor volume measured with CT

Ishimori et al. (139) 9 [11C]methionine PET did not provide additional information over FDG PET in lung cancer treated with stereotactic 
radiotherapy (SRT). Decline in [11C]methionine PET activity reflects acute reaction to SRT and the increase in activity in later 
time points denotes radiation-induced pneumonitis

Lymphoma

Leskinen-Kallio et al. 
(147)

1 Demonstrated a decrease in [11C]methionine uptake with chemotherapy and radiotherapy in a patient with non-Hodgkin’s 
lymphoma (NHL)

Sawataishi et al. (160) 2 [11C]methionine PET improved lesion delineation compared to CT/MRI in PCNSL and predicted presence of residual tumors 
after radiotherapy in lesions involuting on CT

Ogawa et al. (156) 10 [11C]methionine PET is useful for the delineation of CNS lymphoma and for monitoring the therapeutic effect of irradiation. 
The extent of [11C]methionine accumulation in tumor tissue markedly decreased after radiation therapy

Tsuyuguchi et al. (166) 1 [11C]methionine PET is helpful in assessing the effect of chemotherapy earlier than is feasible with other methods in malignant 
scalp lymphoma
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studies demonstrate superiority of [11C]methionine to [18F]FDG 
in monitoring novel anti-myeloma therapy involving proteasome 
inhibition (119).

Leucine Analogs
Leucine is one of the preferential amino acid required for prolifer-
ating tumor cells and is, therefore, of interest in molecular imaging 
of anabolic cancer processes. 1-Amino-3-[18F]fluorocyclobutane-
1-carboxylic acid (anti-[18F]FACBC), a synthetic non-natural 
leucine analog, has been widely studied in imaging brain (171, 
172), prostate tumors (173, 174), and pulmonary lesions (175). 
The non-natural amino acids are not metabolized but are taken up 
through both the L-type transporter and the energy-dependent 
A-type transporter (176). The tracer accumulation in PCa cells 
correlates with the expression level of the alanine, serine, and 
cysteine preferring system-mediated amino acid transport with 
the large neutral amino acid transporter (LAT1) as an important 
transport system (177, 178). There are only two preclinical studies 
that evaluated the role of anti-[18F]FACBC in predicting response 
[Table  1; (121, 124)] and in these cases anti-[18F]FACBC PET 
provided useful information on early response. Future studies 
are eagerly awaited.

Tryptophan Analogs
Tryptophan is an essential amino acid required for biosynthesis 
of proteins, serotonin, and niacin in the brain and other tis-
sues (179). The amino acid PET tracer alpha-[11C]methyl-L-
tryptophan (AMT) is transported in tumor tissue by LAT1 but 
is not incorporated into proteins (180). Instead, AMT is utilized 
by the kynurenine immunomodulatory pathway (181). Under 
pathological conditions, induction of this pathway’s rate-limiting 
enzyme, indoleamine 2,3-dioxygenase (IDO), leads to increased 
metabolism of tryptophan and, thus, AMT accumulation (182). 
Tryptophan analogs have been widely studied in imaging high-
grade gliomas (182, 183), CRPC (184), and neuroendocrine 
tumors (185). In a case report, Peng and co-workers suggested 
that AMT PET may be useful for assessing progression and 
therapeutic response of optic glioma (186). Further studies are 
eagerly awaited.

DiSCUSSiON

Several metabolic pathways are deranged in cancer in a 
proliferation-dependent or proliferation-independent manner. 
These metabolic pathways, particularly enhanced glycolysis, 
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offer the opportunity to detect cancer often with high contrast. 
In this review article, we discuss about the role of established and 
evolving metabolism tracers for prediction/monitoring response 
to therapy. The effect of drug or radiation therapy on each 
metabolic phenotype ought to be carefully considered to enable 
assignment of biological and clinical relevance to the changes 
seen. Notably, these therapies may directly or indirectly inhibit 
tumor cell metabolism, or indeed the changes may simply reflect 
loss of cell viability and influence the timing of post-treatment 
scanning. For [18F]FDG PET, the effect of the so-called targeted 
or biologic therapies on response monitoring has been reviewed 
(26) with the suggestion that the drugs may directly affect GLUT/
hexokinase expression or activity with changes occurring within 
hours to days after initiating treatment. This type of information 
is less mature when other metabolism tracers are considered. For 
example, as discussed above, only a few studies have attempted 
to directly link the biology of androgen deprivation to changes 
in the tumor labeled choline signal. Regarding imaging variables, 
different variables have been used in the assessment of non-FDG 
tracers (see Tables 1–4). Some of these variables, e.g., TMR, may 
be considered, for instance, when RT is the choice of therapy to 
account for the effect of radiation on normal tissues.

Whatever the mechanism of signal change, be it direct or 
via loss of cell viability, it is important to consider the intrinsic 
variability of the quantitative measure, as well as that magnitude 
of change (threshold) for response. For [18F]FDG uptake, the 
intrinsic measurement variability (without treatment) ranges 
from 10 to 20% in different tumor phenotypes (187, 188). Based 
on pooling together reproducibility data, a consensus for quan-
tifying PET response by EORTC PET study group was reached 
(189). The tumor responses were graded as follows:

 1) Complete metabolic response (CMR): complete resolution 
of FDG uptake.

 2) Partial metabolic response (PMR): a decrease (across all 
lesions) of minimum of 15% in tumor SUV after one cycle 
or >25% after more than one cycle of chemotherapy.

 3) Stable metabolic disease (SMD): an increase of <25% or a 
decrease of <15% in SUV, and no visible increase in extent 
of FDG tumor uptake (20% in longest dimension).

 4) Progressive metabolic disease (PMD): an increase in FDG 
tumor SUV of >25% within tumor region defined on baseline 
scan; visible increase in extent of FDG tumor uptake (20% 
in longest dimension) or appearance of new FDG uptake in 
metastatic lesions.

More recently, PET Response Criteria in Solid Tumors 
(PERCIST) guidelines have been formulated (190). These are 
based on the premise that cancer response as assessed by PET is 
a continuous and time-dependent variable. The tumor responses 
were graded as follows:

 1) CMR: visual disappearance of all metabolically active tumors.
 2) PMR: more than a 30% decline and a 0.8-unit decline in SULpeak 

between the most intense lesion before treatment and the most 

intense lesion after treatment, although not necessarily the same 
lesion.

 3) SMD: not CMR, PMR, or PMD.
 4) PMD: more than a 30% and 0.8-unit increase in SULpeak or new 

lesions, if confirmed. A >75% increase in total lesion glycolysis is 
also proposed as another metric of progression.

The PERCIST criteria differ from the EORTC criteria in that the 
SUV is normalized to the lean body mass and five tumors (up to 
two per organ) with the most intense [18F]FDG uptake lesions being 
considered target lesions; SULmean is the recommended imaging 
variable, as it has better test–retest variability (8–10%), is statisti-
cally less susceptible to variance, and is less subjective due to clear 
definition of target lesions.

Notably, these criteria are specific for [18F]FDG PET and may 
differ for other tracers. For example, Kenny and co-workers have 
evaluated the reproducibility of [11C]choline in breast cancer 
(85). A decrease of 40% for SUV30min, and 24% for SUV60min, was 
classified statistically as response. However, it is not clear if these 
criteria could be widely applied across different tumor sites or 
across different PET tracers, as the intrinsic variability may be 
isotope, patient, or scanner related.

In the future, further evaluation is required to assess the role 
of metabolic-PET imaging in assessing response to treatment and 
follow-up after treatment. These include what the optimal time 
(early or delayed) for performing the scan after treatment is, what 
the relevant imaging variables for predicting response are, how 
often to scan, whether imaging sensitivity and specificity are suf-
ficient to predict response or progression, and whether changes in 
imaging variables can be used as surrogates for predicting patient 
outcomes. Future studies will need to be designed to establish the 
answers to these questions.

CONCLUSiON

In this article, we aimed to give an overview of metabolic pro-
cesses imaged by PET and focused on both established and evolv-
ing radioprobes to detect tumor glycolysis, choline metabolism, 
intracellular transport of glutamine, and other amino acids, as 
well as fatty acid metabolism. In particular, we emphasize the 
role of radiolabeled choline, acetate, and amino acid tracers for 
monitoring efficacy or predicting response to new therapies that 
directly or indirectly inhibit tumor cell metabolism. The optimal 
imaging time point, pertinent imaging variable, and criteria for 
response will require further interrogation.
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