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Gastrointestinal (GI) cancer is the most common group of malignancies and many of its 
types are among the most deadly. Various glycoconjugates have been used in clinical 
practice as serum biomarker for several GI tumors, however, with limited diagnose 
application. Despite the good accessibility by endoscopy of many GI organs, the lack of 
reliable serum biomarkers often leads to late diagnosis of malignancy and consequently 
low 5-year survival rates. Recent advances in analytical techniques have provided novel 
glycoproteomic and glycomic data and generated functional information and putative 
biomarker targets in oncology. Glycosylation alterations have been demonstrated in a 
series of glycoconjugates (glycoproteins, proteoglycans, and glycosphingolipids) that 
are involved in cancer cell adhesion, signaling, invasion, and metastasis formation. In 
this review, we present an overview on the major glycosylation alterations in GI cancer 
and the current serological biomarkers used in the clinical oncology setting. We further 
describe recent glycomic studies in GI cancer, namely gastric, colorectal, and pancreatic 
cancer. Moreover, we discuss the role of glycosylation as a modulator of the function 
of several key players in cancer cell biology. Finally, we address several state-of-the-art 
techniques currently applied in this field, such as glycomic and glycoproteomic analyses, 
the application of glycoengineered cell line models, microarray and proximity ligation 
assay, and imaging mass spectrometry, and provide an outlook to future perspectives 
and clinical applications.

Keywords: gastric cancer, colorectal cancer, pancreatic cancer, glycomics, glycan biomarkers, microarray, 
proximity ligation assay, imaging mass spectrometry

GLYCOBiOLOGY iN CANCeR

The cells’ glycocalix constitutes an important interface with the extracellular milieu and plays 
 critical  roles in physiological and pathological conditions. This glycan-rich coating of the cells’ 
plasma membrane is composed by different classes of glycoconjugates, including glycoproteins, 
glycolipids, and proteoglycans, which participate in key regulatory events for cellular and organ 
homeostasis. Alterations in glycosylation can interfere with normal molecular functions such as 
cell–cell recognition, communication, and adhesion, leading to acquisition of malignant features. 
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Moreover, the shedding of aberrant glycoconjugates, uniquely 
expressed by tumor cells, into circulation provides one valuable 
source of biomarkers for cancer diagnosis and prognosis (1).

Substantial advances in the frontiers of cancer glycobiology 
have been possible in the recent past due to the combination of 
novel tumor cell biology concepts with cutting-edge glycomic 
technologies. Specific glycosylation alterations have been identi-
fied in tumors and some of the molecular pathways underlying 
these modifications have been disclosed (2). In addition, aberrant 
glycoforms have been demonstrated to be molecularly associated 
with more aggressive cancer cell and tumor features, including 
increased migration, invasion, and metastization potential, pro-
viding novel targets for therapeutic intervention (3–5).

This review describes the recent progress in gastric cancer, 
colorectal cancer (CRC), and pancreatic ductal adenocarcinoma 
(PDAC) glycobiology and discusses the clinical value of aberrant 
glycosylation as a source of screening biomarkers and therapeutic 
targets. A comprehensive overview of the advances in glycomic 
and glycoproteomic tools is also provided and their possible 
applications for tumor glycan-profiling and discovery of novel 
targets for improving gastrointestinal (GI) tumors’ clinical man-
agement are discussed.

GLYCOSYLATiON ALTeRATiON iN 
GASTROiNTeSTiNAL CANCeRS

Despite the large amount of glycan epitopes that can be found in 
the human GI tract and the complex and manifold alterations of 
the glycosylation machinery during the process of carcinogenesis 
and cancer progression, the current knowledge makes it possible 
to group the most common glycan alterations. Expression of 
truncated simple O-glycans, changes in N-glycan branching, 
and increase in sialylation and fucosylation are three major 
N- and O-glycosylation events involved in GI cancer that will be 
described in detail (Figure 1). Furthermore, we give an overview 
on other common glycosylation alterations in cancer, such as 
changes in O-GlcNAcylation, modified glycosphingolipids, and 
glycosaminoglycans (GAGs) and proteoglycans.

Truncated Simple O-Glycans
One common feature observed in GI tumors is the overexpression 
and exposure of short, truncated O-glycans. Mucin-type O-glycans 
are found on most transmembrane and secreted proteins. A 
single O-glycan oligosaccharide chain can present more than 20 
monosaccharide constituents (6). In malignancy, O-glycans are 
often shortened resulting in an increase of the monosaccharide 
Tn antigen (GalNAcα1-Ser/Thr), the disaccharide T antigen (also 
known as Thomsen–Friedenreich antigen or core 1 structure, 
Galβ1-3GalNAcα1-Ser/Thr) and their sialylated forms, STn 
(Neu5Acα2-6GalNAcα1-Ser/Thr), and ST (Neu5Acα2-3Galβ1-
3GalNAcα1-Ser/Thr), respectively (Figure 1) (7, 8).

Polypeptide GalNAc transferases (ppGalNAcTs), which are 
the initiating enzymes of the mucin-type O-glycosylation (9, 10), 
show often altered expression in cancer (11–13). A total of 20 
different ppGalNAcTs are known in human and their expression 
profile and subcellular localization determine O-glycosylation 

sites and densities (9, 14). In CRC, for example, the ppGalNAc-T3 
is associated with tumor differentiation, disease aggressiveness, 
and prognosis (12). In gastric cancer, the expression of ppGalNAc-
T6 is associated with venous invasion and the downregulation of 
ppGalNAc-T2 increases the cancer cell proliferation, adhesion, 
and invasion (11, 15).

In addition, enzymes competing for the same substrate can also 
induce expression of truncated glycans and exposure of protein 
epitopes that would be hidden otherwise. For instance, the relative 
enzymatic activities of C2GnT (N-acetylglucosaminyltransferase) 
and ST3Gal-I (sialyltransferase), two glycosyltransferases that 
compete for the same substrate, have been shown to determine 
the O-glycan structure in cancer cells (16).

STn is expressed in most GI carcinomas correlating with 
decreased cancer cell adhesion, increased cancer cell inva-
sion, and poor prognosis of the patients (17–23). The terminal 
STn epitope is synthesized by the sialylation of Tn by the 
ST6GalNAc-I sialyltransferase (17, 18). In cancer, the forma-
tion of STn may occur due to ST6GalNAc-I upregulation, early 
sialylation caused by glycosyltransferase misslocalization in the 
secretory pathway, or the impairment of the elongation of the Tn 
antigen (14, 17, 18, 24).

In gastric cancer, expression of STn is a common feature asso-
ciated with more malignant phenotypes. The overexpression of 
ST6GalNAc-I has been shown to induce migration and invasion 
in gastric carcinoma cells in vitro (20).

In this regard, another gene that can underlie the synthesis of 
truncated O-glycans is COSMC, which encodes for a C1GalT1 
dedicated chaperone (25). The galactosyltransferase C1GalT1 is 
responsible for the elongation of the Tn antigen to form the core 1 
structure also known as the T antigen. The absence of a functional 
COSMC entails the dysfunction of C1GalT1. In PDAC, it has 
been shown that hypermethylation of COSMC, and not somatic 
mutations, is the prevalent cause of truncated O-glycans (23). 
In addition, the downregulation of C1GalT1 in combination 
with the upregulation of ST6GalNAc-I has been associated with 
increased STn expression in CRC cell lines and epithelial cells 
derived from resected CRC tumor tissue (26). In contrary, the 
overexpression of C1GalT1 is associated with invasion, metasti-
zation, and poor survival in CRC. In C1GalT1 overexpressing 
CRC cells, the knockdown of C1GalT1 suppresses the malignant 
phenotype in vitro and in vivo (27). Increased levels of C2GnT, 
a glycosyltransferase responsible for the biosynthesis of core 2 
structures, are also frequent in CRC (28). This enzyme has also 
a critical role in the biosynthesis of terminal sialylated Lewis 
antigens on O-glycans that will be further discussed in Section 
“Increased Sialylation and Fucosylation.”

Normal pancreas does not express the Tn antigen and its cor-
responding sialylated epitope STn (21). The Tn antigen is detected 
in 75–90% of PDACs and up to 67% in precursor lesions (24). The 
appearance of the STn in mucins, on the other hand, is a late event 
in PDAC disease progression (29). These truncated O-glycans are 
associated with cancer cell growth and tumor invasion in PDAC 
(23, 24). The situation is slightly different in CRC, where the over-
expression of T antigen is associated with early events in cancer 
progression and both Tn and STn antigens are frequently overex-
pressed in advanced and poorly differentiated adenocarcinomas 
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FiGURe 1 | Schematic depiction of glycan alterations during malignant transformation. Healthy epithelium displaying cell polarity, organized glycoprotein 
localization, and normal glycosylation pattern. Malignant cells with misslocalized glycoproteins and altered expression of genes involved in glycosylation pathways 
leading to the aberrant expression of glycan moieties. The glycosyltransferases involved in glycan alterations during malignant transformation are listed.
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and also in mucinous carcinomas. Therefore, these antigens are 
considered useful markers for poor outcome (22).

Besides cores 1 and 2, O-glycans with cores 3 and 4 are also 
often expressed in normal GI epithelia, especially in colon, but are 
significantly decreased in malignancy due to downregulation of 
the core 3 and 4-synthetase (8, 30–32).

The de novo expression of truncated O-glycans in GI cancers 
is of avail in the search of specific cancer biomarkers. It leads to 
the expression of unique glycopeptide structures and, because of 
the small steric size of these truncated O-glycan moieties, to the 
exposure of protein regions that would otherwise be masked, and, 
therefore, not detected by specific antibodies (29, 33).

Branched N-Glycans
The biosynthesis and maturation of N-glycan structures is 
defined by a complex interplay of numerous glycosidases and 
glycosyltransferases in the endoplasmic reticulum and Golgi. 
Among N-glycan types, the complex N-glycans display the 
largest structural diversity. Two structural features of complex 

N-glycans are the β1,6-branching, catalyzed by the glycosyl-
transferase GnT-V, and the bisecting-GlcNAc, added by the gly-
cosyltransferase GnT-III. GnT-V is known to be upregulated 
in gastric carcinoma (Figure  1) (34), leading to the increased 
branching of N-glycans and contributing to cancer cell invasion 
and metastases (35, 36). Analogically, normal colon epithelium 
presents high levels of bisecting-GlcNAc, due to high expres-
sion levels of GnT-III, which is associated with suppression of 
the tumor progression. However, during cancer progression, 
these bisecting structures are decreased (37) and it has been 
described a general increase of β1,6-branched in complex 
N-linked glycans that are also associated with tumor invasion 
and metastasis (38). Histochemical studies using specific lectins 
for the detection of β1,6-branched structures showed increased 
staining concomitant with tumor CRC staging (39), and an asso-
ciation with lymph node metastasis and decreased survival rates 
in CRC patients (40). GnT-V, the enzyme responsible for the 
synthesis of β1,6-branched N-glycans, is commonly upregulated 
in CRC correlating to the metastatic potential and consequently 
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considered an important prognosis factor to detect poor CRC 
patients’ outcome (41). A recent study demonstrated that GnT-V 
levels modulate CRC stem cells and tumor formation by Wnt 
signaling (42). Increased extension of β1,6-branched complex 
N-glycans by long polymers of N-acetyllactosamine (LacNAc) 
due to upregulation of β3GnT8 has also been described in CRC 
cells (43).

Regarding PDAC progression, little has been described about 
bisecting structures, although the increase in highly branched 
N-glycans is well established. The number of tri- and tetra-
antennary glycans is significantly increased in both pancreatic 
cancer cells and PDAC patients’ serum and correlate with cancer 
progression (44, 45).

Another mechanism leading to increased branching is the 
downregulation of GnT-III and the addition of bisecting-GlcNAc. 
Bisected structures cannot be further modified by GnT-V and, 
therefore, preclude the formation of branched N-glycans under 
healthy conditions.

The interplay of GnT-III and GnT-V modulates cell adhesion 
and migration in a gastric cancer context (46, 47). This has been 
shown to be particularly important for cell–cell and cell–matrix 
interactions in gastric cancer by altering the functionality 
of E-cadherin and integrins in malignant transformation. 
E-cadherin promotes adherence junction formation and, thus, 
maintains intercellular adhesion. E-cadherin is stabilized by 
bisected N-glycans delaying its endocytosis and turnover (47–49). 
Furthermore, bisecting-GlcNAc on E-cadherin is gastric tumor 
suppressive by downregulating signaling pathways involved in cell 
motility and the EMT process (50–54). Conversely, E-cadherin 
is dysregulated when glycosylated with branched N-glycans by 
GnT-V in the context of gastric cancer (34, 52, 53). GnT-V is 
commonly upregulated in gastric carcinomas contributing to cell 
invasion and metastases (35, 36). The overexpression of GnT-V 
leads to destabilization of adherence junctions, delocalization of 
E-cadherin into the cytoplasm, and mesenchymal appearance of 
the cells with increased metastatic capability (34, 52, 55).

Integrins convey adhesion to extracellular matrix components 
and are often altered in GI carcinomas. In gastric cancer, the 
modification of α3β1 integrin with branched N-glycans increases 
cell migration (56). The modification of α3β1 integrin with 
bisecting-GlcNAc has the opposite effect by inhibiting cell migra-
tion (56). Consistently, the overexpression of GnT-III resulted 
in the inhibition of α5β1 integrin-mediated cell migration and 
reduced binding to fibronectin due to a specific N-glycosylation 
site on the α5 integrin (57, 58).

increased Sialylation and Fucosylation
Sialic acids are the largest and the only intrinsically negatively 
charged monosaccharides present in human glycosylation. As 
a terminal event, sialylation caps glycosylation chains usually 
resulting in exposed locations of the negative charge at the fore-
front of the oligosaccharides and first encounter point for adjacent 
glycans, proteins, and cells. Sialylation has, therefore, been shown 
to play important roles in modulating cellular recognition, cell 
adhesion, and cell signaling (59). Moreover, cancer cell sialylation 
patterns define sialic acid-binding lectins (Siglecs) interactions 
and modulate immune response (60, 61).

An increase in global sialylation, especially in α2,6- and α2,3-
linked sialylation, owing to altered glycosyltransferases expres-
sion, has been closely associated with cancer and commonly 
described as one of the main modifications in GI cancers (62, 
63). For example, ST6Gal-I, the enzyme that adds α2,6-linked 
sialic acid to lactosamine chains (Neu5Acα2,6Galβ1,4GlcNAc), 
is commonly overexpressed in GI cancers correlating with poor 
prognosis (59, 64, 65). Additionally, α2,3-sialyltransferases, 
such as ST3Gal-III and ST3Gal-IV, are often upregulated in the 
course of gastric cancer and PDAC progression leading to a more 
invasive and metastatic phenotypes of the cancer cells (65–69). 
Furthermore, sialylation, in particular α2,3 and α2,6-linked, 
can modulate the ECM adhesion and migration. Specifically, 
it has been described that while the overexpression of terminal 
α2,6-linked sialic acid leads to increased ECM adhesion, the 
overexpression of α2,3-linked terminal sialic acid epitopes in 
PDAC cancer cell lines results in a more migratory phenotype 
(70). Similarly, in gastric cancer cells, the overexpression of 
α2,3-linked terminal sialic acid epitopes causes a more invasive 
phenotype in vitro and in vivo (67).

The major α2,3-sialylated antigens associated with cancer 
are SLea and SLex (Figure  1). Although these structures can 
also be present in non-neoplastic cells, SLea and SLex have been 
demonstrated to be highly expressed in many malignant tissues, 
including GI tumors, both in glycoproteins and glycosphigolipids 
(71–74). SLex-increased expression levels are associated with 
advanced stages and have been correlated with poor survival in 
GI cancer patients (75–77). SLex is the well-known ligand for 
selectins (78). During inflammation, selectins mediate the initial 
attachment of leukocytes to the endothelium during the process 
of leukocyte extravasation. In cancer, SLex interactions with 
selectins favor metastasis by forming emboli of cancer cells and 
platelets and promoting their arrest on endothelia (77).

The overexpression of SLex in a gastric carcinoma cell line 
transfected with ST3GAL4 has shown to increase the cells inva-
sive potential both in vitro and in vivo due to the activation of 
the oncogenic c-Met receptor tyrosine kinase (67). Moreover, 
overexpression of ST3GAL4 has been shown to result in RON 
receptor tyrosine kinase activation and co-expression of RON 
and SLex is observed in gastric tumors (79). This is of particular 
biological relevance since it has been described that RON activa-
tion contributes to tumor progression, angiogenesis, and therapy 
resistance and correlates with bad prognosis (80–84).

Sialylated Lewis epitopes are potential good markers for 
prognosis due to their high incidence of recurrence or presence 
in metastasis and correlation with the tumor stage. For example, 
a recent work described the increase of the SLex epitope on 
ceruloplasmin in PDAC. The increased ceruloplasmin with the 
SLex epitope in chronic pancreatitis was lower, suggesting good 
specificity for pancreatic malignancy (85). Moreover, studies 
using high-density antibody microarray also detected increased 
levels of SLex and SLea antigens on glycoproteins in serum or 
plasma of CRC patients (86).

Overexpression of the enzyme β-galactoside α2,6-
sialyltransferase I (ST6Gal-I), especially in N-glycans and not in 
O-glycans, has been associated with CRC progression, increased 
invasion, and metastization and consequently poor prognosis in 
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CRC patients (64, 87). Further studies taking into consideration 
the low levels of ST6Gal-I in healthy individuals and upregulation 
in CRC patients could lead to the development of new diagnostic 
and therapeutic targets.

Fucosylation is also an important modification involved 
in cancer and inflammation (88). The attachment of fucose to 
N-glycans, O-glycans, and glycolipids has been reported in cancer 
tissues, regulating different biological processes, and being also 
responsible for the increased expression of Lewis antigens (89) 
(and sialylated-Lewis antigens, as previously described). Different 
studies link the presence of fucosylated epitopes on specific 
glycoproteins with cancer. In particular, research performed on 
some acute phase proteins suggest the suitability of fucosylated 
epitopes for cancer management. It has been demonstrated 
that fucosylated alpha-fetoprotein (AFP) is more specific as a 
hepatocellular carcinoma biomarker than AFP itself. Nowadays 
fucosylated AFP (AFP-L3) is used for hepatocellular carcinoma 
risk assessment (90, 91). Acute phase proteins, such as AFP, are 
proteins synthesized by hepatocytes and have shown clinical value 
as markers for liver and pancreatic-related diseases. For example, 
haptoglobin and AGP have revealed an increase in fucosylated 
epitopes that could help to improve PDAC diagnosis (89, 92).

Increased activity in α1,3 and α1,4 fucosyltransferases (FUTs) 
was described in CRC patients, resulting in the synthesis of SLex 
and SLea epitopes, respectively (89). Particularly, FUT6 was more 
recently reported as the major regulator of SLex biosynthesis in 
CRC (93). Increased levels of fucosylation in plasma samples of 
CRC patients compared to normal controls were also described 
using methods for N-glycoproteomics analysis to identify plasma 
markers (94). In addition, increased levels of α1,2-FUT1 and 
FUT2, which add fucose to terminal galactose and are essential 
for the synthesis of Lewis Y and B antigens, were shown in CRC 
tumors (95). Alterations of FUT expression have also been 
described in the process of gastric carcinogenesis (96). In par-
ticular, the downregulation of FUT3 and FUT5 changes the Lewis 
antigens expression and reduces the adhesion capacities of gastric 
cancer cells (97). This is contrary to what is observed in gastric 
inflamed mucosa, where FUT3 is upregulated (98).

Increased core-fucosylation of N-glycans catalyzed by α1,6-
FUT8 has been described in CRC patients and is associated 
with tumor aggressiveness (37, 99). The core-fucosylation of 
E-cadherin enhances the cellular adhesion of CRC cells (100). 
However, in gastric cancer, the decrease of core-fucosylation has 
been demonstrated to be a common event contributing to cancer 
cell proliferation (101).

Other Relevant Glycosylation Alterations
In addition to the mucin-type O-glycosylation, there are 
further forms of protein O-glycosylation, including the 
modification of nuclear and cytoplasmic proteins with O-linked 
β-N-acetylglucosamine (O-GlcNAc). Noteworthy, increased 
O-GlcNAcylation is a general feature of cancer and the modifica-
tion of proteins with O-GlcNAc has been shown to play key regula-
tory roles in tumor cell signaling (102). The addition of O-GlcNAc 
to nuclear and cytosolic proteins is mediated by the O-GlcNAc 
transferase (OGT), whereas the enzyme O-GlcNAc-selective 
N-acetyl-beta-d-glucosaminidase (O-GlcNAcase)  removes  the  

O-GlcNAc, returning the protein to its basal state (103). 
O-GlcNAcylation has been shown to have extensive crosstalk with 
phosphorylation  and to antagonize phosphorylation-mediated 
cell signaling (104).

In the pancreas, beta-cells are characterized by expressing high 
levels of the OGT enzyme. This allows these cells to dynamically 
respond to physiological increases in the extracellular glucose 
levels by converting glucose to UDP-GlcNAc, which is the OGT 
substrate, and therefore modulating intracellular O-linked pro-
tein glycosylation (105). In PDAC, hyper-O-GlcNAcylation has 
been associated with increased expression of the OGT enzyme 
and reduction of the O-Glc-NAcase glycosidase and has been 
demonstrated to block cancer cell apoptosis and to lead to the 
oncogenic activation of the NF-kB signaling pathway (106). 
Similarly, increased O-GlcNAcylation in colon has been demon-
strated to contribute for the development of colitis and colitis-
associated cancer by enhancing NF-kB-mediated signaling (107).

Along with aberrant protein glycosylation, cancer cells 
also display major glycosylation alterations on other classes of 
glycoconjugates, including the proteoglycans and the glycosphin-
golipids. Proteoglycans consist of a core protein with one or more 
covalently attached large GAG chains, and can be either located 
at the cell membrane or secreted. The syndecans are a family of 
transmembrane proteoglycans that carry heparan sulfate GAG 
chains and that can also be additionally modified with chondroi-
tin sulfate chains (108). The heparan sulfate-rich proteoglycan 
syndecan-4, a critical partner of integrins for the establishment 
of focal adhesion complexes, has been shown to be upregulated in 
gastric mucosa in response to the oncogenic bacteria Helicobacter 
pylori. However, its functional role in the gastric carcinogenesis 
process remains to be disclosed (109, 110). Another syndecan 
family member, the syndecan-1, has been reported to be differ-
ently regulated and expressed in GI tumors. Loss of syndecan-1 
expression has been described in gastric adenocarcinomas of 
higher stages (111), while in CRC and PDAC the expression of 
this proteoglycan has been shown to be upregulated, suggesting 
its possible application as a biomarker (112, 113).

Heparan sulfate GAG chains can also be carried by glypi-
cans, a family of glycosylphosphatidylinositol (GPI)-anchored 
proteoglycans. Glypicans have been shown to bind a wide range 
of signaling molecules and to regulate the signaling of the Wnt, 
Hedgehog, fibroblast growth factor, and bone morphogenetic 
protein (BMP) pathways (114). Glypican-1 has been shown to 
be overexpressed in PDAC cell models and patient tumors (115). 
Moreover, the key role of glypican-1 in PDAC progression has 
been well documented using mouse models (116, 117). Recently, 
glypican-1 has been shown to be specifically expressed by cancer 
circulating exosomes and, therefore, to have potential to be used 
as a minimal-invasive diagnostic and screening tool to detect 
early PDAC stages (118).

The CD44 proteoglycan has also been on the focus of tumor 
biology research because the expression of specific splice variants 
is strongly associated with malignancy. Specifically, the exon 
v6-containing CD44 isoform (CD44v6) is highly expressed in 
premalignant and malignant gastric lesions (119). Modification 
of CD44v6 with STn was demonstrated in gastric mucosa and 
serum of cancer patients, indicating its potential as a biomarker 
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for early diagnosis of gastric tumors (120). Different strategies 
aiming the impairment of CD44-dependent cancer cell migra-
tion have been proposed. The ceramide nanoliposome (CNL) 
was shown to induce anoikis and to limit metastasis by inducing 
lysosomal degradation of CD44 in PDAC cells (121).

Another glycosylation modification frequently observed in 
cancer is the altered sialylation of glycosphingolipids that can 
lead to the appearance of tumor-associated antigens. The human 
plasma membrane-associated sialidase NEU3, which catalyzes 
the removal of sialic acids from glycoproteins and glycolipids, 
is a key enzyme for ganglioside degradation. NEU3 has been 
shown to be overexpressed in many tumors, including CRC 
(122). Modulation of ganglioside expression by increased NEU3 
activity has been proposed as a mechanism of protection against 
programed cell death and has, therefore, a critical implication in 
therapeutic strategies (123). Recently, NEU3 was demonstrated to 
regulate the Wnt signaling pathway, therefore contributing for the 
malignant transformation of CRC cells (124). These findings sug-
gest NEU as a relevant target for diagnosis and therapy of CRC. 
During CRC progression, besides reduced expression of sialylated 
gangliosides, overall alteration in glycosphingolipids glycosyla-
tion includes increased fucosylation, decreased acetylation and 
sulfation, and reduced expression of globo-series glycans (125).

GLYCAN CANCeR BiOMARKeRS

Glycosylation changes on glycoconjugates either expressed on 
the cell surface or secreted by cancer cells are potential sources 
of cancer biomarkers. The overexpression of these altered glyco-
sylated structures and the loss of polarity of carcinoma cells lead 
to the shedding of glycoconjugates with altered glycosylation 
into the circulation. Currently, several serological assays used 
in the clinics are based on the quantification of glycoconjugate 
levels in the serum of cancer patients. Most of these biomark-
ers have been useful for prognostic and monitoring purposes. 
These include well-established serological biomarkers, such as 
the CA15-3 assay, detecting mucin MUC1 glycoprotein used 
for breast cancer (126–130), the CA125 assay, which detects the 
circulating mucin MUC16 in ovarian cancer (131, 132), and the 
prostate-specific antigen (PSA), which is used to detect prostate 
diseases (133, 134).

Regarding GI cancer, one of the most used serological assay 
detects the SLea carbohydrate antigen. SLea is present on circulat-
ing glycolipids and glycoproteins and is detected by the CA19-9 
assay. This serological assay is applied in patients with a previously 
established diagnosis of PDAC, CRC, gastric, or biliary cancers 
and used to monitor their clinical response to therapy (135–138).

Another important serological test used in the clinics for GI 
tumors is the carcinoembryonic antigen (CEA) assay, which 
detects the CEA glycoprotein produced by carcinoma cells. In 
GI cancer, CEA is expressed at high levels and shed into the 
bloodstream being useful for prognosis evaluation and follow-up 
of these patients (129, 137, 139, 140).

In general, most of these serological assays have primarily 
been useful for prognosis and patients’ monitoring applications. 
Unfortunately, some of these biomarkers can also be detected 
due to benign lesions or other factors, such as smoking, which 

has limited their use in cancer screening strategies for diagnostic 
purposes. Given the usually late diagnosis of GI cancer, highly 
specific serum markers for cancer detection and screening are 
highly needed. Recent developed strategies and advanced tech-
nologies are contributing to the definition of novel and more 
specific glycoconjugate targets. Several of these new targets are 
currently evaluated and hold potential for improving the cancer 
detection and early diagnosis.

iNNOvATive GLYCOBiOLOGiCAL 
STRATeGieS

The difficulty of glycobiological research lies in the intrinsic 
complexity of glycosylation and its versatile conjugates. Whereas 
genomic and proteomic analysis made a leap forward by DNA 
sequencing and mass-spectrometric protein sequencing, respec-
tively, that enabled the reading of a linear code with limited num-
ber of variabilities; for the more complex glycans, no comparable 
tool exists.

Nevertheless, the recent years have brought up many innova-
tive approaches and methods that enable the unraveling of glyco-
biological challenges. With the development of glycoengineered 
cell strategies, glycan complexities have been reduced and the 
effects of specific glycan epitopes have been pinpointed. On the 
other hand, analytical methods and protocols for glycomic and 
glycoproteomic analyses have improved and new approaches, 
such as the adaptation of the array technology on glycans and 
lectins or novel antibody-based assays, have accelerated the 
acquisition of glycobiological knowledge. The following sections 
discuss several promising strategies in the glycobiology field.

Glycoengineered Cell Line Models
The characterization of the function of glycans in cancer has been 
a major challenge in the field due to technical difficulties related 
to the complexity and heterogeneity of glycans synthesized in 
eukaryotic cells.

Genetic engineered cell models have been developed to study 
the functions of specific glycan epitopes in cancer. Some of 
these models include the overexpression of glycosyltransferases, 
which has allowed the characterization of the biosynthesis and 
function of simple cancer-associated carbohydrate epitopes, such 
as Tn, STn, T, and ST (17, 18, 20, 141, 142). Similar strategies 
have used stably transfected cell lines with glycosyltransferases to 
characterize the function of branched glycan structures (52, 56) 
as well as terminal sialylated/fucosylated structures frequently 
overexpressed by cancer cells, as previously explained in Section 
“Increased Sialylation and Fucosylation” (67, 143, 144).

Another major challenge in the field was related to the iden-
tification of structures at individual glycosylation sites. Major 
efforts have been done in this discipline with the generation of 
site-specific mutants of important proteins in cancer. One exam-
ple is the use of site-specific mutants of N-glycosylation sites of 
the human epidermal growth factor receptor. This strategy has 
allowed the demonstration that Asn-420-linked oligosaccharide 
chain in this receptor interferes with its activation in cancer cell 
lines (145). Another cell line model has addressed the role of 
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E-cadherin N-glycosylation sites in gastric cancer (146–148). 
The use of E-cadherin constructs engineered to lack specific 
N-glycosylation sites has demonstrated the effect of specific 
N-glycosylation structures on cell adhesion (149, 150).

The recent use of genomic editing tools has allowed the 
development of isogenic cell systems that along with extensive 
application of mass spectrometry (MS) methods is utilized for 
high-throughput site-specific O-Glycosylation (O-GalNAc and 
O-Mannose) proteomics. These technologies have enabled the 
precise determination of protein O-glycosylation sites in cells 
(151, 152). These strategies have greatly evolved in the past 
years and are showing vast potential in the glycobiology field. 
One approach has used the zinc-finger nucleases targeting the 
knockout of COSMC gene and has been applied in several human 
cancer cell lines originated from different organs (152). These 
so-called SimpleCell models produce stable cells expressing 
homogeneous truncated O-glycosylation with Tn and/or STn 
O-glycans (24, 120, 151, 153).

These cell models have provided a source of unlimited mate-
rial for isolation and identification of GalNAc O-glycopeptides 
from cell lysates or secretomes using lectin chromatography fol-
lowed by advanced MS, enabling the identification of hundreds of 
unique O-glycoproteins and O-glycosylation sites in several cell 
line models from different tissues (120, 153, 154). In addition, 
this approach has provided a versatile method for the functional 
analysis of different ppGalNAc-Ts (153, 155). Furthermore, 
similar strategies have been applied targeting the O-mannose 
glycoproteome. To reduce the structural heterogeneity of 
O-mannosylation (O-Man), the nuclease-mediated gene editing 
of a human cell line was performed by zinc-finger nuclease target-
ing of the POMGNT1 gene. This gene encodes for the enzyme 
POMGnT1 that controls the first step in the elongation of O-Man 
glycans. The O-Man glycoproteome has been characterized using 
both chromatography and advanced MS (156).

The knowledge of O-glycosites in specific cancer cell types 
allows for the analysis of novel biological functions of glycosyla-
tion and for potential cancer cell-specific O-glycosites. This is 
particularly important given the complexity of O-glycosylation 
and that the various ppGalNAc-Ts that control the protein 
O-glycosylation sites may determine large variation at protein, 
cell, and tissue levels (9).

Glycomic Strategy
Glycomics is the study of all glycan structures of a given cell, tissue, 
or organism. The intrinsic complexity of glycan structures and 
their versatile conjugates render this field particularly challeng-
ing. Due to the constant advancement of analytical instruments 
and methods, the N- and O-glycomic characterization of cancer 
cell lines, tumors, and cancer patients’ body fluids has rendered 
possible. Still, there is no single ideal method for this analysis and, 
thus, today a large variety of analytical methods is available for the 
glycomic characterization, resulting from different combinations 
of initial sample preparation, derivatization, glycan separation, 
and detection. Each method bares advantages and disadvantages.

For the glycomic analysis of cells or tumors, the sample is 
usually homogenized and proteins are denatured, followed by 
the release of glycans (Figure 2A). The study of the glycans of 

serum or plasma is more challenging and requires often purifica-
tion steps for glycoproteins prior to the release of their glycan 
structures. There are several methods to release glycans from the 
protein backbone to facilitate their characterization. The release 
of glycans is not a prerequisite as the analysis of whole glyco-
peptides is also possible (covered in Section “Glycoproteomic 
Strategy”). The most prominent technique to release N-glycans is 
by Peptide-N-Glycosidase F (PNGase F). The release of N-glycans 
via PNGase F is robust, fast, and efficient and is capable of liberat-
ing all types of human N-glycan structures. PNGase F-released 
glycans can be chemically labeled. On the other hand, no enzyme 
has so far been characterized that enables the efficient release of all 
types of O-glycans. For instance, the enzyme O-glycanase releases 
only core 1 O-glycans from their peptide backbone. Therefore, 
chemical techniques have to be utilized for whole O-glycomic 
analyses, such as reductive β-elimination.

Released glycans can be analyzed after derivatization or in 
their native form (underivatized). The derivatization of glycans 
bares several advantages, such as adding fluorescent tags for the 
photometric detection or chemical modification of side groups 
to stabilize glycan constituents. Despite these advantages, it is 
preferred in some cases to work with the native glycan, avoiding 
several time-consuming preparation steps and sample losses.

Complex mixtures of glycans, as they arise from clinical sam-
ples or even cell lines are usually separated by chromatography or 
capillary electrophoresis [reviewed in Ref. (157)] and detected by 
fluorescence detector (FLD) or MS. The sensitive and quantitative 
fluorescence detection requires fluorescently tagged glycans, and 
gives on its own only limited structural information derived from 
chromatographic or electrophoretic retention times. MS, on the 
other hand, can be applied on both native and derivatized oligo-
saccharides and may yield detailed structural information of the 
glycans. Since the analytes are not consumed by FLD, a sequential 
setup with MS is possible and often advantageous.

Three successful glycomic workflows that have revealed in the 
past years several findings in GI cancer are porous graphitized 
carbon separation with electrospray ionization and tandem MS 
(PGC-ESI-MS/MS), hydrophilic interaction ultra/high perfor-
mance liquid chromatography with FLD (HILIC-FLD-UPLC/
HPLC), and matrix-assisted laser desorption/ionization MS 
(MALDI-MS).

Porous graphitized carbon separation with electrospray 
ionization and tandem MS is a workflow used for both N- and 
O-glycomic analyses. First, the N-glycans are liberated from the 
glycoproteins with PNGase F, followed by reductive β-elimination 
of the glycoproteins to release the remaining O-glycans. The 
N- and O-glycans are separated by liquid chromatography with 
a PGC column, which resolves most isomeric structures and 
complements, therefore, ideally the subsequent MS and MS/MS 
structural analysis. A recent glycomic study by PGC-ESI-MS/
MS has described structural glycan alterations in CRC, includ-
ing several unique glycans found solely in the tumor region and 
indicated a correlation between EGFR expression and sialylation 
in CRC (158). This method has lately been further utilized for the 
N- and O-glycomic characterization of CRC cell lines and tumors, 
revealing great O-glycomic differences between tumors and all 
tested cell line models (26).
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Hydrophilic interaction ultra/high performance liquid chro-
matography with FLD is used for the quantitative profiling of 
N-glycans. The N-glycans are released by PNGase F and reductively 
aminated with a fluorophore. The labeled N-glycans are applied 
on a HILIC-ultra performance chromatography (UPLC), which 
separates the glycans according to their size and monosaccharide 
composition. The retention time can be converted to glucose 
units (GU) by comparing it with a dextran ladder, yielding repro-
ducible results. Hence, due to the few sample preparation steps, 
the high recovery of the HILIC column, the quantitative detec-
tion via the fluorescent tag, and the possibility of multiplexing, 
this analysis can be applied for large-scale N-glycomic studies. 
The HILIC-FLD-UPLC N-glycomic analysis has recently been 
applied in a large-scale discovery study on serum of gastric cancer 
patients revealing an increase in certain SLex carrying N-glycan 
structures that correlated with disease progression. Furthermore, 

in this study other structures, such as bisected N-glycans, have 
been shown to decrease with disease progression (159, 160).

Recently, the combination of HILIC-FLD-UPLC and PGC-
ESI-MS/MS has been used for N- and O-glycomic analysis of 
a gastric cancer cell line overexpressing the sialyltransferase 
ST3Gal-IV (79). This cell line has previously been shown to 
present a more invasive phenotype (67). The glycomic analysis 
revealed a broad range of cancer-associated alterations, such as 
decreased bisected and increased branched structures, trunca-
tion of O-glycans, and a shift from α2,6- to α2,3-sialylated 
N-glycans (79).

The use of MALDI-MS is another very successful approach of 
analyzing the N-glycome of clinical samples, such as body fluids. 
MALDI is based on a laser impulse that excites a solid matrix 
in which the analytes are embedded which in turn desorbs and 
ionizes the analytes for MS analysis. MALDI is relatively tolerant 
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to salt and other contaminants, which allows uncomplicated 
sample preparation after the release of N-glycans. This method 
has recently been applied on the serum of gastric cancer patients 
and control groups and has been able to identify N-glycomic 
differences between the serum of gastric cancer patients and that 
of non-atrophic gastritis patients (161). In a large-scale study 
on sera of PDAC patients, a tendency toward higher branched 
and fucosylated N-glycans has been observed when compared to 
sera from healthy individuals. The major part of the significantly 
altered N-glycan structures were specifically increased in patients 
with distant metastases and the ratio of the quantity of two gly-
cans has been proposed as a robust diagnostic marker for PDAC 
(162). Another recent study utilizing MALDI-MS has revealed in 
pancreatic cyst fluids, of which certain subtypes bare a high risk 
of undergoing malignant transformation, the hyperfucosylation 
of N-glycans (163).

A broad range of alterations in CRC tissues versus controls 
have been identified by sequential analyses of fluorescently tagged 
N-glycans by HILIC-FLD-HPLC and MALDI-MS. Additionally, 
multivariate statistical evaluation and further MS-based struc-
ture elucidation have been applied and revealed among others 
the decrease of bisected structures and the increase of glycans 
with sialylated lewis epitopes. Furthermore, abnormal core-
fucosylated high mannose N-glycans have been uniquely found 
in cancer tissue (37).

Glycoproteomic Strategy
Glycoproteomics is the study of proteins that carry glycan modifi-
cations. It usually focuses on the identification and quantification 
of glycoproteins and the characterization of protein glycosylation 
sites. Given that most clinical cancer biomarkers are glycoproteins, 
this field is particularly promising for the identification of new 
biomarker targets in cancer. Biological samples, such as cell lines, 
tissues, and body fluids, can be analyzed. However, the glycopro-
teomic analysis of complex biological samples, such as tissues or 
sera, is analytically challenging due to the large complexity and 
vast dynamic range of concentrations of glycoproteins.

The glycoproteomic pipeline typically consists of numerous 
steps, such as glycoprotein or glycopeptide enrichment, isotopic 
labeling (optional), multidimensional protein or peptide separa-
tion, tandem mass-spectrometric analysis, and bioinformatic 
data interpretation (Figure 2B). In cancer, the vast majority of 
glycoproteomic findings are based on bottom-up analysis of 
peptides (“shotgun proteomics”). For this purpose, glycoproteins 
are proteolytically cleaved into glycopeptides before or after the 
enrichment step. The enrichment of glycoproteins or glycopep-
tides is a critical step of the glycoproteomic analysis. Even though 
this field is rapidly evolving, so far no method has been estab-
lished that captures unbiased every glycoprotein or glycopeptide 
and enables full glycoproteomic coverage. Currently, most 
popular enrichment methods are based on lectins (164–166) or 
on hydrazide solid-phase extraction (167, 168) and sometimes 
applied in combination to increase the glycoproteomic coverage 
(168). Alternative strategies are boronic acid functionalized 
beads (169), size exclusion chromatography (170), hydrophilic 
interaction (171), and graphite powder micro column (172). Due 
to the difficulties of covering the whole glycoproteome many 

cancer studies pursue a different strategy of enriching specifically 
glycoproteins and glycopeptides carrying cancer-relevant glycan 
epitopes, such as sialic acids or sialylated Lewis epitopes. These 
methods are usually based on lectins [such as SNA, WGA, and 
MAL (173)], antibodies (159), enrichment by titanium dioxide 
(79, 174), or affinity purification of metabolic labeled glycopro-
teins (175–177). After the enrichment and proteolytic digestion 
(not necessarily in this order), glycopeptides may be deglyco-
sylated and are multidimensional separated via chromatography 
and/or electrophoresis and analyzed by tandem MS. The degly-
cosylation is a requirement of some enrichment methods, such as 
hydrazide solid-phase extraction, but may be also applied for all 
N-glycoproteomic analysis. The PNGase F release of N-glycans 
leads to the conversion of the N-glycan carrying asparagine to 
aspartic acid and can, thus, be spotted on the peptide backbone 
by MS. For the generation of site-specific structural information 
of N- and O-glycans, whole glycopeptides are analyzed utilizing 
a combination of different MS fragmentation methods or colli-
sion energies that either fragment peptides or glycans (178–180). 
This strategy is being optimized in recent years and bares great 
potential for the discovery of new cancer biomarkers because it 
unravels site-specific glycan alterations in cancer.

Glycoproteomic analyses have been applied in GI cancer 
mainly for the identification of biomarkers, such diagnostic 
biomarkers or biomarkers for multidrug resistance in gastric 
cancer (181, 182). Glycoproteomics in combination with glyco-
engineered cell line models was in recent years able to increase 
the coverage of O-glycosylated proteins and to identify numerous 
novel O-glycosylation sites in gastric cancer and PDAC, generat-
ing several new potential biomarkers (24, 120).

Other Glycoanalytical Techniques
MS-based glycomic and glycoproteomic analyses require expen-
sive equipments and a fair amount of expertise. MS-independent 
methods, such as glycoprotein, antibody-lectin-sandwich, and 
lectin arrays, are capable of rapid data acquisition of glycomic 
alterations in cancer samples. Glycan arrays, on the other hand, 
enable a screening for specificities of glycan-binding proteins, 
improving the data interpretation of antibody and lectin-based 
research. Regarding tumor biology, it is very relevant to deter-
mine not only the glycosylation modifications harbored by 
tumor cells but also to disclose the topographic distribution of 
these alterations within the tumor and adjacent tissue. Novel 
approaches for the identification of in  situ glycan modification 
of specific proteins include proximity ligation assay (PLA) and 
imaging mass spectometry (IMS).

Arrays
The binding of biological molecules to solid matrixes was an 
idea first described by Chang in 1983 (183). This technology 
initially consisted of coating glass cover slips with different 
antibodies in close proximity forming a matrix-like array. 
Arrays recognize partners from large amounts of biological 
material using high-throughput screening miniaturized, mul-
tiplexed and parallel processing, and detection methods based 
on multiple probes covalently attached to a solid substrate. 
Depending on the molecule that is deposited on the surface, 
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different microarrays exist. To analyze glycan-containing 
structures, the most common classification is glycan, glyco-
protein, or lectin microarray, and also a variant of the latter 
called antibody-lectin sandwich array (Figure  3) (184). The 
advantages that the microarray technology offers are the small 
volume of sample required for the analyses, the high reproduc-
ibility, and the reduced cost and time to process many samples. 
Therefore, microarray platforms have been highlighted by its 
extensive application in the field of biomarker validation, 
where a large number of samples must be analyzed multiple 
times (185). Moreover, depending on the type of microarray 
assay performed, information about the glycan-linkage con-
figuration can be obtained.

Glycan microarrays are used mainly to characterize the 
binding specificities and affinities of proteins (mostly antibodies 
and lectins) toward glycans (Figure  3A) (186–188). However, 
they can also be applied for the screening of inhibitors of 
carbohydrate-mediated interactions and of sugar interactions 
of an entire organism, such as a whole cell or virus (185, 189, 
190). Current available platforms consist of approximately 
20,000 microspots of antigens reaching the capacity to include 
most known human microbial pathogens, autoantigens, and 
tumor-associated antigens (191–193). The diversity and scope 
of glycan arrays are continuously increasing allowing a better 
characterization of glycan-binding proteins but leading to more 
complex data. Different software tools are currently available for 
data interpretation (194–196). Glycan arrays present oligosac-
charides that were either purified from a biological source or 
de novo synthesized. Regarding the latest ones, it is important to 
highlight recent works describing new methodologies that allow 
sialic acid (197, 198) and GAG synthesis (199).

As an alternative to the direct binding of glycans to the array 
surface, glycans can be presented on proteins or peptides that are 
attached to the array. A recent advancement in this approach is 
the coiled coil-based technology, which allows the presentation of 
the antigens at high densities while mimicking the in vivo orienta-
tion attached to a fiber-forming peptide. This platform showed 
increased sensitivity for the identification of antibodies against 
parasitic glycan antigens and might be adapted in the future for 
cancer diagnostic (200).

Glycoprotein microarrays are based on printing purified or 
enriched glycoproteins onto the slides and screening these proteins 
for glycan epitopes using different lectins or glycan-recognizing 
antibodies (Figure  3B). This approach is usually followed by 
analytical techniques to identify the spotted proteins and to verify 
the glycan epitopes found by the array analysis. A recently per-
formed glycoprotein array analysis of lectin-enriched sera from 
PDAC patients, chronic pancreatitis patients (benign pancreatic 
disease), and healthy individuals has correctly clustered these 
three groups, being the PDAC group significantly different from 
the other two (201). In addition, the glycoprotein microarray may 
use synthesized peptides and recombinant protein fragments 
that have been in vitro glycosylated for the detection of human 
autoantibodies (202, 203).

Lectin microarrays, where different lectins are spotted onto 
the slide, enable a rapid and high-sensitivity profiling of glycan 
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features found in complex samples, such as cells, tissues, body 
fluids, and synthetic glycans and their mimics (Figure 3C) (204, 
205). Lectin arrays offer a general view of the glycan structures 
on a complex sample and integrate the information from all 
proteins with the disadvantage that no information about 
specific glycan changes of the respective protein constituents 
will be obtained (206). A recent work displayed different gly-
copatterns in gastric cancer compared to gastric ulcer applying 
Cy3-labeled proteins extracted from tissues to lectin microar-
rays (207). Another recent lectin array approach has identified 
differences in α2-macroglobulin glycosylation between healthy 
individuals and patients with CRC. The spotted serum purified 
α2-macroglobulin has displayed, among other changes, signifi-
cant differences in the content of branched N-glycans and α2,6 
sialylation (208).

A variant of the lectin array is the antibody-lectin sandwich 
array. Antibodies to known glycoproteins are spotted on a solid 
support, and complex glycoprotein samples, which can be crude 
or prefractionated, are bound to the microarray (Figure  3D) 
(184, 185). The glycosylation of the captured target proteins are 
then screened by labeled lectins and glycan-specific antibod-
ies. Antibody-lectin sandwich arrays are highly effective for 
profiling variation in specific glycans on multiple target proteins. 
Performing this technology, specific glycoforms of MUC5AC 
and endorepellin glycoproteins in the cyst fluid of patients with 
precancerous pancreatic cysts have been found (209). In these 
assays, the glycoprotein nature of the antibodies must be consid-
ered and different approaches to prevent glycan recognition of 
the antibodies by the secondary antibody or lectin applied exist. 
The chemical derivatization of the glycans of the spotted antibod-
ies also prevents their ability to be recognized by glycan-binding 
molecules, both antibodies and lectins. One efficient method 
to study glycans on individual proteins from complex mixtures 
uses chemically derivatized capture antibodies and tests the 
glycosylation of captured target proteins by lectins and glycan-
binding antibodies. Applying this approach, cancer-associated 
glycan alterations on the proteins MUC1 and CEA in the serum 
of PDAC patients have been identified (210). Another strategy 
consists on producing recombinant antibodies in organisms 
that do not carry out post-translational modification, such as 
glycosylation. This approach has been performed for the detec-
tion of glycans linked to CEA by ELISA coating the microplate 
with recombinantly scFv expressed in Escherichia coli and using 
lectins as detection probes (211).

Regarding GI cancer research, arrays have been widely used to 
discover new biomarkers consisting of proteins bearing aberrant 
glycosylation that could lead to a more accurate diagnostic.

In situ Proximity Ligation Assay
The association of the glycan expression and location with clini-
cal and molecular characteristics of cancer tissues has rendered 
possible by histochemistry techniques using glycan-binding 
antibodies or lectins (205). However, one major limitation of this 
technique is the lack of capacity to identify the proteins in situ on 
which these glycan motifs are localized. This limitation has been 
surpassed by the development of the in  situ proximity ligation 
assay (PLA) (Figure 4) (212, 213).

This sensitive antibody-based method reveals the colocaliza-
tion between specific proteins and specific glycan structures in 
tissues and cell samples. The identification of protein glycoforms 
is of utmost importance for the understanding of glycobiologi-
cal cellular processes in cancer. PLA could also detect other 
post-translational modifications of proteins in tissue samples 
with subcellular resolution. The PLA technology is based on the 
binding of two specific PLA probes, each containing a unique oli-
gonucleotide, to two targets of interest (Figure 4A). Antibodies, 
lectins, and other binding proteins can act as probes. A ligation 
solution, containing bridging oligonucleotides and a ligase, will 
hybridize the oligonucleotides of the PLA probes if they are in 
close molecular proximity to form a closed circle (Figure 4B). 
This closed nucleotide circle will be amplified by a DNA poly-
merase generating repeated copies of the circular DNA strands. 
Finally, fluorescent or chromogenic oligonucleotides hybridize 
to the amplification product and can be detected as individual 
spot by microscopy (Figure 4C) (213). The first study using this 
innovative PLA strategy applied to glycobiology has showed that 
the mucin MUC2 is a major carrier of the cancer-associated STn 
glycan antigen both in intestinal metaplasia and gastric carcinoma 
(214). The use of in  situ PLA for the identification of a mucin 
glycosylation profile in cancer lesions is being extended, opening 
new opportunities for the development of novel diagnostic and 
prognostic markers. One recent study screened for tissue-specific 
aberrant mucin glycoforms in mucinous adenocarcinomas from 
different organs (stomach, ampulla of Vater, colon, lung, breast, 
and ovary). In GI tissues mucins carrying a set of truncated, sim-
ple O-glycans and sialylated Lewis antigens have been detected 
by this approach (215).

More recently, PLA has been used in combination with differ-
ent glycoproteomics strategies to identify specific glycoforms as 
potential biomarkers in gastric cancer, leading to the identifica-
tion of CD44v6/STn (120) and RON/SLex (79).

The PLA technique will further improve our understanding 
of specific protein glycosylation changes that occurs in cancer 
tissues and that could be applied in clinic as new markers for GI 
cancer progression (216).

Imaging Mass Spectrometry
Imaging mass spectrometry is a very novel and promising 
technology that was first developed in 1997 by Caprioli and col-
leagues for the analysis of proteins (217). This method is based 
on MALDI-MS and utilizes the laser ionization of a localized 
area for the two-dimensional screening of a tissue sample. 
IMS generates for each ionization point of the tissue a spectra 
that yields structural information and, thus, reveals the spatial 
distribution of analytes (Figure 5). Recently, this technique has 
been adapted for glycomic analysis and has allowed to create 
N-glycosylation maps of several different frozen tissue (218). 
Following, N-glycan IMS has been also applied on formalin-fixed 
paraffin-embedded tissue (219). The N-glycan IMS workflow 
consists of four steps. First, N-glycans are liberated by PNGase F 
incubation of the deparaffinized or thawed tissue slide. Second, 
a thin layer of MALDI matrix is sprayed on top of the tissue 
slide. Third, the slide is two-dimensionally screened by multiple 
MALDI-MS analysis. Lastly, each identified N-glycan structure 
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FiGURe 5 | imaging mass spectrometry. MALDI-based ionization generates an MS glycan spectrum of a selected spot of a tissue section. This process is 
repeated throughout the tissue. Identified glycan structures are mapped on the tissue and can be correlated with histopathological features.

FiGURe 4 | In situ proximity ligation assay. (A) Two antibodies, one specific for the protein backbone and another specific for a glycan epitope, are conjugated 
with two different oligonucleotide chains (PLA probes). (B) In case the antibodies bind to molecules in close proximity a bridging sequence links the two 
oligonucleotide sequences. (C) A subsequent polymerase induced amplification in combination with labeled nucleotides leads to the formation of a fluorescent or 
chromogenic signal at the co-expression site of the protein and glycan, allowing the in situ detection of the PLA signal.

March 2016 | Volume 6 | Article 5512

Mereiter et al. Glycomic Approaches in Gastrointestinal Cancer

Frontiers in Oncology | www.frontiersin.org

can be computationally visualized on the tissue, generating an 
epitope map.

IMS applied on hepatocellular carcinomas has shown 
to be capable of spatially defining glycan compositions and 

distinguishing malignant tissue from healthy tissue (220). 
Preliminary IMS results on other tumors, such as PDAC, have 
been able to differentiate between histopathological areas, such 
as fibroconnective tissue (220).
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The IMS application on N-glycan analysis is still in its early 
stages of development, but bares enormous potential as a next-
generation N-glycomic tumor characterization tool.

FUTURe PeRSPeCTiveS AND CLiNiCAL 
APPLiCATiONS

The recent advances in the glycomic and glycoproteomic fields 
are currently providing crucial information on the understanding 
of the role that glycans play in the biology of cells, tissues, and 
organisms, both in physiological and pathological conditions. 
However, many issues still remain to be understood, particularly 
in complex diseases, such as cancer. Advances in the glycobiol-
ogy field could contribute to disclose key information regarding 
cancer biological properties, including the identification of 
prognostic and therapeutic response biomarkers.

In addition, the recent developments in this field could 
contribute to overcome the limitations of the current serologi-
cal assays. The set of novel strategies presented in this review 
provide a clear view for future validation of potential biomark-
ers and points toward the translation of these strategies in the 
 clinical setting.
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