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Clear mechanistic understanding of the biological processes elicited by radiation that 
increase cancer risk can be used to inform prediction of health consequences of medical 
uses, such as radiotherapy, or occupational exposures, such as those of astronauts 
during deep space travel. Here, we review the current concepts of carcinogenesis as 
a multicellular process during which transformed cells escape normal tissue controls, 
including the immune system, and establish a tumor microenvironment. We discuss the 
contribution of two broad classes of radiation effects that may increase cancer: radiation 
targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, 
and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic 
instability. It is unknown whether the potentially greater carcinogenic effect of high Z and 
energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or 
due to unique NTE. We addressed this problem using a radiation/genetic mammary chi-
mera mouse model of breast cancer. Our experiments suggest that NTE promote more 
aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, 
and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. 
Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These 
studies raise concern that HZE radiation exposure not only increases the likelihood of 
developing cancer but also could promote progression to more aggressive cancer with 
a greater risk of mortality.

Keywords: cosmic radiation, cancer risk models, ionizing radiation exposure, carcinogenesis process

Epidemiological data on radiation therapy, occupational exposures, and accidental or terrorist radio-
logical events have established the carcinogenic potential of sparsely ionizing radiation that includes 
γ-rays and X-rays. Less is known about the carcinogenic potential of densely ionizing radiation from 
accelerated particles recently implemented in the clinic and that are of a concern for space flight. 
The galactic cosmic radiation environment consists of high atomic number (Z) and energy (HZE) 
charged particles that are characterized by high linear energy transfer (LET) along the particle track, 
i.e., densely ionizing, in contrast to most terrestrial low LET radiations that are sparsely ionizing. The 
unique pattern of energy deposition incurred by HZE particle traversal is of often the primary focus 
in evaluating the biological effects of the galactic cosmic radiation on astronauts (1, 2). During a 
3-year flight in extra-magnetospheric space, 3% of the cells of the human body would be traversed on 

Abbreviations: HZE, high Z and energy; LET, linear energy transfer; NTE, non-targeted effects; RBE, relative biological effect; 
RTE, radiation targeted effects; TGFβ, transforming growth factor β.
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average by one Fe ion (3). Cancer risk from exposure to the deep 
space radiation environment could constrain mission parameters 
for astronauts. The cancer incidence following radiotherapy is 
low but significant late tissue effect and, though the favorable 
dose distribution that reduces dose to normal tissue is thought 
to provide protection, that of HZE particle radiotherapy is yet 
unknown.

High Z and energy particle radiation is of particular concern 
for cancer because the limited experimental data to date indicate 
that the relative biological effect (RBE) for densely ionizing HZE 
particles is several-to-many fold greater than sparsely ionizing 
radiation. HZE particles have a high RBE for many biological end 
points (4); however, some HZE biological effects are not observed 
following sparsely ionizing radiation (5) and some radiation 
effects, such as genomic instability, do not show classic dose 
dependence (6). As a consequence, measurements of individual 
biological events and their dose dependence do not describe how 
an organism will respond to radiation damage. HZE particles 
traversing a cell nucleus cause difficult to repair clustered DNA 
damage that is classified as a radiation targeted effects (RTE), i.e., 
due to the deposition of energy in the cell. Radiation exposure 
also elicits complex changes in signaling and phenotype, which 
are called non-targeted effects (NTE) because they are often 
observed in the neighbors or daughters of irradiated cells.

Radiation is classified as a complete carcinogen in the etiol-
ogy of human tumors, including breast cancer, lung cancer, 
lymphoma, liver carcinoma, sarcoma, and glioma (7). Radiation-
induced DNA damage elicits a rapid and efficient repair network, 
but the occasional misrepair of these lesions results in mutations, 
translocations, deletions, and amplifications, which are also hall-
marks of cancer cells. Many risk models use the frequency of these 
RTE as the basis for estimating cancer risk. Such models assume 
that the probability of cancer is proportional to DNA damage 
and, hence, exposure, which is consistent with epidemiological 
association of cancer risk and polymorphisms in certain genes in 
the DNA repair pathway (8).

The risk paradigm broadly based on RTE, that is direct DNA 
damage, has been challenged by at least two classes of NTE: 
first, the demonstration that descendants of irradiated cells 
exhibit non-clonal damage (i.e., radiation-induced genomic 
instability) or altered phenotype; second, the designation of 
so-called “bystander” radiation effects, in which non-irradiated 
cells respond to signaling by irradiated cells (6). NTE can be 
functionally defined by particular experimental strategies (e.g., 
bystander experiments and media transfer) and occur by vari-
ous mechanisms that involve gap junctions, soluble factors, and 
phenotypic transition that differ between cell types and between 
in vitro and in vivo models.

The crucial question is to determine under what conditions 
and to what extent NTE contribute to human health risks. Recent 
experimental studies of radiation carcinogenesis following 
low- and high LET radiation exposures are concerned with how 
complex organismal responses to radiation interact across levels 
of organization and time scales to impede or promote malignant 
processes (9). Mechanistic understanding of cancer has become 
much more detailed over the last two decades. There is growing 
recognition that cancer as a disease results from a systemic failure, 

in which many cells other than those with oncogenic genomes 
determine the frequency of clinical cancer (10). The challenge to 
predicting health effects in irradiated humans is to understand 
how complex radiation responses culminate in pathology.

CarCinoGenesis in ConteXt

The understanding of cancer as a result of systemic failure, in 
which many cells other than those with oncogenic mutations/
alterations determine the frequency and characteristics of clini-
cal cancer, underscores tissue dysfunction, in which cancer cells 
are highly intertwined with the microenvironment (11, 12). Both 
tissue and organismal biology are subverted during malignant 
progression (13). More than a quarter of a century ago, studies 
by Mintz and Pierce demonstrated that malignancy could be 
suppressed by contact with normal tissues (14, 15). Many have 
even argued that disruption of the cell interactions and tissue 
architecture can be the primary drivers of carcinogenesis (16–20). 
Recent experiments with engineered models have focused on 
identifying the type and means by which normal cells mediate 
the development of cancer (21–24), but it is clear that host cells, 
e.g., stromal cells and bone marrow-derived cells (BMDC), sculpt 
carcinogenesis in a complex process that can either eliminate or 
accelerate malignancy.

Recent studies demonstrate that host biology is altered even 
before cancer is evident. A systems biology approach by Hanash 
and colleagues characterized the plasma proteome response in the 
inducible HER2/neu mouse model of breast cancer during tumor 
induction, progression, and regression. Mass spectrometry data 
derived from approximately 1.6 million spectra identified protein 
networks associated with tumor development. Some networks 
were derived from the tumor microenvironment and some from 
tumor cell secreted or shed proteins. The observed alterations 
developed prior to cancer detection, increased progressively with 
tumor growth, and reverted toward baseline with tumor regres-
sion. Importantly, these findings were mirrored with findings 
resulting from in-depth profiling of circulating proteins using 
prediagnostic plasma samples from women who participated 
in the Women’s Health Initiative study and who subsequently 
developed breast cancer (25–27).

Although the prevailing radiation health paradigm focuses on 
radiation-induced DNA damage leading to mutations, numerous 
studies over the last 50 years have provided evidence that radia-
tion carcinogenesis is more complex than generally appreciated 
[reviewed in Ref. (28)]. Terzaghi-Howe demonstrated that the 
expression of dysplasia in vivo and neoplastic transformation in 
culture of irradiated tracheal epithelial cells is inversely correlated 
to the number of cells seeded (29–32) and identified TGFβ as a 
key mediator (33). Our lab used a Trp53 mutant mammary cell 
line to show that irradiating only the host increased the develop-
ment of frank tumors fivefold (34). Saran and colleagues showed 
that partial body irradiation at a young age promotes Ptch mutant 
medulloblastoma (35).

Many studies using oncogenic mouse models indicate that 
the stroma is highly involved in early malignancy (36), which 
supports the idea of reciprocal evolution of the malignant cell 
and the tumor microenvironment (10). Although it is clear 
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FiGUre 1 | the dynamic cancer niche. The cartoon depicts parallel processes postulated to occur in the target epithelium and microenvironment during 
multistage epithelial carcinogenesis. (a) Misrepaired DNA damage caused by radiation can malignantly initiate epithelial cells. Radiation effects on cell signaling  
and phenotype may promote concomitant niche construction by local or systemically recruited cells that improve initiated cell survival. (B) Within the epithelium, 
promotion is considered to be acquisition of additional genetic aberrations or epigenetic traits that enable malignancy. In parallel, niche expansion, due to signals 
produced by either the initiated epithelium or by the niche cells that support them, conscripts stromal cells and bone marrow-derived cells (BMDC). (C) Maturation 
of the tumor microenvironment that enables angiogenesis, immune suppression, and invasion is necessary for tumor progression. (d) Systemic influences, including 
signaling to and from vasculature and bone marrow, contribute throughout multistage carcinogenesis via participation of BMDC, lymphocytes, and immature 
myeloid cells (IMC) and their secreted cytokines and exosomes. (e) Some cancers are able to initiate new microenvironments, the pre-metastatic niche, in distant 
organs that facilitate metastasis.
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that stroma composition and signaling is altered in human 
breast cancer (37), less is known about how and when stroma 
contributes to carcinogenesis and how carcinogens, such as 
radiation, might alter these processes. We postulate that the 
tumor microenvironment is built through rate-limiting steps of 
construction, expansion, and maturation that parallel initiation, 
promotion, and progression during multistage carcinogenesis 
(10). Construction of a “pre-cancer niche” is the necessary first 
step to generate a tumor microenvironment that is essential for 
initiated cells to survive and evolve into clinically evident cancers 
(Figure  1). The evolution of the tumor microenvironment via 
stromal cells and BMDC during subsequent niche expansion 
during promotion is mediated by cytokines secreted by either 
the initiated epithelial cells or those host cells recruited to the 
niche. Maturation of the tumor microenvironment, as evidenced 
by angiogenesis escape from immune suppression and generation 
of a stroma permissive for growth and often invasion, occurs dur-
ing progression. Importantly, signaling is not just local but can 
also be mediated by cells, cytokines, and exosomes transported 

by the vasculature between the nascent cancer and distant sites  
include the bone marrow, which may reciprocate by expansion of 
cells, such as immature myeloid cells (IMC) that support tumor 
growth. Indeed, the pre-metastatic niche, first described by Lyden 
and colleagues, pre-dates and facilitates metastatic disease (38).

This model postulates that cancer survival and proliferation 
is as much a function of the successful niche construction as 
it is of specific cancer cell mutations. Indeed selective pressure 
for neoplastic mutations may be imposed by the composition 
of the niche, as well as by immune editing (39). Consequently, 
cancer represents an emergent property that requires a compre-
hensive analysis of the cell–cell interactions in the entire niche. 
Moreover, in contrast to initiation, which is a stochastic process 
by nature, niche construction represents a robust target for native 
immunosuppression and a potent target for cancer preven-
tion. If microenvironments induced by radiation can promote 
neoplastic progression in unirradiated epithelial cells, events 
outside of the (targeted) box may significantly increase cancer 
risk. Understanding such non-targeted mechanisms readily lead 
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to potential mechanisms for clinical interventions for health risks 
in future populations.

ModeLinG radiation 
CarCinoGenesis

Most models of cancer risk and mitigation are focused on “tar-
gets,” i.e., the cells that will undergo neoplastic transformation 
or the genetic alterations that initiate and promote this event. 
This is classically modeled in which carcinogenesis is thought to 
occur in four interdependent stages. The first stage is initiation 
and is typically caused by chemical, physical, or biological agents, 
which irreversibly and heritably alter the cell genome resulting 
in an enhanced growth potential. This potential is only realized, 
however, if the cell later undergoes promotion, the second stage of 
carcinogenesis. Promotion is often thought to be the rate-limiting 
step in carcinogenesis since it has been shown that initiation 
alone is not sufficient to induce cancer (40). In order to account 
for the observed power of age dependence in radiation-induced 
carcinomas, a multistage theory of carcinogenesis was introduced 
very early (41, 42). However, this model suggested five to seven 
rate-limiting stages, in contradiction with biological data. Some 
approaches addressed this contradiction by introducing the two-
stage clonal expansion model, where a cell leads to a tumor by two 
separate mutations and clonal expansion (43–45). Integration 
of specific genetic mutations in tumor suppressor genes was 
originally introduced by Knudson (46). The current paradigm of 
carcinogenic risk remains heavily focused on predicting muta-
tions of the genome leading to silencing of tumor suppressor 
genes or activation of oncogenes. However, such models neglect 
the influence of intercellular and extracellular interactions in the 
tumor growth and predict a final tumor that is unrealistic in that 
its cells are clonally identical.

Systems radiation biology seeks to integrate information 
about changes across time and scale that are determined by 
experimentation and to interrogate this to identify the critical 
events. By modeling the irradiated tissue/organ/organism as a 
system rather than a collection of non-interacting or minimally 
interacting cells, cancer can result as an emergent phenomenon 
of a perturbed system (47). A biological model in which radia-
tion risk is the sum of dynamic and interacting processes could 
provide the impetus to reassess assumptions about radiation 
health effects in a healthy population and spur new approaches 
to prevent detrimental processes that lead to pathology.

Our studies have addressed this problem by separating RTE 
from NTE by using the mammary gland as a model system. The 
mouse mammary gland provides an experimentally malleable 
framework for separating the contribution of NTE on the host 
from the target epithelium. Mammary gland develops during 
the postnatal period such that the epithelium can be surgically 
removed and replaced, creating a tissue chimera. Transplanted 
syngeneic epithelium can have a specific germ line manipulation, 
such as a transgene or knockout, or can have received a specific 
type of exposure, such as radiation. We transplant unirradiated 
Trp53 null mouse mammary tissue into irradiated syngeneic 
wild-type hosts to study whether radiation NTE acting via the 

host affects the process of epithelial carcinogenesis. The p53 null 
mammary model originally described by Medina and colleagues 
has important features in common with human breast cancer 
(48). Although about a quarter of human breast cancers have 
p53 mutations, the utility of this model is that Trp53 null mouse 
mammary tissue develops normally until about 8 months of age, 
when both ductal carcinoma in situ and aneuploidy are evident, 
thus reproducing the long latency and early instability observed 
in most human breast cancers. Importantly, the p53 null tissue 
gives rise to histologically heterogeneous tumors that can be 
estrogen receptor negative or positive and genomically diverse, 
as are human breast cancers. Thus, the model of an oncogenically 
primed epithelium lacking p53 condenses the time necessary for 
spontaneous mutagenic events to accumulate.

The radiation-genetic chimera is used to determine whether 
and how radiation NTE contribute to mammary carcinogen-
esis (49). These data from provide strong support that NTE do 
contribute to radiation carcinogenesis and offer new insight into 
radiation quality effects that promote aggressive tumors, particu-
larly upon exposure in middle age. Our studies summarized here 
have identified NTE-mediated mechanisms that include stem 
cell regulation, inflammation, and immune suppression that 
are important in determining the rate at which cancers develop 
and the type of cancer depends on radiation quality and genetic 
background.

The radiation chimera shows that NTE act via the micro-
environment to accelerate tumorigenesis and affect critical 
characteristics (49). A notable observation was that the frequency 
of ER-negative tumors significantly doubled in irradiated 
hosts, which was replicated with HZE particle irradiation (50). 
Importantly, early radiation exposure increased ER-negative 
tumors in women treated with radiation for childhood cancer 
fourfold compared to a consecutive series of breast cancers not 
preceded by radiation (51). A new study by Horst and colleagues 
confirmed that radiation-preceded breast cancer in survivors of 
childhood cancer is significantly more likely to the aggressive, the 
so-called triple negative (negative for ER, progesterone receptor, 
and amplification of HER2) breast cancer (52). Interestingly, there 
is little evidence that the frequency of contralateral ER-negative 
breast cancer is increased in women treated with radiation for 
breast cancer (53), suggesting a physiological basis for the shift to 
ER-negative tumors, which are clinically less responsive and more 
likely to metastasize soon after detection.

To further explore how tumors arising in irradiated hosts are 
distinct from those that occur in non-irradiated hosts, we profiled 
total RNA from mammary cancers that arose in non-irradiated 
mice and irradiated mice (49). Permutation analysis was used 
to identify 156 genes that segregated tumors from irradiated or 
non-irradiated hosts. Significant enrichment of genes-involving 
leukocyte chemo-attraction and binding, monocyte maturation, 
and proliferation of tumor cell lines underscores the parallels 
between tumors forming in irradiated host and expression 
programs activated shortly after radiation exposure, even though 
the exposure occurred months before and the tumors arose from 
unirradiated epithelium.

We then used this strategy to generate a list of 323 genes and 
an irradiated host metaprofile (54). Bioinformatics analysis of 
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the human orthologs of the host irradiation metaprofile was used 
to conduct unsupervised hierarchical clustering of radiation-
associated human cancer (54). The irradiated host metaprofile 
segregated sporadic cancers from radiation-preceded sarcomas 
(55) and radiation-preceded papillary thyroid carcinomas (56). 
These analyses support our hypothesis that the microenviron-
ment mediates the development of radiation-preceded human 
cancers.

Four gene networks representing two cell types, stem cells and 
macrophages, and two processes, motility and autophagy, were 
identified in the irradiated host tumor signature. Tissue-specific 
stem cells or early progenitor cells are considered to be the critical 
cellular target in carcinogenesis (57–63), based, in part, on the 
idea that stem cell transformation can lead to unlimited progeny. 
A mammary stem cell (MaSC) signature, defined by Visvader and 
colleagues (64), is enriched in the mammary gland up to 1 month 
after mice are exposed to 10-cGy γ-radiation. We showed this 
signature is functional as indicated by a doubling of mammary 
repopulation capacity as well as the pool of cells defined by cell 
surface markers as associated with mammary repopulation (49). 
Additional experiments in conjunction with computational mod-
eling led us to conclude that radiation elicits a durable but transient 
stem cell expansion in a TGFβ and Notch-dependent fashion in 
juveniles, but not adults (50). In model systems, we found that 
TGFβ increases self-renewal is blocked by γ-secretase inhibition, 
indicative of concomitant Notch signaling, which is also induced 
by low-dose irradiation. This temporary increase in self-renewal 
is similar to our earlier studies showing that both high- and low 
LET radiation exposure primes non-malignant human epithelial 
cells to undergo TGFβ-dependent epithelial–mesenchymal tran-
sition (65–67). These studies underscore that even a single radia-
tion exposure can cause phenotypic re-programing.

CanCer and inFLaMMation

The concept that inflammatory responses are necessary com-
ponents of cancer development has recently been formalized 
by Mantovani et  al. (68) in a two-pathway model: the intrinsic 
versus extrinsic. In the intrinsic pathway, genetic mutations lead 
to release by the transformed cells of proinflammatory factors 
recruiting innate immune cells. For example, oncogenic Ras acti-
vates the transcription of the inflammatory cytokine interleukin-8 
(IL-8). Other oncogenes, such as Bcl2, inhibit apoptosis leading 
to necrotic tumor cell death and release of damage-associated 
molecular pattern molecules that activate innate immune cells 
via toll-like receptors (68, 69). In both circumstances, the result-
ing host response is a smoldering inflammation that promotes 
tumor growth and invasion (68, 70). In the extrinsic pathway, the 
chronic inflammation results from inability of the immune system 
to resolve an infection (e.g., hepatitis B) or from a dysregulated 
immune response as in autoimmune diseases (e.g., inflammatory 
bowel disease). The persistent inflammation cooperates with pre-
existing oncogenic mutations by providing the microenvironment 
that promotes cancer progression, but it may also induce DNA 
damage resulting in the acquisition of new mutations (71, 72).

The innate immune system functions as an “interpreter” of 
tissue damage that not only provides a first line of defense but 

also translates the information to wound repair and defense 
systems in the body by stimulating angiogenesis and activating 
adaptive immunity. Therefore, it is not surprising that various 
types of innate immune cells have been found as part of the 
tumor inflammatory infiltrate. Macrophages play a central role 
in most solid malignancies, and most studies have found that 
macrophage abundance, increased microvessel density, and 
reduced patient survival are highly correlated (73). In fact, 
macrophages present within tumors are defined as tumor-
associated macrophages to denote a specific phenotype that is 
associated with the production of several proangiogenic factors 
and cytokines that suppress antitumor immune responses 
and promote tumor growth by maintaining protumorigenic 
inflammation.

The application of systems biology by Balmain and col-
leagues uncovered a differential hub for inflammation in skin 
cancer (74). While a positive association exists between chronic 
inflammation and cancer, the innate immune system is itself 
a network that can be disrupted by both positive and negative 
stimuli. Anti-inflammatory drugs can have contradictory effects 
on skin tumor development (75, 76), and over-expression of 
proinflammatory cytokines, such as IL-1, can prevent skin tumor 
formation in mouse models of chemically induced skin cancer 
(77). In contrast, germline deletion of TNF-α, another potent 
proinflammatory cytokine, also confers resistance to skin tumor 
formation (78). The role of inflammation in cancer is, therefore, 
very complex, with different consequences associated with acute 
or chronic inflammatory conditions.

How the interplay between inflammatory cells and geneti-
cally mutated neoplastic cells promotes cancer development and 
progression remains a subject of intense investigation. Several 
important pathways have been identified. Among them, IL-6 
signaling pathways play a major role (79). Macrophages are 
the main source of IL-6 during acute inflammation and T cells 
during chronic inflammation. Importantly, IL-6 orchestrates the 
transition from acute inflammation, dominated by granulocytes, 
to chronic inflammation, dominated by monocytes/macrophages 
and regulates, together with TGFβ, the differentiation of naïve T 
cells to Th17 proinflammatory phenotype, thus influencing the 
type of adaptive immune response (80).

Seminal studies by Wright and colleagues identified non-
clonal radiation-induced genomic instability in hematopoietic 
stem cells [reviewed in Ref. (6)], which they now explain as a 
result of altered cell interactions. Macrophages from irradiated 
mice could induce chromosomal instability in non-irradiated 
hematopoietic cells via production of TNFα and reactive oxygen 
and nitrogen species (81). Further studies showed that this effect 
was a function of mouse genotype, which affects the steady state 
M1 or M2 macrophage phenotype, which radiation exposure fur-
ther amplifies (82). HZE particle NTE on inflammatory processes 
is supported by studies from Burns and colleagues who showed 
that chronic dietary exposure to vitamin A acetate can prevent 
almost all malignant and benign tumors that occur in rat skin 
exposed to electron radiation and most of those following 56Fe ion 
irradiation (83). Gene expression analysis suggested that vitamin 
A reduced or blocked 56Fe ion radiation-induced inflammation-
related genes that were represented in the categories of “immune 
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response,” “response to stress,” “signal transduction,” and 
“response to biotic stress” (84).

To investigate systemic effects of HZE, the Trp53 null mam-
mary radiation-chimera model was irradiated with low fluences 
(equivalent to average dose of 11, 30, and 81 cGy) of 350 MeV/
amu 26Si particles and compared to contemporaneous γ-irradiated 
(100 cGy) and sham-irradiated mice (85). The median time to 
tumor detection in mice irradiated with the lowest 26Si fluence 
or γ-radiation was similar to that in sham-irradiated mice but 
decreased for transplants in mice exposed to higher fluences of 
26Si particles. As previously reported, the growth rate of tumors 
arising in irradiated mice was increased compared to those aris-
ing in sham-irradiated mice but was significantly faster than high 
fluence Si-irradiated mice compared to γ-irradiated mice. Since 
the initial growth rate of tumors arising in hosts irradiated with 
11-cGy 26Si particles was comparable to that of tumors arising 
in mice irradiated with 100  cGy sparsely ionizing γ-rays, we 
concluded that there is an RBE of about 10 for this endpoint.

The carcinoma spectrum arising in mice exposed to 26Si par-
ticles is enriched for a subclass that is ER-negative and keratin 
18-positive. These tumors in Si-irradiated mice developed metas-
tases twice as often as non-irradiated mice. As 26Si irradiation of 
hosts primarily promotes specific ER-negative subtypes, genomic 
analysis of these tumors compared to a comparable group from 
sham-irradiated mice. Consistent with these differences, an 
expression profile that distinguished K18 tumors arising in 
26Si-irradiated compared sham-irradiated mice was enriched in 
MaSC, stroma, and Notch signaling genes. These data suggest that 
the carcinogenic effects of NTE from densely ionizing radiation 
compared to sparsely ionizing radiation elicit more aggressive 
tumors. In humans, the type, the density, and the location of 
immune cells within the tumor are strongly associated with 
prognosis (86). Together, these data support the hypothesis that 
radiogenic cancer risk is augmented by alterations in a network of 
cellular interactions, at the center of which is the innate immune 
system.

iMMUne sUrVeiLLanCe and 
sUppression

A fundamental role of the immune system is enforcing tissue 
homeostasis, a task accomplished by mounting inflammatory 
reactions that involve the coordinated activation of innate and 
adaptive immune cells. Radiation perturbs tissue homeostasis 
by activating inflammatory reactions that often do not resolve, 
leading to a vicious cycle of subclinical tissue damage and 
smoldering inflammation (87, 88). Whereas one body of work 
has clearly established the capacity of chronic inflammation to 
initiate and promote cancer (88), other studies have revealed that 
an intact immune system can prevent/control and shape cancer 
by a process best conceptualized in the “cancer immunoediting” 
theory (89). During initial clonal expansion, recognition of the 
stressed transformed cells by innate immune cells results in 
production of interferon-γ, a cytokine shown to play a key role 
in immunosurveillance against tumors (90, 91). Killing of the 
preneoplastic cells by natural killer cells or macrophages activated 
by IFN-γ to produce cytocidal reactive oxygen and nitrogen 

species eventually leads to cross-presentation by dendritic cells of 
antigens from the dying tumor cells to T cells and activation of the 
adaptive immune system. The tumor-specific T cells may be able 
to destroy completely the incipient tumor, thus functioning as an 
extrinsic tumor suppressor mechanism that reduces the incidence 
of spontaneous and carcinogen-induced tumors, something for 
which there is unequivocal evidence in experimental models and 
supportive evidence in humans [reviewed in Ref. (39, 92)].

However, if complete elimination of transformed cells is not 
achieved, the immunological pressure results in selection of 
clones of cells that have acquired mutations or epigenetic changes 
conferring resistance to immune rejection, i.e., are “edited” by the 
immune system to select for those that are poorly immunogenic. 
This transition from elimination to escape can occur directly or 
even after a very long period of equilibrium, during which the 
immune response actively limits progression. The concept of 
equilibrium, which was initially formulated to explain clinical 
observations of occult tumors and tumor dormancy (93, 94), has 
been confirmed in experimental models showing that depletion 
of T cells leads to growth of occult tumors (95). Importantly, pro-
tumorigenic inflammation and antitumor immunity can co-exist 
in the same tumor, and interventions that can alter the balance in 
favor of one or the other may either accelerate or hinder tumor 
growth (88).

We found that lymphocyte infiltrate of Trp53 null tumors 
arising in the irradiated mammary chimera correlates to tumor 
growth rate, i.e., faster growing tumors have less lymphocytic 
infiltrate, and that particle irradiation elicits the most rapidly 
growing tumors. This observation suggests that HZE particles 
have a systemic impact on the immune surveillance that leads to 
the development of more aggressive tumors.

GenetiC Mediators oF CanCer

Epidemiological and genetic studies show that there is a strong 
genetic component that contributes to the differences between 
individuals in their response to DNA damage and cancer sus-
ceptibility (96, 97). High penetrance mutations in genes, such as 
BRCA1/2, are responsible for a proportion of cancers that show 
familial aggregation (98). However, the genetic basis of suscep-
tibility to the majority of cancers that have no obvious familial 
aggregation is almost completely unknown (96, 99). Most studies 
to identify susceptibility loci for radiation-associated cancer are 
limited to candidate genes involved in response to DNA damage, 
but there is strong evidence that other processes are important; 
systems genetics seeks to uncover those components that result 
from complex interactions between pathways and cells.

Systems genetics, unlike traditional approaches to the analysis 
of disease that focus on single genes or proteins in isolation, 
attempts to integrate the complex interaction of many kinds of 
genetic and biological information  –  genomic DNA sequence, 
mRNA, and protein expression, and link these to disease phe-
notypes. Human studies have demonstrated strong associations 
between polymorphic variation and regulation of gene expres-
sion (100–102). Parallel studies in mice offer many advantages 
for the study of the genetic basis of complex traits. The ability 
to control genetic background and to carry out crosses between 
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mouse strains differing in their propensity to develop these 
diseases offers unprecedented opportunities to identify and 
investigate the primary genetic loci that control susceptibility. In 
addition, studies with mice allow precise exposures, standardized 
husbandry to control other environmental components of risk, 
and comprehensive analysis of phenotypes.

Applying these approaches to mouse strains with differing 
susceptibility to diseases identifies signaling hubs that may be 
important targets for therapy or prevention (103). A systems 
genetics approach consists of a network view of the genetic and 
gene expression architecture of normal host tissues that are 
compared after perturbation by radiation or tumor development 
(104, 105). An example of this strategy used gene expression 
profiles of skin from a population of mus spretus backcrossed to 
mus musculus mice to reveal the normal skin gene expression 
motifs associated with sensitivity to carcinogen-induced skin 
tumor development in contrast to those that were resistant. This 
analysis revealed both cell-autonomous (cell cycle and stem cell 
lineage) and non-cell-autonomous (inflammation and innate 
immunity) components that were differentially expressed in the 
susceptible animals. Interestingly, the highly susceptible mice 
exhibited increased levels of anti-inflammatory genes within 
the inflammation associated network, leading to the conclusion 
that chronic and acute inflammation are, respectively, tumor-
promoting versus suppressive (106).

Multiple tumor types in mice, including thymomas, soft tissue 
sarcomas, and osteosarcomas, can be induced by exposure to low 
LET radiation, but induction is typically infrequent and tumors 
have long latency (i.e., survival time post-radiation). Engineered 
loss or misregulation of p53 increases the detection sensitivity. 
Radiation induces the same spectrum of tumors in p53-deficient 
mice that lack one or both p53 alleles; however, the survival time 
is dramatically reduced after a single exposure to ionizing radia-
tion (107). Likewise, the Trp53 null BALB/c inbred mouse strain 
is sensitive to mammary carcinogenesis, and radiation exposure 
enhances this susceptibility (108–110). The utility of this model 
is that tumors are diverse by all criteria, markers, histology, 
metastatic capacity, and genomic profiling, in a fashion that is 
remarkably aligned with human breast cancer (48, 111).

Recent experiments focus on the genetic contribution to 
NTE using the mammary chimera (112). Radioresistant SPRET/
EiJ was mated to radiosensitive (BALB/c) mice, and then the 
progeny were backcrossed to BALB/c to generate F1 backcrossed 
mice (F1Bx). Our prior experiments using inbred BALB/c 
mice showed that host irradiation decreased Trp53 null tumor 
latency, increased frequency of tumor formation at a year post-
transplantation, and that tumors arising in irradiated hosts grew 
more rapidly (49). Consistent with our previous observations, the 
growth rate of Trp53 null mammary carcinomas was greater in 
irradiated F1Bx host mice, a feature associated with aggressive 
tumors, compared to unirradiated mice. However, Trp53 null 
tumor latency increased in irradiated hosts and tumor frequency 
was reduced by 9.6% (p = 0.04) at 18 months posttransplantation 
compared to sham-irradiated F1Bx hosts. The revelation that 
NTE delay rather than accelerate mammary cancers in genetically 
diverse hosts underscores the outcome of radiation exposure in 
terms of carcinogenesis depends of genetic background.

Introgression was used to determine the genetic loci that 
affected Trp53 null mammary tumor latency of the radioresist-
ant SPRET/EiJ genome using genome-wide genotyping. Only 
two loci were associated with tumor latency in sham-irradiated 
mice. Tumors in mice homozygous for the BALB/c allele at loci 
on chromosomes 2 and 14 appeared with a significantly shorter 
latency than those mice, in which one allele was from BALB/c and 
the other from SPRET/EiJ at these loci. Interestingly, neither of 
the loci affected latency in irradiated hosts. In contrast, 15 genetic 
loci were associated with tumor latency in irradiated mice, 11 
alleles confer resistance to tumor development, and 4 alleles 
conferred susceptibility.

Together, the use of systems genetics with the radiation-
chimera model provides new insight into the processes that 
mediate carcinogenic susceptibility to radiation. To further 
explore stromal genetic associations with cancer risk after 
exposure to low LET radiation, we used ingenuity pathway 
analysis (IPA) to identify 696 candidate genes located 
within the identified loci. Of these, 185 genes were within 4 
loci on chromosomes 2, 11, 14, and 16 where homozygous 
BALB/C alleles associate with increased latency for cancer 
arising in irradiated mice. These genes were enriched in 
four pathways, γ-glutamyl cycle, leukotriene biosynthesis, 
alanine biosynthesis III, and glutathione biosynthesis. In 
contrast, 511 genes enriched for 24 pathways were within 11 
regions where heterozygous SPRET/EiJ alleles associate with 
increased latency. Importantly, these 11 loci were enriched 
for genes involved in regulating the immune response includ-
ing signaling pathways of natural killer cells and cytokines. 
Radiation-induced activation of pathways that control release 
of inflammatory cytokines varies among mouse strains (113, 
114) and is postulated to contribute to genetic susceptibility 
to radiation-induced leukemia (113). Analysis of the upstream 
regulators of these candidate genes indicated that the TGFβ 
and p53 pathways might also be involved in mammary tumor 
susceptibility.

The observation that many more genetic loci are linked 
with tumor latency in the radiation-treated cohort than in the 
sham-irradiated cohort suggests the interesting idea that genetic 
contribution is actually specific to NTE, in contrast to the widely 
held belief that radiation exaggerates inherent susceptibility. This 
is exemplified by the work of Onel and colleagues who identified 
PRDM1 (Blimp-1), a transcriptional regulator of cell specifica-
tion, with the risk of second malignancies only in those treated 
with radiation for childhood malignancy (115). In individuals 
with the homozygous protective allele, the incidence of second 
cancers is 3:100 by 30 years after exposure, whereas in those who 
were homozygous for the allele, risk is 1:3. Thus, the risk allele 
conferred risk comparable to BRCA1 mutation, but only in the 
context of radiation.

sUMMary

Identifying mechanisms of NTE is essential to understand the 
biology of irradiated tissues. Two fundamental aspects of NTE 
in carcinogenesis warrant careful consideration for further 
understanding of cancer risk in irradiated populations. First is 
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that radiation NTE may alter the shape of the dose response. 
Recent modeling by Cucinotta and colleagues suggest that 
NTE may be particularly important in the low-dose region of 
concern for occupational exposures. Second, NTE are targetable; 
the biology that ensues after exposure is persistent and may be 
“reset” after the fact to limit carcinogenic potential. This offers 
the possibility of protecting those at greatest risk, for example, 
children who are treated with charged particles for childhood 
malignancy, in which the clear benefit of dose distribution may 
come at the price of long-term cancer risk. Moreover, NTE will 
likely provide insight into the use of particles for cancer therapy 
as there are common microenvironment components, such as the 
immunoregulatory axis and the vasculature, that are likely critical 
to treatment outcome.
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