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Poor microenvironmental conditions are a characteristic feature of solid tumors. Such 
conditions occur because the tumor vascular supply, which develops from the normal 
host vasculature by the process of angiogenesis, is generally inadequate in meeting the 
oxygen and nutrient demands of the growing tumor mass. Regions of low oxygenation 
(hypoxia) is believed to be the most critical deficiency, since it has been well docu-
mented to play a significant role in influencing the response to conventional radiation 
and chemotherapy treatments, as well as influencing malignant progression in terms of 
aggressive growth and recurrence of the primary tumor and its metastatic spread. As a 
result, significant emphasis has been placed on finding clinically applicable approaches 
to identify those tumors that contain hypoxia and realistic methods to target this hypoxia. 
However, most studies consider hypoxia as a single entity, yet we now know that it is 
multifactorial. Furthermore, hypoxia is often associated with other microenvironmental 
parameters, such as elevated interstitial fluid pressure, glycolysis, low pH, and reduced 
bioenergetic status, and these can also influence the effects of hypoxia. Here, we review 
the various aspects of hypoxia, but also discuss the role of the other microenvironmental 
parameters associated with hypoxia.

Keywords: hypoxia, tumor microenvironment, radiotherapy, chemotherapy, malignant progression

iNTRODUCTiON

Most solid tumors are just like normal tissues in that they need a regular supply of oxygen and 
nutrients to be able to exist, as well as processes for the elimination of the waste products of cellular 
metabolism. When tumors first appear, this function is provided by the normal blood supply of the 
host organ in which the tumor arises. However, unlike normal tissues, tumors continually expand 
in size and a point is reached where the host vascular supply becomes inadequate in supplying 
these needs. To compensate, tumors will actually develop their own functional vascular supply. 
This they do from the normal host vessels by the process of angiogenesis. Unfortunately, the tumor 
neo-vasculature that is formed is not only primitive and chaotic when compared to the normal 
tissue vascular supply from which it develops, but it also suffers from numerous structural and 
functional abnormalities. As a result, it is still unable to meet all the demands of the growing tumor 
mass (with sizes larger than 2–3 mm). Consequently, a hostile microenvironment develops within 
the tumor and this can be summarized by the so-called “crucial Ps.” These are listed in Table 1 and 
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FiGURe 1 | vascular casting images showing differences in 
microcirculation between normal tissues (top three panels) and 
malignant tumors (lower three panels). Specific details of the corrosion 
casting technique used to produce these images can be found in Konerding 
et al. (14). Images shown were obtained courtesy of Prof. Konerding, Dept. 
Functional and Clinical Anatomy, University Medical Center, Mainz, Germany 
and are from Vaupel (10). Bottom text lists the major structural and functional 
abnormalities of tumor vessels when compared to normal tissues; composite 
information based on work by Kimura et al. (12), Reinhold and van der 
Berg-Blok (15), Vaupel et al. (10, 16), and Baronzio et al. (17).

TABLe 1 | The crucial Ps characterizing the hostile tumor 
microenvironment.

Pathophysiological characteristics showing a reduced level
•	 Partial pressure of oxygen
•	 Production of high-energy compounds
•	 pH of the extracellular compartment
•	 Paucity of nutrients
•	 Paucity of bicarbonate

Pathophysiological characteristics showing an enhanced level
•	 Perfusion inadequacies/vascular chaos
•	 Perfusion heterogeneities
•	 Permeability of tumor microvessels
•	 Pressure of interstitial fluid
•	 Production of lactate
•	 Production of protons
•	 Production of adenosine
•	 Partial pressure of carbon dioxide

Modified from Ref. (1).
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basically reflect conditions of poor perfusion, oxygen depriva-
tion, nutrient deficiency, severe acidity, and elevated interstitial 
fluid pressure (IFP).

The tumor cells that exist in this hostile microenvironment are 
actually still viable. But, as a result of being in these adverse micro-
environmental conditions, those same tumor cells can exhibit 
resistance to conventional cancer therapies, including radiation 
and certain types of chemotherapy. The poor tumor microenvi-
ronment also causes these cells to upregulate the expression of 
various genes and biosynthesis of proteins, an effect that not only 
increases their survival potential but can also increase tumor 
aggressiveness and metastatic spread. Numerous attempts have, 
and are being made, to identify the microenvironmental condi-
tions within tumors so as to select appropriate therapies to target 
those cancer cells that thrive in the hostile microenvironment.

Of these poor microenvironmental conditions within tumors, 
low oxygenation (hypoxia) is the one that has been the focus of 
most studies and is often considered as the only factor of impor-
tance. While hypoxia is clearly critical for outcome of cancer 
patients, it is generally associated with the other crucial Ps and 
as such any discussion of the role of hypoxia in tumors must be 
made in connection with the other hostile microenvironmental 
parameters. Thus, we will review the general pathophysiologi-
cal characteristics of the tumor microenvironment, how that 
microenvironment develops, and what significance that has for 
cancer.

FACTORS iNFLUeNCiNG THe TUMOR 
MiCROeNviRONMeNT

importance of the Tumor vascular Supply
Angiogenesis is clearly an essential requirement for the growth 
and development of solid tumors (2–4). This process begins with 
the release of angiogenic factors, primarily vascular endothelial 
growth factor (VEGF), by the tumor cells (5). The actual triggers 
that initiate this process are not fully established. Loss of suppres-
sor gene function and oncogene activation certainly play a role (5, 
6), but the development of hypoxia as a result of tumor growth is 

also a major factor (6). Additional studies with tumor cells grown 
in culture have shown that the secretion rate of the VEGF protein 
increases as soon as the oxygen concentration is lowered from 21 
to only 5% and that this secretion rate increases as the oxygen 
concentration decreases reaching maximal levels at around 0.5% 
and below (7). Release of VEGF and other growth factors set in 
motion a number of biochemical and physical steps that include 
enzymatic destruction of the basal membrane of the endothelial 
cells of the host vasculature, migration of endothelial cells into the 
extracellular matrix to form sprouts, and endothelial cell division 
away from the sprout tip (8). Solid strands of endothelial cells are 
then formed in the extracellular matrix, a lumen develops within 
those strands, neighboring sprouts fuse to form loops, and from 
the primary loops new buds and sprouts emerge (8). Finally, 
functional vessels are established.

Although a functional tumor vascular supply is necessary, 
the neo-vasculature that develops is actually inadequate to meet 
all the demands of the growing tumor mass. Endothelial cells 
divide at a slower rate than tumor cells (9) and as a consequence, 
the developing tumor vasculature is unable to keep pace with 
the expanding tumor population. The tumor vasculature that 
is formed is also very different from that of normal tissues (see 
Figure  1). Structurally, it is very chaotic. Vascular density is 
abnormal with increased intervessel distances and the existence 
of avascular areas. There are contour irregularities reflected by 
vessels that are elongated, tortuous, and large, and have aberrant 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


3

Horsman and Vaupel Tumor Pathophysiology

Frontiers in Oncology | www.frontiersin.org April 2016 | Volume 6 | Article 66

branching and blind ends. The pattern of vessel interconnection is 
also haphazard. Unlike normal vessels, there is a loss of hierarchy. 
The vessels are also very primitive in nature, having incomplete or 
missing basement membranes and endothelial lining, and lacking 
pericytes, smooth muscle, pharmacological receptors, and even 
innervation. Tumor vessels are often highly permeable allowing 
significant plasma leakage. Due to an absence of vasomotion and 
flow regulation, blood flow velocities through tumor vessels can 
be unstable as can the direction of flow [for review, see Ref. (10)]. 
It has been estimated that 1–8% of vessels can experience flow 
stasis (11, 12) and that around 8% of all microvessels show plasma 
flow only (12). Some of these changes will be mediated through 
effects of the various blood-borne cells. These include erythrocyte 
sludging, leukocyte sticking, and blockage of vessels by circulating 
white blood cells or tumor cells. High IFP can also play a role here. 
In normal tissues, there exists a perfusion pressure difference of 
about 20 mmHg between the arterial and venous ends of microves-
sels and this drives blood flow through capillaries. However, in 
tumors, the increased leakiness of vessels and the lacking of func-
tional lymphatics result in an increased IFP. Transmural coupling 
between this high IFP and microvascular pressures can result in 
abolished perfusion pressure differences between the arterial and 
venous ends, thus, causing flow stasis and hypoxia (13). However, 
this is more likely to result in chronic rather than acute hypoxia 
(13). Finally, the hematocrit within tumor microvessels can be 
increased by 5–14% and this will also influence flow.

Other Parameters Affecting the 
Micromilieu
Apart from the inadequacies of the tumor vascular supply, there 
are a number of other important factors that can influence the 
microenvironment within tumors. Chief among these is the 
oxygen carrying capacity of the blood. This can be substantially 
reduced under specific conditions, thus making less oxygen avail-
able. Such an effect is seen with anemia where the normal hemo-
globin levels of 7.5–9.5  mmol/L in females and 8–10  mmol/L 
in males can be reduced by 50% in anemic patients. Additional 
studies in which tumor oxygenation status was directly measured 
with polarographic needle electrodes have reported a correlation 
between the level of tumor hypoxia and hemoglobin concentra-
tion (18). Reduced oxygen availability is also observed in patients 
who smoke. Smoking impairs the delivery of oxygen to tumors 
due to the presence of carboxyhemoglobin (HbCO) that is formed 
by the binding of carbon monoxide (CO) to hemoglobin (19). 
Heavy smokers can have up to 16–18% HbCO in their blood. This 
reaction not only decreases the amount of hemoglobin available 
for oxygen transport but will also shift the oxygen-dissociation 
curve to the left making it more difficult for the hemoglobin to 
release oxygen to the cells. Since the affinity of hemoglobin for 
CO is approximately 250 times the affinity for oxygen, even low 
concentrations of CO can result in significant levels of HbCO in 
the blood.

The microenvironment of tumors will also depend on the 
cellular consumption of oxygen and essential nutrients. As a 
result of tumor cells close to the vascular supply consuming what 
they need for growth and survival, less will be available for those 
cells further away. Consequently, radial oxygen, nutrient, and pH 

gradients are established (16). The extent of those gradients will 
depend not only on the rate of consumption but also on what 
is actually delivered to the cells by the blood supply. Indeed, it 
has been reported that in the case of oxygen the cells next to 
the blood vessel can have oxygen concentrations as low as 2% 
[approximately 15 mmHg; (20)] and this would certainly reduce 
the oxygen diffusion distance. As it is the case in normal physiol-
ogy, there is also an intravascular (longitudinal) oxygen partial 
pressure gradient when the blood moves from the arterial to 
venous end of the microvessels (21). All these factors, coupled 
with the structural and functional aberrations described in the 
previous section, will result in the development of areas within 
the tumor that can be considered “abnormal and adverse” when 
compared to those conditions found in normal tissues (10, 16).

MiCROeNviRONMeNTAL 
CHARACTeRiSTiCS OF TUMORS

Hypoxia
The microenvironmental parameter that has been the most 
extensively investigated is hypoxia. By definition, hypoxia is a 
state of reduced oxygenation that influences biological functions 
(22). The first indirect indication that hypoxia existed in tumors 
was made by Thomlinson and Gray (23). From histological sec-
tions of carcinomas of the bronchus, they typically found viable 
tumor regions surrounded by vascular stroma, with regions of 
necrosis evolving in the center of the tumor mass. The thickness 
of the resulting shell of viable tissue was found to be between 
100 and 180 μm. They suggested that as oxygen diffused from 
the stroma, it was consumed by the cells, and although those 
beyond the diffusion distance were unable to survive, the cells 
immediately bordering the necrosis might be viable yet hypoxic; 
unfortunately, in this concept, the diffusion of glucose and other 
nutrients is completely ignored. Later, an inverted version of the 
Thomlinson and Gray model was described, with functional 
blood vessels surrounded by cords of viable tumor cells outside of 
which were areas of necrosis [Krogh model of oxygen diffusion; 
(24)]. This corded structure is the more typical picture found 
in most solid tumors and is illustrated in Figure 2. As with the 
Thomlinson and Gray model, an oxygen gradient is created as 
the oxygen diffuses from the blood vessel, resulting in a region 
of cells at the edge of the cord that are oxygen deprived and are 
commonly referred to as diffusion-limited chronic hypoxia. This 
type of hypoxia has been seen in both animal and human tumors 
(25). It has been suggested that such hypoxic cells can survive 
under these adverse conditions for several days (26). Death will 
also occur as the hypoxic cells move further away from the blood 
supply as the tumor grows, although this is more likely to result 
from a glucose deficit rather than just a lack of oxygen.

Diffusion-limited chronic hypoxia was the working model for 
hypoxia from the 1950s until around the 1980s when it was then 
suggested that a second type of hypoxia could exist in tumors 
and one that was acute in nature (28). This was later confirmed 
and shown to be the result of the transient stoppages in tumor 
blood flow described earlier (29). The hypoxia that results was 
originally called perfusion limited acute hypoxia, although 
other terms are often used, including cyclic, intermittent, 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FiGURe 2 | Schematic illustration of the relationship between the tumor vasculature and microenvironment. The left side shows tumor cells growing in a 
corded structure around a functional vessel from which the cells receive their oxygen and nutrient supply, but as these substances diffuse out from the vessel they 
are utilized by the cells so that gradients are established. On the right side is a flow chart showing the relationship between the hostile microenvironment of tumors 
and the factors that give rise to its development. Figure is modified from Ref. (1, 27).
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transient, repetitive, or fluctuating, and it is probably the lat-
ter term that is the most appropriate description. Evidence for 
fluctuating hypoxia has been reported in murine tumors (30), 
human tumor xeongrafts (31), and even in tumors in cancer 
patients (32–34).

Today, hypoxia is often considered as a single entity even 
though we know there are at least two types. However, even the 
concept of chronic and acute/fluctuating hypoxia is an over-
simplification of the real picture (13). Acute hypoxia can result 
from a total or partial shut-down in perfusion (12); a complete 
shut-down would starve cells of oxygen and nutrients and result 
in ischemic hypoxia, which would not be the case for a partial 
shut-down where plasma flow, thus nutrient supply, can occur 
leading to hypoxemic hypoxia. For chronic hypoxia, the picture 
is even more complicated. It can result from a diffusion limitation 
under “normal” conditions (diffusional hypoxia), or be due to 
reduced oxygen availability as with high HbCO or anemia (anemic 
hypoxia). But, it will also be dependent on the oxygenation level; 
cells close to the vessel could be slightly hypoxic, while cells next 
to necrosis could even be anoxic (a situation where no oxygen can 
be detected) but still viable if they have sufficient nutrient supply 
(i.e., glucose). Whatever the description, hypoxia is now known 
to be a characteristic feature of most solid animal tumor models 
(35) and numerous human cancers (16, 36).

interstitial Fluid Pressure
Unlike normal tissues, tumors often contain vessels that are 
abnormally leaky and also lack a functional lymphatic system 
(37). These, coupled with a large hydraulic conductivity, results 
in a significant bulk flow of free fluid in the interstitial space. In 
normal tissues, water influx into the interstitial compartment has 
been estimated to be between 0.5 and 1.0% of plasma flow, yet in 
human tumors values up to 15% can be reached (38). As a result 
of fluid accumulating in the tumor matrix, there is a build-up 
of interstitial pressure (39–41). Interstitial fibrosis, contraction of 
the interstitial space mediated by stromal fibroblasts, and high 
oncotic pressures within the interstitium may also contribute to 
the development of interstitial hypertension (42). In most normal 
tissues, IFP is just above or below atmospheric values (43), but in 
tumors it can reach 50 or even 100 mmHg (1). IFP is generally 
uniformally high throughout the center of tumors, but drops 
steeply in the tumor periphery (44). However, since vascular 
permeability varies from tumor to tumor and can be heterogene-
ous within the same tumor, IFP is not constant (1). It can also 
fluctuate with changes in microvascular pressures (45).

Glycolysis and pH
Warburg’s classic work in the 1920s showed that cancer cells 
intensively converted glucose to lactate (glycolysis) even in 
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the presence of oxygen [for a review see Ref. (46)]. Today, it is 
believed that there is no clear evidence that cancer cells are inher-
ently glycolytic, but that some tumors might be glycolytic in vivo 
as a result of hypoxic response mechanisms (47). Hypoxia will 
shift the balance of cellular energy production toward glycolysis 
with the generation and subsequent accumulation of lactate (48). 
Indeed, several studies have found high median lactate levels of 
around 7 mM in head and neck cancers (49) and up to 14 mM 
in uterine cervix (50). Although lactate is generally considered 
a waste product, there is evidence that the lactate produced by 
hypoxic cells can be taken up in normoxic cancer cells via the 
monocarboxylate transporter-1 and can then be utilized for 
oxidative phosphorylation instead of glucose as a substrate 
(51). However, cellular lactate production and release will lead 
to tumor acidosis. What is clear is that like normal cells, tumor 
cells have efficient mechanisms for exporting protons into the 
extracellular space (52, 53), thus a pH gradient exists across the 
tumor cell membrane so that intracellular pH (pHi) remains 
higher than the extracellular pH (pHe). In normal tissues, this 
gradient is reversed such that pHi is actually lower than pHe (16, 
54–56). The production and release of lactate alone does not fully 
account for the acidosis found in the extracellular compartment 
of solid tumors. Other key mechanisms may play an important 
role, especially ATP hydrolysis, glutaminolysis, carbon dioxide 
production, and bicarbonate depletion (48).

Bioenergetic Status
Various techniques have been used to monitor the bioenergetic 
status within tumors. These include ex vivo quantitative biolu-
minescence (57) and high-performance liquid chromatography 
[HPLC; (38, 58)], and non-invasive 31P-nuclear magnetic reso-
nance/spectroscopy [NMR/MRS; (59)]. The global concentra-
tions of ATP measured in experimental tumors using HPLC were 
found to be typically between 0.4 and 2.0 mM (38, 58). These global 
ATP concentrations and adenylate energy charge only changed 
marginally provided tumors did not exceed biologically relevant 
tumor sizes (i.e., 1% of the body weight). With increasing tumor 
mass, ATP hydrolysis increased. As a result of this increased ATP 
degradation, an accumulation of purine catabolites, and the final 
degradation product uric acid, has been observed (38). Using 
quantitative bioluminescence, the microregional distribution 
of ATP has been assessed in cryobiopsies of cervix tumors and 
found to be heterogeneous and comparable to high flow experi-
mental tumors (38). This ATP distribution profile was similar to 
those seen for both glucose and lactate, but there was no clear-cut 
correlation between tumor oxygenation and regional ATP levels 
(38). Bioluminescence measurements of regional ATP distribu-
tions in experimental brain tumors reported ATP levels that 
were similar to normal brain, whereas glucose was slightly lower 
and lactate substantially higher (38, 60), with these metabolites 
showing marked tumor heterogeneity (60). Additional studies 
using NMR have shown that in many human malignancies, high 
concentrations of phosphomonoesters, phosphodiesters, and 
inorganic phosphate, as well as low phosphocreatine, are often 
found. The exception is again in human brain tumors, where 
no significant differences in 31P-NMR spectra were seen when 
compared to normal brain tissue (38).

Hypoxia-Driven Adenosine Accumulation
The development of tumor hypoxia is accompanied by a sub-
stantial accumulation of the nucleoside adenosine (ADO) in the 
range of 50–100  μM (61). By contrast, ADO levels in normal 
tissues have been found to be in the range of 10–100 nM (62, 63). 
ADO accumulation is preferentially caused by an ATP release 
from cancer cells into the extracellular space upon hypoxic stress. 
After transport out of cancer cells, extracellular ATP is converted 
into ADO by hypoxia/hypoxia-inducible factor (HIF)-sensitive, 
membrane-bound ectoenzymes CD39 and CD73. Intracellular 
ADO-formation from AMP by a cytosolic AMP-nucleotidase 
with subsequent ADO-export into the extracellular space 
through a nucleoside transporter seems to play a subordinate 
role. ADO-actions (adenosinergic effects) are mediated upon 
binding to surface receptors, mainly A2A-receptors on tumor 
and immune cells. Receptor activation leads to a broad spectrum 
of strong immune-suppressive properties through modulation 
of the innate and adaptive immune system, thus facilitating 
tumor escape from immune control (62, 64–66). Mechanisms 
include (a) an impaired activity of CD4+ T and CD8+ T, NK 
cells, and dendritic cells (DCs), a decreased production of 
immune-stimulatory lymphokines, and (b) an activation of Treg 
cells, expansion of myeloid-derived suppressor cells (MDSCs), 
promotion of pro-tumor M2-macrophages, and increased activ-
ity of major immune-suppressive cytokines. In addition, ADO 
can directly stimulate tumor cell proliferation and angiogenesis. 
Taken together, there is clear evidence that ADO-mechanisms 
described can thwart anti-tumor immune responses elecited by 
radiotherapy and fever-range hyperthermia (67).

SiGNiFiCANCe OF THe TUMOR 
MiCROeNviRONMeNT FOR CANCeR

Radiation
The potential of microenvironmental parameters to influence 
outcome to radiotherapy was first suggested from experiments in 
which the radiation response of skin was markedly decreased if 
the blood flow to the irradiated area was reduced by compression 
(68). This was followed by a report that tissues in which blood 
flow was stimulated by diathermia showed a more prominent 
response to radiation (69). Further experimental observations 
led Gray and co-workers to finally postulate the role of oxygen 
deficiency as a major source of radiation resistance (70). This 
occurs because oxygen is critical for the response of cells to 
radiation. The mechanism responsible is generally referred to as 
the “oxygen-fixation hypothesis” (71). When radiation interacts 
with the cellular target, which is usually DNA, it results in the 
production of free radicals. These are produced either directly 
by the radiation itself or indirectly from other molecules that are 
affected by radiation and then diffuse sufficiently to reach and 
damage the DNA target. Since water constitutes around 70% of 
all mammalian cells, most of the indirect radicals are probably 
produced from water molecules. In the absence of oxygen or in 
the presence of hydrogen-donating species (i.e., thiols), the free 
radicals formed in the DNA can react with hydrogen ions and the 
target is then chemically restored to its original form. However, 
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if oxygen is present, it will react with the free radical to form a 
product that undergoes further reaction, ultimately producing a 
chemical change in the target. The damage is now fixed and can 
only be removed by enzymatic repair processes.

It has been demonstrated from rapid-mix studies that the 
oxygen effect occurs only if oxygen is present either during 
irradiation or within a few milliseconds thereafter (72, 73). 
The amount of oxygen is also critical. An almost maximum 
enhancement of radiation is seen with oxygen partial pressures 
above around 20 mmHg (approximately 3%). Below this partial 
pressure radiation sensitivity decreases in an oxygen-dependent 
fashion (71); in the absence of oxygen roughly three times as 
much radiation is required to kill the same number of cells as seen 
under normoxic conditions. This effect is generally referred to as 
the “oxygen enhancement ratio” (OER; ratio of the radiation dose 
in hypoxia/anoxia to that in air, to give the same biological effect). 
For radiation of higher energy than X-rays produced by modern 
radiotherapy units the OER actually decreases (74).

Numerous animal studies have demonstrated that hypoxia in 
tumors can influence radiation response. Three classical assays 
have been used (35, 75). They are (a) the clamped clonogenic sur-
vival assay, in which tumors are excised after treatment and cell 
survival measured in culture; (b) the clamped tumor growth delay 
assay, where measurements are made of the time taken for tumors 
to reach a specific size after treatment; and (c) the clamped tumor 
control assay, whereafter the percentage of animals showing local 
tumor control at a certain time after treatment is recorded. For 
each technique, it is necessary to produce full radiation dose–
response curves under air breathing and fully anoxic (clamped 
tumor) conditions. The results of such assays not only demon-
strate that hypoxia in tumors influences radiation response, but 
the degree of displacement of the dose–response curves also 
allows us to calculate the actual percentage of radiobiological cells 
in the tumor. Using these assays, the hypoxic fractions have been 
estimated to range from 1% to well over 50% of the viable tumor 
cells in animal tumors and human tumor xenografts (35).

Demonstrating that hypoxia can influence the radiation 
response of human tumors is more difficult, since none of the 
above approaches are applicable to humans. Although numerous 
other methods have been developed to try and identify hypoxia in 
human tumors (25, 76, 77), not all have been used to demonstrate 
the relationship between hypoxia and radiation response. The 
earliest attempts to do the latter were based on indirect approaches 
(78), and involved estimates of tumor vascularization, using such 
endpoints as intercapillary distance, vascular density and the 
distance from tumor cells to the nearest blood vessel (79–81). All 
showed that patients with less well vascularized tumors, and pre-
sumably more hypoxic, had a poorer outcome to radiation therapy. 
More direct approaches have used exogenous markers that are 
injected into the host and bind to regions of tumor hypoxia, or 
endogenous markers that are genes/proteins upregulated under 
hypoxia. The former include nitroimidazole or copper-based 
derivatives, which can be identified immunohistochemically 
from histological sections or non-invasively using positron emis-
sion tomography, SPECT, or magnetic resonance spectroscopy 
(25). Although such exogenous markers can be used to identify 
tumor hypoxia and even associated with outcome following 

radiation therapy in head-and-neck carcinoma patients (82), 
there has never been a proper radomized trial. The endogenous 
markers include such factors as carbonic anhydrase IX, GLUT-1, 
HIF-1, and osteopontin (83–86). These can be measured from 
biopsy material using protein immunohistochemistry or as gene 
expression, or proteins identified from blood samples. Although 
endogenous markers have been correlated with outcome to radia-
tion therapy in some studies, it is not a universal finding (82), 
which probably reflects the fact that many of these endogenous 
markers are not hypoxia-specific rather than any indication that 
hypoxia does not play a role in influencing radiation response.

Probably the most direct method for estimating tumor hypoxia 
and one that has certainly been used to show the negative influ-
ence of such hypoxia on radiation response is the measurement 
of oxygen partial pressure (pO2) distributions with polarographic 
electrodes. Early attempts to achieve this used “home-made” glass 
electrodes which were cumbersome, fragile, and only a few pO2 
values 3–4  mm below the surface of the tumor were possible. 
Nevertheless, clinical data were obtained in cervix (79) and head 
and neck (87) that clearly demonstrated a relationship between 
such oxygenation measurements and outcome to radiation 
therapy, in that those patients with tumors that were better oxy-
genated had a significantly superior local response to irradiation.

This whole area was revolutionized with the development 
of the Eppendorf histography system, which had two distinct 
improvements. The first was having the oxygen microsensor 
inside a metal needle and the second the attachment of this needle 
to a stepping motor that allowed for multiple measurements along 
the needle track through the tumor. Numerous clinical studies 
were, thus, undertaken in a variety of human tumor types. The 
results clearly showed that hypoxia was to be found in virtually all 
human tumors investigated, although the degree of hypoxia could 
be variable (16, 36, 88, 89). Probably the most significant finding 
from these studies was the confirmation that hypoxia influenced 
outcome to therapy, especially where radiation was given. This 
has been reported for cervix (90–95), head and neck (96–100), 
soft tissue sarcomas (101, 102), and prostate (103, 104). Results 
for all four tumor types are summarized in Table 2 and clearly 
illustrate that the patients with more hypoxic tumors had a poorer 
outcome response.

One major focus of current cancer research is the role of can-
cer stem cells in tumorigenesis and therapy. Such cells amount 
to around 1–25% of the total viable tumor cell population (105), 
but they are believed to be the cells that must be completely 
eliminated to obtain tumor control (106). Significant effort is 
currently being made to identify these cells and specifically 
target them. However, recent evidence suggests a possible link 
between hypoxia and cancer stem cells (106). Hypoxia may 
affect cancer stem cell generation and maintenance through the 
upregulation of hypoxia-induced factors (105, 106). Pre-clinical 
studies have also shown an inverse correlation between hypoxia 
and local tumor control after irradiation (107, 108), suggesting 
that hypoxia may also actually protect the cancer stem cells 
from the lethal effects of radiation. If the link between cancer 
stem cells and hypoxia is proven, then hypoxia may be an even 
more important issue for radiation response than we currently 
believe.
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TABLe 2 | Relationship between tumor oxygenation estimated prior to therapy using the eppendorf histograph and outcome to therapy.

Tumor type Patient 
treatmentsa

No. of  
patients

Response 
endpointsb

Less  
hypoxic (%)

More  
hypoxic (%)

Oxygenation endpointc Reference

Cervix RT/CT/SG 31 OS at 22 months 80 32 Median pO2 above or below 10 mmHg (90)
RT/CT/SG 89 OS at 5 years 69 37 Median pO2 above or below 10 mmHg (91)
RT 51 DFS at 3 years 69 33 Median pO2 above or below 10 mmHg (92)
RT 74 DFS at 3 years 69 34 HF5 above or below 50% (93)
RT 106 DFS at 5 years 58 42 HF5 above or below 50% (94)

Head and neck RT 35 LTC at 2 years 77 33 Median pO2 above or below 2.5 mmHg (96)
RT/SG 28 DFS at 12 months 78 22 Median pO2 above or below 10 mmHg (97)
RT/CT 59 OS at 12 months 63 31 Hypoxic subvolume (98)
RT/CT 134 OS at 3 years 22 7 Median pO2 above or below 2.5 mmHg (99)
RT/CT/SG 310 OS at 3 years 38 28 Median pO2 above or below 2.5 mmHg (100)

Sarcoma RT/HT/SG 22 DFS at 18 months 70 35 Median pO2 above or below 10 mmHg (101)
RT/SG 28 OS at 5 years 77 28 Median pO2 above or below 19 mmHg (102)

Prostate RT 57 FFBF at 8 years 78 46 P/M ratio above or below 0.10 (103)

aPatient treatments consisted of various combinations of RT (radiotherapy), CT (chemotherapy), SG (surgery), or HT (hyperthermia).
bResponse endpoints were either OS (overall survival), DFS (disease free survival), LTC (local tumor control), or FFBF (freedom from biochemical failure).
cHF5 (percentage pO2 values below 5 mmHg), hypoxic subvolume (percentage pO2 below 5 mmHg × total tumor volume), or P/M (prostate/muscle). 

TABLe 3 | influence of the hostile tumor microenvironment on the activity 
of chemotherapeutic drugs.

Hypoxia dependency pH (below 6.8) dependency

Decreased 
effect

increased  
effect

Decreased  
effect

increased  
effect

Doxorubicin Etoposide Doxorubicin Chlorambucil

Actinomycin D BCNU/CCNU (?) Daunorubicin Melphalan

Bleomycin Alkylating agents (?) Bleomycin Cyclophospamide

Vincristine Mitomycin C Vinblastin Mitomycin C

Methotrexate (?) EO9 Paclitaxol Tiophosphamide

Cisplatin (?) PR-104 Methotrexate Cisplatin

5-Flurouracil (?) TH-302 Mitoxantrone 5-Flurouracil

Procarbazine Tirapazamine Topotekan Camptothecin

Streptonigrin Banoxantrone

Drugs marked with (?) indicate those agents that are included in the relative categories 
due to their in vitro response, but in which in vivo studies suggest may not be correct. 
Classification is based on information from Ref. (111–114).
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Chemotherapy
The pathophysiological characteristics of tumors play a signifi-
cant role in influencing the response of the tumor cells to chemo-
therapy (109). An inadequate vascular supply will naturally be 
expected to hinder blood-borne drug delivery. A decrease in 
drug availability will certainly be seen in areas where flow fluctu-
ates, especially where complete cessations in flow occur (110). 
In addition, the mean vascular density in tumors is lower than 
that found in normal tissues and, thus, diffusion distances are 
enlarged (1). Thus, transport of drugs from tumor microvessels 
to tumor cells that are distant from them will be compromised. 
The high IFP within solid tumors will also decrease extravasa-
tion (111). IFP at the tumor to normal tissue interface is low 
and as a result interstitial fluid oozes out of the tumor into the 
surrounding normal tissue. At the same time, it will also carry 
away anti-cancer drugs (37).

Cells most distant from the vascular supply will also be cycling 
at a reduced rate and this can act as a protective mechanism against 
a number of chemotherapeutic agents that work by interacting 
with cellular DNA and only kill the cell when it divides. Such 
cells are also exposed to hypoxia and acidic conditions, factors 
which are known to influence chemotherapeutic agent activity 
(111). However, these adverse microenvironmental parameters 
do not always have a negative effect of drug activity; some drugs 
are actually more effective under such conditions as illustrated 
in Table 3.

Other Tumor Therapies
Hyperthermia is a less conventional therapy, but is one example 
where the more deficient the tumor vasculature and the more 
deprived the tumors cells, the better the tumor response. Blood 
flow, being one of the major means by which heat is dissipated 
from tissues, will affect the ability to heat tumors (115). Thus, the 
poorer the blood supply, the easier it should be to heat. This has 
been demonstrated in vivo in which blood flow was compromised 
using agents that could reduce tumor blood flow (116, 117). In 

vitro studies have also reported that cells under hypoxic conditions 
were more sensitive to killing by hyperthermia than the same cells 
in a well-oxygenated environment (118, 119). However, this is 
not a consequence of hypoxia per se because under well-defined 
nutrient conditions, acute hypoxia does not significantly alter 
cellular response to heat (119). However, cells under prolonged 
oxygen deprivation will show an increased sensitivity to heat, 
an effect that is the result of chronically hypoxic cells becoming 
acidic (118).

Another treatment modality in which the tumor microenvi-
ronment influences response is photodynamic therapy  (PDT). It 
involves the administration of a photosensitizing agent and its 
subsequent activation by light. This reaction is strongly depend-
ent on oxygen concentration (120–123). Cell killing by PDT 
appears to be complete at normal oxygen levels and above, but 
decreases as the oxygen concentration drops below 5% (123). This 
is perhaps not surprising since the mechanism of action of PDT 
involves the generation of singlet oxygen (124).
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CONCLUSiON

The pathophysiological characteristics of the tumor microenvi-
ronment are very different from those conditions found in normal 
tissues. In many respects, the tumor microenvironment can be 
considered abnormal and hostile. These adverse pathophysi-
ological conditions, especially hypoxia, are now known to play 
a significant role in determining the tumor response to therapy 
and influencing the metastatic potential of tumors. Clearly, the 
future requirement is the application of methods by which one 
can accurately and reliably image the various important micro-
environmental parameters, especially using techniques that are 
routinely available in the clinic. With such information, it should 
be possible to identify those patients, on an individual basis, that 
would be expected to have a poor prognosis and, thus, select 
appropriate additional treatments to dramatically improve that 
prognosis.
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