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Background:Radiomics can quantify tumor phenotypic characteristics non-invasively by
applying feature algorithms to medical imaging data. In this study of lung cancer patients,
we investigated the association between radiomic features and the tumor histologic
subtypes (adenocarcinoma and squamous cell carcinoma). Furthermore, in order to
predict histologic subtypes, we employed machine-learning methods and independently
evaluated their prediction performance.

Methods: Two independent radiomic cohorts with a combined size of 350 patients
were included in our analysis. A total of 440 radiomic features were extracted from
the segmented tumor volumes of pretreatment CT images. These radiomic features
quantify tumor phenotypic characteristics on medical images using tumor shape and
size, intensity statistics, and texture. Univariate analysis was performed to assess each
feature’s association with the histological subtypes. In our multivariate analysis, we
investigated 24 feature selection methods and 3 classification methods for histology
prediction. Multivariate models were trained on the training cohort and their performance
was evaluated on the independent validation cohort using the area under ROC curve
(AUC). Histology was determined from surgical specimen.

Results: In our univariate analysis, we observed that fifty-three radiomic features were
significantly associated with tumor histology. In multivariate analysis, feature selection
methods ReliefF and its variants showed higher prediction accuracy as compared
to other methods. We found that Naive Baye’s classifier outperforms other classi-
fiers and achieved the highest AUC (0.72; p-value=2.3×10−7) with five features:
Stats_min, Wavelet_HLL_rlgl_lowGrayLevelRunEmphasis, Wavelet_HHL_stats_median,
Wavelet_HLL_stats_skewness, and Wavelet_HLH_glcm_clusShade.
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Conclusion: Histological subtypes can influence the choice of a treatment/therapy for
lung cancer patients. We observed that radiomic features show significant association
with the lung tumor histology. Moreover, radiomics-based multivariate classifiers were
independently validated for the prediction of histological subtypes. Despite achieving
lower than optimal prediction accuracy (AUC 0.72), our analysis highlights the impressive
potential of non-invasive and cost-effective radiomics for precision medicine. Further
research in this direction could lead us to optimal performance and therefore to clinical
applicability, which could enhance the efficiency and efficacy of cancer care.

Keywords: quantitative imaging, radiomics, lung cancer histology, computational science, feature selection

INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths world-
wide with 150,000 deaths per year in US (1). Lung cancer is
clinically divided into two groups: small cell lung cancer (SCLC,
~25%) and non-small cell lung cancer (NSCLC, ~75%) (2). The
most common histological subtypes of NSCLC are adenocarci-
noma (~38%) and squamous cell carcinoma (~20%) (3). These
two subtypes have distinct histologic features, i.e., squamous cell
carcinoma is associated with intercellular bridging and individual
cell keratinization, whereas glandular architecture is prominent
for adenocarcinoma (3, 4). Histological classification of lung can-
cer provides important information about tissue characteristics
and anatomical location. Adenocarcinoma often develops at the
periphery of the lungs, while squamous carcinoma is generally
located more centrally (5). Differences have also been found in
expression of glycolysis and hypoxia-related markers between
histological subtypes, which suggests histology-specific glucose
metabolism in NSCLC (5, 6). In addition, histological tumor
classification could determine the optimal treatment and/or ther-
apy strategies (7). Recent advancement in the therapy for lung
cancer is characterized by discovery of targetable mutations and
histology-based therapeutic regimen selection (7, 8). For example,
Pemetrexed is the preferred treatment for stage IV lung adenocar-
cinoma, whereas bevacizumab is not recommended for squamous
carcinoma due to the risk of pulmonary hemorrhage observed
in phase II trials (8–10). It has also been shown that treatment
for stage III lung cancer patients with squamous carcinoma has
significant improvement in survival with cisplatin/gemcitabine
versus cisplatin/pemetrexed, but for adenocarcinoma patients, the
latter treatment provides superior survival rate (11, 12). More
importantly, histology classification increases the likelihood of
identifying patients with targetable mutations like EGFR muta-
tions, which occurs primarily in adenocarcinoma (4).

In routine clinical practice, themost commonway of classifying
tumor histology is through the histopathological analysis of tumor
tissues via biopsy. This is clinically limited by the inherent risk of
invasive procedures as well as poor time and cost efficiency (8).
Therefore, automatic, non-invasive, and cost-effective alternatives
are desired. Medical imaging provides promising opportunities
in this regard. It assesses the tumor tissue characteristics non-
invasively. Furthermore, it is relatively cost-effective and is already
a routinely used clinical practice for oncologic diagnosis, staging,
and treatment guidance (13–15).

Radiomics, a high throughput data mining approach, can
exploit the non-invasive medical image data (14). It focuses on
extracting a large number of quantitative imaging features, which
can provide a detailed and comprehensive characterization of the
tumor phenotype (8). Several studies have shown the prognos-
tic/predictive power of radiomic features in different cancer types
by using different medical imaging modalities like CT (16, 17),
MRI (18), PET (15, 19, 20), and US (21). It has been shown that
radiomic features are associated with several clinically relevant
factors, such as tumor stage (22), tumor metabolism (23), overall
patient survival (17, 24), metastasis (13), treatment response (25),
and the underlying gene expression profiles (26, 27). These asso-
ciations can be leveraged to build efficient and effective predic-
tion/prognostic models. Therefore, radiomics is a promising field
providing a non-invasive and cost-effective way for personalized
medicine.

A limited number of studies have investigated the association
of radiomic features and NSCLC tumor histology (22, 28). Most
of them used a clustering-based unsupervised approach for asso-
ciating radiomic features with tumor histological subtypes. How-
ever, in order to achieve higher prediction accuracies, supervised
methods are generally preferred over unsupervised approaches
if labeled data is available. Furthermore, like any other high-
throughput data mining approach, radiomics also falls prey to
the curse of dimensionality, which means we would need to get
an enormous amount samples due to high dimensional radiomic
features (29). Feature/variable selection is one of the solutions
to this problem (30). Many feature selection methods have been
proposed in machine learning literature, which should be applied
for radiomics-based predictive analyses (31).

In this study, we investigated 24 commonly used feature selec-
tion methods and 3 supervised machine-learning classification
methods for the prediction of lung cancer histologic subtypes,
using independent training and validation cohorts from two dif-
ferent institutions. We first reduced the radiomic feature space
into a non-redundant subspace by using correlation-based feature
elimination. Second, we applied 24 (Information Gain, Gain Ratio
Gini Index, MDL, DKM, ReliefF, and their variants) univari-
ate filter-based feature selection methods to the resultant non-
redundant feature subset. We chose these filter-based methods
because of their popularity in the literature and their high com-
putational efficiency.

The main objective of this study was to investigate the asso-
ciation between radiomic features and lung tumor histology.
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We employed machine-learning methods to build radiomics-
based multivariate classifiers for the prediction of tumor histol-
ogy. Non-invasive and cost-effective radiomic data could improve
the histological classification and hence the treatment/therapy,
which in general could have a large impact in cancer care. With
improving image feature extraction techniques, a higher accuracy
in classification is expected to achieve. This work will serve as
a promising prognostic tool for informing treatment choice and
fostering personalized therapy for lung cancer patients.

MATERIALS AND METHODS

Datasets
We used two NSCLC cohorts collected at different institutions
in the Netherlands. The training dataset (Lung1) contains 198
patients (mean age 69.5, range 34–88 years) with pathologically
confirmed adenocarcinoma (n= 152) or squamous carcinoma
(n= 51), UICC stages I–IIIb, treated with radical radiotherapy
or with chemoradiation at MAASTRO Clinic in Maastricht in
the Netherlands. Classification of the tumors as either adenocar-
cinoma or squamous cell carcinoma was based on hemotoxylin
and eosin (H&E) staining according to the World Health Orga-
nization (WHO) classification of malignant lung tumors. Experi-
enced radiation oncologists using a standard clinical delineation
protocol performed delineation based on fused PET-CT imaging.

The test dataset (Lung2) has 152 patients (mean age 65.6,
range 41–86 years) with pathologically confirmed adenocarci-
noma (n= 62) or squamous carcinoma (n= 90), stages (I–IVa),
treated at Radboud University Medical Center (RUMC) in
Nijmegen, the Netherlands, between February 2004 and Octo-
ber 2011. Histological classification was based on H&E stain-
ing according to the WHO classification of malignant lung
tumors. Manual delineations of the CT-scans were available for all
included patients in the two datasets. Further details regarding the
two data sets can be found in a previous paper (32). The Institu-
tional Review Board of the Maastricht University Medical Center
(MUMC+) and the Institutional Review Board of the RUMC
waved review due to the retrospective nature of this study (32).

Radiomic Features
Tumor phenotypic characteristics were quantified by extracting
440 3D radiomic features from the segmented tumor regions
of pretreatment CT images (32). All radiomic features can be
divided into three groups: (1) Intensity: these features quantify the
density of the tumor region on the CT image from the first-order
histogram of voxel intensities. (2) Shape: these features quantify
the 3D geometric properties of the tumors. (3) Texture: textural
features quantify the intratumor heterogeneity by using the gray
level cooccurrence (GLCM) and gray level run length matrices
(GLRLM). Intensity and textural features were also computed
after applying 3D wavelet transformations (coiflet filters) to the
original image. Matlab R2012b was used for the image analysis,
and radiomic features were automatically extracted using Matlab
R2012b. Details about the image analysis as well as the mathemat-
ical definition of the radiomic features can be found in previous
literature (32). All radiomic data were centered and scaled before
performing the analysis.

Univariate Analysis
The association between the radiomic features and histological
subtypes was assessed using the area under the receiver operating
characteristic curve (ROC curve) (33). We computed AUC for all
the features in a univariate manner. Significance was estimated
using a random permutation test with iteration of 1000. The
analysis was performed using R package survcomp (34).

Feature Selection
Like any other high throughput approach, radiomics also has
highly redundant feature space. So, if we just rank features based
on feature relevance, it is likely that highly correlated features have
similar rank and they end up together in the selected feature subset
(35). Several studies have discussed this issue with respect to
filter-based feature selection methods (36, 37). Besides, correlated
features can cause the classifiers to be sensitive to small changes
in the datasets. This could cause a severe problem in cohorts with
a different structure of collinearity (38).

To address this problem, we used a simple two-stage feature
selection method by combing correlation-based feature elimina-
tion and univariate feature selection. In the first stage, we elim-
inated highly correlated features using a correlation matrix. We
calculated column-wise average absolute correlation C = 1

n
∑

j cij
for each feature. A threshold M is set for elimination, that is,
for each pair-wise correlation cij that exceed M, we removed the
feature with higher column-wise average absolute correlation C.
By eliminating those highly correlated features, we are left with
“non-redundant” set of features. This process was implemented
by R package “corrplot” with “findCorrelation” function (39).

In the second stage, we applied univariate feature selection
methods to the non-redundant feature set generated in the first
stage and chose top-ranked features. Feature ranking methods

TABLE 1 | Feature filtering methods and corresponding scoring schemes.

Feature filtering
methods

Scoring function

Information gain
(44)

IN (Ai) =
c∑

i=1
p (τi) log p (τi) −

ami∑
j=1

c∑
i=1

p
(

τi|ai,j
)
log p

(
τi|ai,j

)
Gain ratio (45) GR (Ai) =

∑c
i=1p(τi) log p(τi)−

∑ami
j=1

∑c
i=1p

(
τi|ai,j

)
log p

(
τi|ai,j

)
∑ami

j=1p
(
aij
)
log p

(
aij
)

Gini index (46) GI (Ai) =
c∑

i=1
p2 (τi) −

ami∑
j=1

c∑
i=1

p2
(

τi|ai,j
)

MDL (47)

MDL (Ai) =
1
n log2

(
n

n1., . . . , nc.

)

−
ami∑
j=1

(
n.j

n1j, . . . , ncj

)
+ log2

(
n + c + 1
c − 1

)

−
ami∑
j=1

(
n.j + c − 1

c − 1

)
where nij is number of samples from class ith with jth value of
features

DKM (40)
DKM (Ai) =

c∑
i=1

2
√

p (τmax) (1 − p (τmax)

−
ami∑
j=1

c∑
i=1

√
p
(

τmax|aij
)
(1 − p

(
τmax|aij

)
where p (τmax) = max

i=1to c
p (τi) represents most probable class

value
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Wavelet_LHH_glcm_dissimilar

Wavelet_HLH_glcm_inverseVar

Wavelet_LHH_glcm_energy

Wavelet_LLH_glcm_invDiffmomnor

Wavelet_HHH_glcm_invDiffnorm

Wavelet_LLH_glcm_inverseVar

Wavelet_HLH_glcm_energy

Wavelet_LHH_rlgl_longRunEmphasis

Wavelet_LHH_rlgl_shortRunEmphasis

Wavelet_LHH_rlgl_runPercentage

Wavelet_LHH_glcm_invDiffmomnor

Wavelet_LHH_glcm_maxProb

Wavelet_HLH_glcm_homogeneity1

Wavelet_HLH_glcm_invDiffmomnor

Wavelet_LHH_glcm_homogeneity1

Wavelet_HLH_rlgl_shortRunEmphasis

Wavelet_LHH_glcm_inverseVar

Wavelet_HLH_glcm_homogeneity2

Wavelet_HLH_rlgl_runPercentage

Wavelet_LHH_glcm_homogeneity2

Wavelet_LHH_glcm_correl1

Wavelet_HLH_rlgl_longRunEmphasis

Wavelet_LLH_glcm_energy

Wavelet_LLH_rlgl_longRunHighGrayLevEmpha

Wavelet_LHH_glcm_invDiffnorm

Wavelet_HLH_glcm_maxProb

Wavelet_HLH_glcm_invDiffnorm

Wavelet_LLH_glcm_homogeneity1

Wavelet_LLH_glcm_homogeneity2

Wavelet_LLH_glcm_invDiffnorm

Wavelet_LLH_rlgl_shortRunEmphasis

Wavelet_LLH_rlgl_runPercentage

Wavelet_LLH_rlgl_longRunEmphasis

Wavelet_LLH_glcm_maxProb

Wavelet_LLH_glcm_correl1

Wavelet_HHH_glcm_correl1

Wavelet_HLH_glcm_correl1

Wavelet_LHL_stats_median

Wavelet_HLH_stats_range

Wavelet_LHH_stats_uniformity

Wavelet_HLH_stats_median

Wavelet_HLH_stats_max

Wavelet_LLH_stats_uniformity

Wavelet_HLL_stats_max

Wavelet_LLH_stats_max

Wavelet_LLL_stats_min

Wavelet_HLH_stats_kurtosis

Wavelet_LLH_stats_kurtosis

Wavelet_HHH_stats_kurtosis

Wavelet_LLH_stats_range

Wavelet_LLH_stats_min

Wavelet_LHH_stats_kurtosis

Stats_min

stats

wavelet_stats

wavelet_texture

0.59 0.60 0.61 0.62 0.63 0.64 0.65

Significant Individual AUC for radiomic features

AUC

FIGURE 1 | Plot of univariate AUC for 53 significant radiomic features.

that we have used in this study are Gini index, Information Gain,
Gain ratio, MDL, DKM and RelifF, and their variants (40, 41).
Detailed description of these methods can be found in documen-
tation of R package “CORElearn” (42).

Most of the used feature selection methods rank features based
on their discriminating abilities between classes. Assume we have
a set of m dimensional feature vectors A= (A1,A2, . . .,Am) and c
number of labeled classes τ = (τ1, τ2, . . ., τc). They evaluate each

feature by the purity gained by adding the split on Ai = ai,j Split is
the partitioning of samples according the values of feature at eval-
uation. p(τi) is the probability of class τi, and p (τi|ai,j) is the prob-
ability of class τi conditioned on the feature Ai has value ai,j (43).
These information theory-based feature selection approaches and
their corresponding scoring functions are described in Table 1.
The derivatives and equations are cited and summarized from the
Ref. (40, 43).
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ReliefF
ReliefF (44) evaluates partitioning power of features based on how
well their values distinguish between very similar instances. Given
a randomly selected instance Ri, it searches k-nearest neighbors
from the same class, and calls them “nearest hits” H, and also
K-nearest neighbors from the different class, and called them
“nearest miss” M. It then updates the weight Wv for all attributes
depending on Ri (40). The process is repeated for m times and
result is averaged over m iterations, the function for iteration v is:

Wv = Wv −
1
mcon (Av,Ri,H)

+
1
m

c∑
t=1,t ̸=Ri

p (τt) con (Av, Ri, M (C))
1− p (Ri, τ)

where con (Av, Ri, H) and con (Av, Ri, M) are the contri-
bution functions of nearest neighbors (hits and misses). For
example, a simple contribution function can be averaging dif-
ferences of feature’s value for K-Neighbors: con (Av, Ri, H) =
1
k
∑k

j=1 diff (Av, Ri, Hj). ReliefF can efficiently evaluate features
when there are strong dependencies among them (40), but like
other feature filtering methods, it could not discriminate between
redundant features.

For each feature ranking method, we varied the selection size
from 5 to 45 (5, 10, 15, . . ., 45) and fit three classifier on the
selected feature subset using training dataset. We then evaluate
those classifiers by evaluating their prediction performance on
validation cohort. Performance of each classifier is measured

TABLE 2 | Classification accuracy of the optimal classifier.

Optimal cut-off Sensitivity Specificity PPV NPV Accuracy

0.271 0.55 0.8 0.72 0.65 0.70

by AUC. All feature ranking part is performed with R package
“CORElearn” in R 3.2.0 (42).

Classifier Models
Three classifiers: random Forests, Naive Bayesian, and K-nearest
neighbors were evaluated in this study.

Random Forest is an ensemble learning method for classifi-
cation, which consists of a collection of decision trees (48). It
uses weighted average of those trees for the final decision. This
classifier is robust to noises and outliers, and can handle high
dimensional spaces fast, but it has been observed to have over-
fitting problem (48). In this experiment, we set the number of
decision trees to 100 and the number of nearest instances for
weighted classification to 30.

Naive Bayes is another efficient learning algorithms for
machine learning. It is a probabilistic classifier based on Bayes’s
rule and strong conditional independence assumption among
features. The probability of an exampleE= (x1, x2, . . ., xn) belong-
ing to class c is defined as p (c|E) = p(E|c)p(c)

p(E) . E is classi-
fied to a positive class if and only if fb (E) =

p(C=+|E)
p(C=−|E) ≥ 1.

Assume all features are independent and given the class
p (E|c) = p (x1, x2, . . . xn|c) =

∏n
i=1

p(xi|C=+)
p(xi|C=−) , the Baye’s classi-

fier is: fnb (E) =
p(C=+)
p(C=−)

∏n
i=1

p(xi|C=+)
p(xi|C=−) .

Naive Bayes has advantage of requiring small amount of train-
ing data to estimate each parameter. Although Naive Bayes has
strong independency assumptions, which is hardly to meet in
practice, it has been shown to be effective even in cases of com-
pletely deterministic dependency among features (49).

K-nearest neighbors is another non-parametric method used
for classification. It is one of the simplest learning methods. The
advantage of K-nearest neighbors is that it makes no assumption
about the characteristic of the features. One major problem is
that it is easily misled by irrelevant features to the classification

FIGURE 2 | Plot of absolute value of pair-wise Pearson correlations of radiomic features in the training dataset before and after correlation filtering.
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(noise) and highly susceptible to curse of dimensionality. There-
fore feature selection is important before fitting this model (50).
Moreover, it is computationally intensive classification method.
We used k= 9 for the implementation of this method.

RESULTS

A total of 440 radiomic features were investigated in terms of their
association with and power to predict tumor histology. Feature
selection and classification training was done using the training
cohort Lung1 (n= 198), and the performancewas evaluated in the
independent validation cohort Lung2 (n= 152).

Univariate analysis of the training dataset showing 53 fea-
tures have significant predictive power (5% FDR corrected),
nearly all of which are wavelet transformed features (Figure 1).
Wavelet_HLH_glcm_correl1 had the highest AUC of 0.66 (CI:

0.57–0.74, p value 0.003). The adenocarcinoma subgroup has a
higher value than the squamous carcinoma subgroup for nine
gray-level cooccurrence matrix (GLCM)-based texture features
(HLH and LLH wavelet transformed Energy, Homogeneity1,
Homogeneity2, Inverse Variance, LLH wavelet transformed Max-
imum Probability), and two Gray-Level Run-Length texture fea-
tures (LLH wavelet transformed Long-Run Emphasis and Long-
Run High-Gray Level Emphasis). On the other hand, the squa-
mous carcinoma subgroup has a higher value for four RLGL
features (HLH and LLH wavelet-transformed Run Percentage
and Short-Run Emphasis) and one statistic feature (LLH wavelet
transformed Kurtosis).

In multivariate analysis, we observed that about 75% of the
features had absolute pair-wise Pearson correlations higher than
0.8, and 67% were over 0.9 (Table 2). To reduce redundancy,
we removed features having high absolute pair-wise correlation

FIGURE 3 | Heatmap describing the predicative performance (AUC) of random forest in NSCLC histology classification across feature selection
methods (in columns) and range of selection sizes (in rows).
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FIGURE 4 | Heatmap describing the predicative performance (AUC) of Naive Bayes in NSCLC histology classification across feature selection
methods (in columns) and range of selection sizes (in rows).

(C= 0.8). The feature number was reduced from 440 to 67 after
eliminating redundant features (Figure 2). The mean of the
absolute pair-wise correlations was reduced from 0.36 to 0.18 and
the interquartile range (IQR) for the correlations was reduced
from 0.39 to 0.20.

To select the most relevant features, we applied 24 filtering
methods to the reduced feature sets. For each filtering method,
we incrementally selected 5–45 features with an increment of
5 features (5, 10, 15, . . ., 45). Three classifiers were then devel-
oped on selected features in the training dataset, and the classi-
fication accuracy of each classifier was tested on the validation
dataset (Figures 3–5). The model with the best performance
(AUC= 0.72, p value= 2.3× 10−7) was Naive Bayes, with five
predictors selected by ReliefFdistance. We obtained the optimal
cutoff on the ROC curve of training cohort and used that cutoff of
probability score on validation cohort tomeasure other prediction
measures (Table 2).

As far as feature selectionmethod is concerned, ReliefFdistance
showed the highest predictive performance with all three
classifiers: random Forest (AUC= 0.69), Naive Bayes
(AUC= 0.72), and K-nearest neighbors (AUC= 0.64).
Feature selection method ImpurityHellinger for Random forest
(AUC= 0.61), Gain Ratio for K-Nearest Neighbor (AUC= 0.55),
and EqualHellinger (AUC= 0.62) for Naive Bayes showed lowest
predictive performance. It can be observed that features evaluated
using ReliefF variants had the most favorable performances for
all three classifiers (see Figures 3–5).

In order to compare overall performance the classifiers, we
used the median AUC across all 24 feature selection method
as a representative AUC of each classifier. Naive Bayes had the
highest performancewhileK-NearestNeighbor showed the lowest
performance. Random Forest is the least sensitive to feature selec-
tion methods as it showed very little standard deviation in AUC
(Table 3).
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FIGURE 5 | Heatmap describing the predicative performance (AUC) of K-nearest neighbors in NSCLC histology classification across feature
selection methods (in columns) and range of selection sizes (in rows).

DISCUSSION

Medical imaging has the capacity to assess tissues characteristics
non-invasively, and therefore it is routinely used for diagnostic and
treatment purposes in cancer care. An emerging field radiomics
quantifies phenotypic characteristic of tumor tissues on medical
images. In this study, we investigated the association of radiomic
features and the NSCLC histological subtypes. In our univariate
analysis, we observed 53 features having significant association
with histological subtypes. Despite the difference in the class
distributions between training and validation dataset, the multi-
variate machine learning models achieved high prediction accu-
racy, which suggests the effectiveness of these advanced machine-
learning approaches as well as the strong association of radiomic
features and NSCLC histology.

Our study showed that ReliefF and its variants were
optimal among the 24 feature selection methods assessed.

TABLE 3 | Table describing the median value of AUC, the optimal number of
features, and AUC for best/worst features selection methods.

AUC
(median±SD)

Optimal feature
number

Best/worst feature
selection method (AUC)

Naive Bayes 0.64±0.028 5 ReliefFdistance (0.72)/
EqualHellinger (0.62)

Random
forest

0.63±0.012 15 ReliefFdistance (0.69)/
ImpurityHellinger (0.61)

K-Nearest
neighbor

0.60±0.23 20 ReliefFdistance (0.64)/
gain ratio (0.55)

Particularly, RelifFbestK, ReliefFmerit, ReliefFdistance, and
ReliefFsqrDistance were consistently effective for all three
classifiers. One reason for this is that the ReliefF-family does not
assume the independence of features, unlike many other feature
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selection methods. The ReliefF algorithms are able to detect
context information among features and thus more accurately
deals with situations where dependencies are present (51). How-
ever, like other feature selection methods, ReliefF is also unable
to detect redundant features which tend to have similar scores
for evaluation (52). We took care of this problem by perform-
ing correlation-based feature elimination before feature selection
stage.

For the performance of three classifiers, Naive Bayes per-
forms better than Random Forest and K-nearest neighbors.
Although the median performance across feature selection meth-
ods was about the same for Naive Bayes and Random For-
est, the best model achieved by Naive Bayes (AUC: 0.72;
p value= 2.3× 10−7) was higher than Random Forest (AUC:
0.68; p value= 1.38× 10−5). K-nearest neighbors has the low-
est performance among the three classifiers, and ReliefF could
only slightly improve its accuracy. This may because K-nearest
neighbors is very sensitive to noise (50).

A shortcoming of our study is that the cut-off M= 0.8 is
arbitrarily chosen in the correlation elimination part. One could
set a more stringent or relaxed threshold based on the degree of
redundancy in the dataset. A better approach would use a range
of thresholds, combine them with second stage feature selection,
and choose one with the most favorable result. Additionally, this
two-stage feature selection is expected to fail when the interaction
of two non-informative features has strong predictive power. In
this case, a multivariate feature selection method like mRMR is
more suitable (35).

Recently, Parmar et al. (22) identified and validated cancer spe-
cific radiomic feature clusters using consensus clustering, which
provided an important tool to enhance the feature selection pro-
cess. Their study found radiomic features’ association with his-
tology using an unsupervised method and achieved AUC= 0.64
for prediction. In our study by using supervised feature selection
methods, we achieved higher AUCs. In another study, Basu et al.
used decision trees and support vector machines for tumor classi-
fication, and results showed that ReliefF outperformed wrapper
methods for 2D radiomic features (28). However, unlike our
study, their results were based on a smaller cohort (n= 74) and
lacked independent validation due to the unavailability of an
independent validation cohort. Lastly Zhang et al. presented a
two-stage feature selection method by combining ReliefF and
mRMR (31). They showed that such a hybrid feature selection
approach could improve the effectiveness of gene selection, and
this could provide better discrimination for biological subtypes.
This new algorithm’s ability in selecting radiomic features for
histology classification should be evaluated in further studies.

It should also be noted that retrospective cohorts-based
radiomic studies like this, face many challenges. Radiomic fea-
tures are sensitive to the variability of imaging scanners and
scanning parameters (53, 54), tumor delineation methods (55,
56), image reconstruction (57), discretization techniques (58),
etc. These different factors are not controlled for retrospective
cohorts, which maybe one of the reason for not so impressive
performance. Prospective cohorts created by controlling these
factors could provide higher performance. In future studies, the
performance of classifiers can be enhanced if we incorporate
genetic signatures and clinical features like tumor grade, location,
smoking history, and obesity (59, 60). For example, a recent
study showed that body mass index was inversely associated with
squamous carcinoma, yet for adenocarcinoma the association was
positive (60). It is also important to take genetic heterogeneity
into account. Recent studies examining gene expression profiles
have identified several genes distinguishing adenocarcinoma and
squamous carcinoma (61–63). Hence, future study incorporating
clinic characteristics and genomic data will improve classification
accuracy.

In conclusion, radiomic features have strong predictive power
for classification of NSCLC histology. With expanding cohorts
and improving image feature extraction techniques, we expect
higher accuracy in classification using radiomics. This work
will serve as a promising diagnostic tool for identifying lung
cancer histology in a non-invasive way and thus informing
treatment choices and personalized therapy for lung cancer
patients.
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