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Purpose: Although change in standardized uptake value (SUV) measures and PET-based 
textural features during treatment have shown promise in tumor response prediction, it is 
unclear which quantitative measure is the most predictive. We compared the relationship 
between PET-based features and pathologic response and overall survival with the SUV 
measures in esophageal cancer.

Methods: Fifty-four esophageal cancer patients received PET/CT scans before and after 
chemoradiotherapy. Of these, 45 patients underwent surgery and were classified into 
complete, partial, and non-responders to the preoperative chemoradiation. SUVmax and 
SUVmean, two cooccurrence matrix (Entropy and Homogeneity), two run-length matrix (RLM) 
(high-gray-run emphasis and Short-run high-gray-run emphasis), and two size-zone matrix 
(high-gray-zone emphasis and short-zone high-gray emphasis) textures were computed. 
The relationship between the relative difference of each measure at different treatment time 
points and the pathologic response and overall survival was assessed using the area under 
the receiver-operating-characteristic curve (AUC) and Kaplan–Meier statistics, respectively.

results: All Textures, except Homogeneity, were better related to pathologic response than 
SUVmax and SUVmean. Entropy was found to significantly distinguish non-responders from the 
complete (AUC = 0.79, p = 1.7 × 10−4) and partial (AUC = 0.71, p = 0.01) responders. Non-
responders can also be significantly differentiated from partial and complete responders by 
the change in the run-length and size-zone matrix textures (AUC = 0.71–0.76, p ≤ 0.02). 
Homogeneity, SUVmax, and SUVmean failed to differentiate between any of the responders 
(AUC = 0.50–0.57, p ≥ 0.46). However, none of the measures were found to significantly 
distinguish between complete and partial responders with AUC <0.60 (p = 0.37). Median 
Entropy and RLM textures significantly discriminated patients with good and poor survival 
(log-rank p < 0.02), while all other textures and survival were poorly related (log-rank p > 0.25).

conclusion: For the patients studied, temporal changes in Entropy and all RLM were 
better correlated with pathological response and survival than the SUV measures. The 
hypothesis that these metrics can be used as clinical predictors of better patient outcomes 
will be tested in a larger patient dataset in the future.
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TaBle 1 | Patient characteristics.

no. of patients

Prechemoradiotherapy staging (cTnM)
T-stage (T1/T2/T3) 2/16/36
N-stage (N0/N1/N2/N3) 16/23/14/1
M-stage (M0/M1) 53/1
Postsurgery pathologic staging (ypTnM)a

T-stage (T0/T1a/T1b/T2/T3) 8/5/5/8/19
N-stage (N0/N1/N2/N3) 29/9/3/5
M-stage (M0/M1) 44/1

TNM classification before and after chemoradiotherapy.
aOnly 83% (45/54) of patients underwent surgery.
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inTrODUcTiOn

Esophageal cancer is among the most aggressive gastrointestinal 
cancers with a high mortality rate (1, 2). Neoadjuvant chemo-
therapy and, or, radiotherapy are commonly used in combination 
with surgery to provide systemic and local control of the disease 
(3–5). Pathologic examinations of the surgical specimen have 
shown that preoperative chemoradiation alone can eradicate 
viable tumor cells in 10–29% of the patients (3, 6–9). Early pre-
diction of the pathologic response allows physicians to identify 
which patients may or may not benefit from chemoradiotherapy, 
subsequently selecting an effective therapy for individual patients, 
while avoiding complications associated with ineffective or 
unnecessary treatment.

Non-invasive position emission tomography (PET) imaging 
with 18F-fluorodoxyglucose ([18F]FDG) is increasingly utilized for 
imaging of glucose metabolism for esophageal cancer diagnosis, 
staging, and monitoring disease progression (10–13). Due to its 
quantitative nature, standardized uptake value (SUV) measures, 
such as maximum and mean SUV, have been used to quantify 
tumor characteristics (14, 15). Furthermore, the reduction of 
SUVmax and SUVmean between the longitudinal PET images has 
been shown to be significant predictors of tumor response to 
preoperative therapy and patients’ overall survival (16–23). 
However, SUVmax and SUVmean fail to capture the heterogeneity 
in intratumoral [18F]FDG uptake resulting from the spatial vari-
ations in biological and genetic properties (24–26). Intratumoral 
heterogeneity is often found in cancer patients and has been 
shown to correlate with poor prognosis and treatment resistance 
(27–29). Accurate quantification of tumor heterogeneity may 
lead to more accurate prediction of treatment response (30, 31).

Textural features extracted from PET images through complex 
mathematical models of the spatial relationship between multiple 
voxels and their neighborhood have been proposed to describe 
the tumor heterogeneity (25, 26, 32, 33). For example, gray level 
cooccurrence matrix (GLCM) textures, such as Homogeneity and 
Entropy, measure the local relationship between two voxels (voxel 
pair) (34, 35). Tan et al. observed that [18F]FDG uptake became 
more homogeneous in the tumors that responded to preoperative 
chemoradiotherapy (22, 36). They used local GLCM textures to 
describe the evolution of the [18F]FDG uptake during therapy and 
found that the textures outperformed SUV measure in predict-
ing the pathologic response (22).

Regional textures, such as those derived from the run-length 
matrix (RLM) and size-zone matrix (SZM), assess the spatial 
relationship of voxels beyond two neighboring voxels (37, 38). In 
a study by Yang et al., 20 patients with cervical cancer were classi-
fied into metabolic complete responders, partial responders, and 
new disease according to the PET images acquired 3 months after 
the concurrent chemoradiotherapy (39). They observed that the 
early changes (2–4 weeks) in the RLM and SZM textures during 
the therapy were more sensitive than SUV measures in detecting 
the metabolic tumor responders (39). Their results therefore sug-
gested that the RLM and SZM textures may be a more significant 
prognostic indicator than the SUV measures.

Although changes in SUV measures and PET-based textural 
features during treatment have shown promise in tumor response 

prediction, it is unclear which quantitative measure is the most 
predictive. In this study, we evaluated the relationship between 
the change in PET-based texture features and overall survival 
and pathologic response to preoperative chemoradiotherapy in 
esophageal cancer patients and compared to the same correlations 
of standard SUV measures. We attempted to generate a hypoth-
esis regarding which texture features, if any, should be explored 
as predictors of pathologic response and patient outcome. Two 
sensitivity studies were also conducted to investigate the impact 
of change in PET resampling scheme and tumor volume on the 
association between textures and pathologic response.

MaTerials anD MeThODs

Patient characteristics and imaging
This retrospective study was conducted under a Dana-Farber/
Harvard Cancer Center institutional review board (IRB) 
approved protocol. All images and clinical data were analyzed 
anonymously and retrospectively. This study included 54 patients 
(10 females and 44 males, median age = 65 years) with esopha-
geal cancer (one tumor/patient) received [18F]FDG–PET/CT 
scans, on average, 9 ± 1 weeks before and 5 ± 5 weeks after the 
chemoradiotherapy between August 2009 and April 2013. There 
were fifty patients with adenocarcinoma and four patients with 
squamous cell carcinoma. Table 1 shows the clinical tumor stage 
assessed before the initiation of treatment according to the TNM 
staging criteria established by the American Joint Committee on 
Cancer (seventh edition).

Patients were injected with 10.3–22.4  mCi of [18F]FDG and 
scanned about 65 min after injection either on a GE scanner (GE 
Healthcare, Waukesha, WI, USA) or a Siemens Biograph PET/
CT scanner (Siemens AG, Erlangen, Germany) based on the 
availability of the scanners. The acquisition time was 3–5 min/
bed position for a whole-body scan from the base of skull to the 
proximal femora. The acquired PET data were reconstructed 
using 3D iterative VUE Point reconstruction (2 iterations/35 
subsets for GE-DST) and order subset expectation maximization  
(2 iterations/28 subsets for GE-DSTE or DLS, 2 iterations/21 
subsets for GE-DRX, and 4 iterations/8 subsets for Siemens 
Biograph). Attenuation correction of PET images was performed 
using the CT images. The types of crystals and the PET spatial 
resolution for each PET resolution are summarized in Table 2.

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


TaBle 2 | Types of crystals used and the PeT spatial resolution for each 
PeT/cT scanner.

PeT/cT scanners crystal type PeT spatial resolution

GE discovery ST BGO 4.69 mm × 4.69 mm × 3.27 mm
GE discovery STE BGO 4.69 mm × 4.69 mm × 3.27 mm
GE discovery RX LYSO 4.69 mm × 4.69 mm × 3.27 mm
GE discovery LS BGO 4.69 mm × 4.69 mm × 3.27 mm
Siemens biograph LSO 4.06 mm × 4.06 mm × 5.00 mm
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chemoradiotherapy
Total radiation dose of 45–50.4 Gy were delivered to the patients 
over 5 weeks with five fractions per week (1.8 Gy/fractions and 
1  fractions/day). The concurrent chemotherapy received by 18 
patients included cisplatin combined with 5-fluorouracil (5-FU), 
irinotecan, or paclitaxel. Thirty-six patients received a chemo-
therapy regimen consisting of carboplatin and paclitaxel.

surgery and Pathologic response 
classification
Of 54 patients, 45 (83%) underwent surgery after the concurrent 
chemoradiotherapy. Patients with low tolerance of surgery due 
to toxicity from chemoradiation and other medical problems 
were excluded from surgery. Surgery was performed, on aver-
age, 7  ±  2  weeks after preoperative chemoradiotherapy. All 
surgical specimens were examined and staged (ypTNM) by 
the pathologists (Table  1). Patients were further classified into 
complete responders, partial responders, and non-responders to 
preoperative chemoradiation. A complete responder was defined 
as having no microscopic evidence of viable tumor cells. A partial 
response was defined as the downstaging of pretreatment TNM 
staging. Patients who had no change or increased in tumor stage 
were defined as non-responders. Eight, twenty-two, and fifteen 
patients were identified as complete, partial, and non-responders, 
respectively.

Textural Features
A large number of textural features computed from complex 
mathematical models of the spatial relationship among multiple 
image voxels can be extracted from medical images (25, 26, 32, 
35, 40, 41). However, if we were to assess the ability of numerous 
textures in predicting pathologic response, then at least some tex-
tures would be shown to be predictive merely based on random 
chance alone (42).

Therefore, only six textures, including GLCM-derived 
Homogeneity and Entropy (34, 35) were assessed. RLM-derived 
high-gray-run emphasis and Short-run high-gray-run emphasis 
(37) and SZM-derived high-gray-zone emphasis and short-zone 
high-gray emphasis were included for the analysis (38). These six 
PET-based textures were chosen due to their potential clinical value 
in prognosis and treatment response assessment (22, 30, 31, 39).

PeT Textural Features computation
We extracted the textural features from both the PET images 
acquired before (pretreatment) and after (posttreatment) 

chemoradiotherapy. Fifty-four tumor volumes were manually 
delineated by an experienced radiation oncologist using both the 
PET and CT images. For each patient, the CT counterparts of 
the pre- and posttreatment PET/CT images were deformably reg-
istered (43). The transformation resulting from the deformable 
registration was then applied to propagate the manually defined 
tumor volume on the pretreatment PET onto the posttreatment 
PET. The propagated tumor volumes were used to define the 
tumor region on the posttreatment PET. The deformable regis-
tration-based contour propagation has been shown to expedite 
the tumor contouring and texture quantification processes while 
not compromising the predictive ability of the textures (44).

Prior to texture computation, all PET images [PET(


x)] were 
cropped to the tumor regions and processed using the following 
equation,

 
PET PET PET

PET PET
′( ) ( ) min

max min




x x
= ⋅

−
−

2N

 
(1)

where minPET and maxPET are the maximum and minimum 
intensities of PET within the tumor region. The intensity range of 
the postprocessed image [PET′( )]x  was resampled (or converted) 
into 256 (28) discrete values.

We calculated the metabolic tumor volumes (MTV) as thres-
holded PET images with SUV over 40% of the maximum SUV 
within the tumor regions (45, 46). Within the MTV, the textural 
features were then computed using the MATLAB-based (The 
Mathworks Inc., Natick, MA, USA) Chang-Gung Image Texture 
Analysis Toolbox (47, 48). The maximum and mean SUV were 
also computed from the pre- and posttreatment PET images.

Temporal change in Quantitative 
Measures
The relative difference (ΔTexture) of each texture at different 
treatment time points was used to quantify the change in tumor 
texture values before and after chemoradiotherapy. The relative 
difference (ΔTexture) was defined as follows:

 
∆Texture 100%

Texture Texture
Texture

post pre

pre

= ⋅
−

 
(2)

where Texturepre and Texturepost are the textural features extracted 
from the PET images acquired before and after the chemora-
diotherapy, respectively. We also defined ΔSUV to determine 
the change in the SUV measures, including SUVmax and SUVmean, 
before and after chemoradiation.

Quantification of the ΔTexture and 
Pathologic response relation
Univariate analysis was performed with R (version 3.2) using 
the survcomp and pROC packages from Bioconductor (49, 50). 
We assessed the relationship between the quantitative measures 
and pathologic response by evaluating the performance of the 
measures to differentiate patients into different response classifi-
cations, including (1) complete from non-responders, (2) partial 
from non-responders, and (3) complete from partial responders. 

http://www.frontiersin.org/Oncology/
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FigUre 1 | change in textures and sUVmax before and after chemoradiation. CR, complete responders; PR, partial responders; NR, non-responder; HGRE, 
high-gray-run emphasis; HGZE, high-gray zone-run emphasis.
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The performance was quantified using the area under the receiver 
operating characteristic curve (AUC). AUC is interpreted as the 
probability of correctly classifying the patients into different 
response categories (i.e., complete, partial, and non-responders). 
AUC ranges from 0 to 1 with the value 1 indicates perfect 
classification.

survival analysis
Two analyses were performed to assess the relationship between 
the quantitative measures and patients’ overall survival. In the 
first analysis, the median value of ΔTextures or ΔSUV was used 
to stratify all 54 patients into two risk groups. Kaplan–Meier 
curves with log-rank statistics were then performed to compare 
the outcomes between these two groups. Unlike Kaplan–Meier 
analysis, concordance index (c-index) does not rely on a single 
cutoff value (i.e., median ΔTexture or ΔSUV). In the second 
analysis, we computed the c-index. Given two randomly drawn 
samples (patients), c-index determines the probability that an 
event (death) will happen to the sample with higher risk value 
(e.g., ΔTexture) (51, 52).

In our analysis, c-index and AUC <0.50 indicate that the 
ΔTexture (or ΔSUV) performs worse than random guessing 
(52–54). Noether test was used to determine if AUC or c-index 

was significantly greater than 0.50 with p < 0.05 for each quantita-
tive measure (55, 56).

sensitivity studies
We conducted two sensitivity studies to investigate the impact of 
change in PET resampling scheme and MTV on the performance 
of ΔTexture in differentiating pathologic response. In the first 
sensitivity study, PET images were also resampled to 32 (25), 
64 (26), and 128 (27) discrete values using Eq. (1). In the second 
study, PET-based textures were determined within the MTV as 
thresholded PET images with SUV over 30% (MTV30%), 50% 
(MTV50%), and 60% (MTV60%) the SUVmax. The default parameters 
for the PET-based textures computation were 256 resampled 
discrete values and 40% SUVmax (MTV40%) threshold value.

resUlTs

The relationship between Pathologic 
response and ΔTexture (ΔsUV)
The boxplots in Figure 1 visually highlight the performance of 
four example measures in differentiating non-responders from 
complete and partial responders. The temporal changes in tex-
ture (ΔTexture) generally were observed to be better related to 

http://www.frontiersin.org/Oncology/
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FigUre 2 | The area under the receiver operating curve (aUc). * indicates p < 0.05. HGRE, high-gray-run emphasis; HGZE, high-gray zone-run emphasis; 
SRHGRE, Short-run high-gray-run emphasis; SZHGE, short-zone high-gray-run emphasis.

FigUre 3 | heatmap shows the quantification (aUc) of the relationship between ΔTexture and pathologic response computed with 32, 64, 128, and 
256 discrete values. * indicates 0.005 < p < 0.05, ** indicates 0.0005 < p < 0.005, *** indicates p < 0.0005. HGRE, high-gray-run emphasis; HGZE, high-gray 
zone-run emphasis; SRHGRE, Short-run high-gray-run emphasis; SZHGE, short-zone high-gray-run emphasis.
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pathologic response than ΔSUV (Figure 2). ΔEntropy was found 
to significantly distinguish non-responders from the complete 
(AUC = 0.79, p = 1.7 × 10−4) and partial (AUC = 0.71, p = 0.01) 
responders. Non-responders can also be significantly differenti-
ated from partial and complete responders by the change in the 
run length and SZM textures (AUC = 0.71–0.76, p = 7.7 × 10−4 
–0.02) (Figure 2). ΔHomogeneity, ΔSUVmax, and ΔSUVmean failed 
to separate any of the responders (AUC = 0.50–0.57, p > 0.46). 
However, none of the measures were found to significantly 
distinguish between complete and partial responders with 
AUC = 0.51–0.59 (p > 0.37).

sensitivity studies
While the relationship between ΔTextures and pathologic 
response generally became stronger with the increase in 
the number of discrete values, ΔRLM-derived textures and 

ΔHigh-ray-zone emphasis significantly distinguished non-
responders from partial and complete responders for all discrete 
values (AUC = 0.70–0.77, p < 0.02) (Figure 3). Although ΔShort- 
zone high-gray emphasis significantly differentiated between 
complete and non-responders (AUC = 0.69–0.75, p < 0.05) for 
over 128 discrete values, the differentiation was poor for the 
texture computed with PET images resampled to <128 values 
with AUC~0.55 (p > 0.55). ΔEntropy computed with 32–256 dis-
crete values increased its performance and significance between 
AUC  =  0.55–0.79 and 0.59–0.71 for complete/non-responders 
and partial/non-responders differentiations respectively as 
observed in Figure 3.

The MTV30%, MTV40%, MTV50%, and MTV60% on pretreatment 
PET images had median value of 28, 19, 12, and 7 cm3, respec-
tively. The median posttreatment MTV30%, MTV40%, MTV50%, and 
MTV60% was 26, 14, 8, and 4 cm3, respectively.

http://www.frontiersin.org/Oncology/
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FigUre 4 | heatmap shows the quantification (aUc) of the relationship between ΔTexture and pathologic response with the metabolic tumor 
volumes (MTV) of >30, 40, 50, and 60% sUVmax. * indicates 0.005 < p < 0.05, ** indicates 0.0005 < p < 0.005, *** indicates p < 0.0005. HGRE, high-gray-run 
emphasis; HGZE, high-gray zone-run emphasis; SRHGRE, Short-run high-gray-run emphasis; SZHGE, short-zone high-gray-run emphasis.
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While the relationship between the ΔTextures and patho-
logic response became stronger with decrease in threshold 
values, significant differentiation between complete and non-
responders was found with ΔEntropy for all threshold values with 
AUC = 0.73–0.80, p < 0.05 (Figure 4). Figure 4 also shows that 
the ΔRLM textures computed with threshold values of 30–50% 
SUVmax both led to significant differentiation of non-responders 
from complete and partial responders with AUC  =  0.71–0.81 
(p < 0.02). ΔTextures computed within MTV60% were least related 
to the pathologic response. Response differentiation based on the 
60% SUVmax volume calculated ΔRLM were moderate with only 
with AUC ~0.60 (p > 0.30) (Figure 4).

None of the threshold value, discrete value, and texture 
combination significantly differentiated complete from partial 
responders with AUC  =  0.50–0.65 (p  >  0.15). Regardless of 
the resampling schemes and threshold values, among all the 
textures, Homogeneity had the worst performance in identifying 
non-responders from complete (AUC = 0.51–0.66) and partial 
responders (AUC = 0.50–0.59) with p > 0.20.

survival analysis
The overall survival was defined as the time from initiation of 
treatment to patient’s death or censoring time. The median follow 
up of all 54 patients was 24.7 months. The median survival was 
25.5 months. Kaplan–Meier curves shown in Figure 5. Figure 5 
demonstrated that median ΔEntropy, ΔHigh-gray-run emphasis, 
ΔShort-run high-gray-run emphasis, and ΔHigh-gray-zone 
emphasis significantly discriminated patients with poor and good 
survival (log-rank test p  <  0.02). Median values of Short-zone 
high-gray emphasis, ΔHomogeneity, ΔSUVmax, and ΔSUVmean 
failed to stratify patients into different survival groups (log-rank 
test p = 0.25–0.68).

However, c-index indicated that the performance of ΔHigh-gray-
run emphasis, ΔShort-run high-gray-run emphasis, and ΔHigh-
gray-zone emphasis were moderately related to the patients’ overall 
survival (c-index = 0.61–0.62, p = 0.06–0.08). All other measures 

performed poorly related to the overall survival (c-index  =   
0.52–0.58, p > 0.22).

DiscUssiOn

Although changes in SUV measures and PET-based textural 
features during treatment have shown promise in tumor response 
prediction, it is unclear which quantitative measure is the most 
predictive. In this study, we attempted to generate a hypothesis 
regarding which texture features, if any, should be explored as 
predictors of pathologic response and patient outcome.

Temporal changes in textural features are significantly related 
to the pathologic response to preoperative chemoradiotherapy, 
whereas SUV measures are not. Weber et al. observed the change 
in tumor [18F]FDG-PET uptake 2  weeks after neoadjuvant 
chemotherapy in 40 esophageal cancer patients. They found that 
the reduction of tumor SUVmax by 35% can best predict pathologic 
response with over 90% sensitivity and specificity (21). Song 
et al. found that the decrease in average tumor metabolic activity 
(SUVmean) significantly correlated with the pathologic response in 
32 esophageal cancer patients undergoing neoadjuvant chemo-
radiotherapy (57). However, many studies, including ours, fail to 
confirm the association between the SUV measures and patho-
logic response (58–61). The conflicting findings may suggest that 
the SUV measures are inadequate for tumor characterization 
as they cannot fully describe the heterogeneity of intratumoral 
[18F]FDG distribution (25, 26). Studies therefore have proposed 
to use imaging features extracted from PET images to describe 
the [18F]FDG uptake heterogeneity (25, 26). Accurate descrip-
tion of the heterogeneous [18F]FDG distribution is important 
for assessing the underlying spatial variation in tumor bio-
logical and genetic properties (24), which may provide valuable 
information to improve treatment outcome prediction (22, 39). 
Our study confirms this hypothesis and finds that the changes 
in local GLCM-Entropy and regional (run length and SZM)  

http://www.frontiersin.org/Oncology/
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FigUre 5 | Kaplan–Meier curves dichotomized based on the median of ΔTextures and ΔsUVmax. HGRE, high-gray-run emphasis; HGZE, high-gray 
zone-run emphasis; SRHGRE, Short-run high-gray-run emphasis; SZHGE, short-zone high-gray-run emphasis. + indicates censored data.
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textures (AUC >0.70) between longitudinal PET images out-
performed the SUV measures (AUC ~0.55) in differentiating 
non-responders from complete and partial responders.

Computation of textural features requires a resampling 
scheme with at least 128 discrete values and MTV threshold 
value no more than 40% SUVmax. Orlhac et  al. computed 31 
PET-based textures using resampling schemes with 8 to 128 
discrete values in 188 lesions from metastatic colorectal, lung, 
and breast cancer patients (62). They showed that the textures, 
especially Entropy and Short-zone high-gray emphasis, com-
puted with <32 values are unreliable. They thus concluded that 
the textures should be computed with at least 32 discrete values. 
We also observed that the relationship between ΔTextures and 
pathologic response became stronger with the number of dis-
crete values in the resampling schemes (Figure 3). Particularly, 
ΔEntropy and ΔShort-zone high-gray emphasis were found to 
be least robust to the resampling schemes (Figure 3). ΔEntropy 
and Short-zone high-gray emphasis computed with 32 and 64 
discrete values performed poorly in separating complete and 
non-responders (AUC <0.60, p > 0.37), while the performance 
improved when 128 and 256 discrete values were used (AUC 
>0.70, p < 0.05) (Figure 3). ΔRLM textures and ΔHigh-gray-
zone emphasis are robust to resampling scheme with AUC 
>0.70 for all discrete values.

Furthermore, we found that the relationship between the path-
ologic response and ΔTextures, except Entropy, became weaker 
with the increase in metabolic volume threshold values. Hatt et al. 
computed two local and two regional textures on 555 PET images 
consisting of breast, cervical, lung, esophageal, and head-and-neck 
tumors (63). They found that the PET-based textures computed 
for tumor size <10 cm3 do not provide important prognostic 
information. Our results are consistent with the findings of Hatt 
et al. We observed in Figure 4 that the ΔTextures computed with 
tumor volumes <10 cm3 based on 50–60% SUVmax thresholds were 
generally less related to the pathologic response than volumes 
>10 cm3 computed with thresholds of 30–40% SUVmax.

Temporal changes in tumor [18F]FDG distribution after 
chemoradiotherapy assessed by ΔRLM textures were moderately 
related to the patients’ overall survival. In the survival analysis, we 
dichotomized the Kaplan–Meier curves according to the median 
reduction in the texture values. Patients with reduction in texture 
greater than the median values were found to have significant 
survival benefit (Figure  5). For example, log-rank test showed 
that median ΔHigh-gray-run emphasis can significantly dis-
criminate patients with good and poor survivals with p-value 
<10−3. However, the results of the Kaplan–Meier curves include 
a dichotomization based on a post hoc cutoff value. Concordance 
index is a more conservative measure that assesses the relationship 
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between ΔTextures and survival without relying on a particular 
cutoff value (54). Among all textures, the relationship between 
the survival and ΔRLM textures was found to be the strongest 
with c-index = 0.62 comparing to the c-index <0.55 for ΔSUVmax 
and ΔSUVmean. In this study, the textures were extracted from 
PET images acquired before and after chemoradiotherapy, but 
prior to the surgery. Incorporating the survival benefit of surgery 
may lead to improvement of c-index. In future studies, we will 
build a multivariate predictive model of survival by incorporating 
the effect of surgery and combined textural features on a larger 
dataset.

Texture quantification has been shown to be sensitive to the 
acquisition modes and reconstruction parameters of PET images 
(64). In this study, we found that the temporal change in textures, 
such as Run length and Size zone textures, can significantly dif-
ferentiate pathologic non-responders from responders with AUC 
>0.70 (p < 0.01) (Figure 2), despite the PET images were acquired 
from five different PET/CT scanners and reconstructed using 
different reconstruction parameters. We showed using Kruskal–
Wallis test that the differences in ΔSUVmax and ΔSUVmean between 
different PET/CT scanners were not significant (p = 0.651 and 
p = 0.287 for ΔSUVmax and ΔSUVmean, respectively) (results not 
shown). The SUV measures were observed to decrease the most 
in images acquired by the GE discovery RX scanner. In particular, 
the average ΔSUVmax was found to be −53.5 ± 20.4, −55.4 ± 33.0, 
−64.0  ±  24.5, −47.9 (only one patient), and −57.1  ±  33.3 for 
the GE Discovery ST, STE, RX, and LS, and Siemens Biograph  
PET/CT scanners, respectively. The average ΔSUVmean was found 
to be −69.7 ± 21.3, −79.0 ± 17.2, −85.1 ± 8.2, −67.58 (only one 
patient), and −73.8 ±  29.7 for the GE Discovery ST, STE, RX, 

and LS, and Siemens Biograph PET/CT scanners, respectively. 
Our results suggest that some textures may be robust to PET 
reconstruction parameters in identifying pathologic responders. 
However, this hypothesis needs to be further investigated.

cOnclUsiOn

The temporal changes in all textures, except Homogeneity, were 
better correlated to pathologic response and overall survival than 
the SUVmax and SUVmean. Computation of the PET-based textural 
features requires a resampling scheme with at least 128 discrete 
values and MTV threshold value no more than 40% SUVmax. The 
hypothesis that the temporal changes in PET-based textures can 
be used as clinical predictors of better patient outcomes will be 
tested in a larger patient dataset in the future.
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