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Aberrant glycosylation of cell membrane proteins is a universal feature of cancer cells. 
One of the most common glycosylation changes in epithelial cancer is the increased 
occurrence of the oncofetal Thomsen–Friedenreich disaccharide Galβ1–3GalNAc (T or TF 
antigen), which appears in about 90% of cancers but is rarely seen in normal epithelium. 
Over the past few years, increasing evidence has revealed that the increased appearance 
of TF antigen on cancer cell surface plays an active role in promoting cancer progression 
and metastasis by interaction with the β-galactoside-binding proteins, galectins, which 
themselves are also frequently overexpressed in cancer and pre-cancerous conditions. 
This review summarizes the current understanding of the molecular mechanism of the 
increased TF occurrence in cancer, the structural nature, and biological impact of TF 
interaction with galectins, in particular galectin-1 and -3, on cancer progression and 
metastasis.
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inTRODUCTiOn

Glycosylation is one of the most common post-translational modifications of cell membrane 
proteins (1). Among the two major types of protein glycosylation in human cells, the N-linked 
glycosylation is characterized by attachment of carbohydrates to the amide group of asparagine 
residues of proteins in the consensus sequence Asn–X–Ser/Thr, whereas in the classical O-linked 
mucin-type glycosylation, N-acetyl-galactosamine is covalently linked to the hydroxyl group of ser-
ine or threonine residue of the protein backbone (2, 3). O-linked protein glycosylation occurs during 
protein movement through ER–Golgi pathway by sequential incorporation of monosaccharides; 
this process is controlled by various factors, such as relative abundances of glycosyltransferases and 
glycoprotein substrates, as well as the availability of sugar-donor molecule (2, 3). Altered glycosyla-
tion of cell membrane proteins is a hallmark of cancer and a universal feature of oncogenesis and 
cancer progression (2, 4). Such glycosylation changes typically include the occurrence of incomplete 
or truncated glycan structures, accumulation of glycan precursors, or the presence of novel tumor-
specific carbohydrate epitopes. More and more evidence shows that these glycosylation changes on 
cancer cell surface are critically involved in the regulation of cell social behaviors and is increasingly 
recognized to play an important role in cancer development, progression, and metastasis (2). One 
of the most prevalent glycosylation alterations in human carcinomas is the increased occurrence 
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of short carbohydrate structure Galβ1–3GalNAcα, also known as 
the oncofetal Thomsen–Friedenreich (TF or T) antigen. The TF 
antigen is the core I structure of O-linked mucin-type glycans. In 
normal epithelium, TF structure is masked by other sugar resi-
dues to form branched and complex glycans or being modified 
by sialidation, sulfation, or fucosylation (5, 6). Low level of TF 
expression was occasionally reported in normal epithelium (7), 
but this was suspected to be related to the use of less/different 
specific analytic tools in the studies. Peanut agglutinin, one of 
the most commonly used analytic tools to detect TF expression 
in tissue sections, is known to also recognize other sugar struc-
tures (although with low affinity) such as terminal galactose and 
Galβ1  →  4GlcNAc (8). Different anti-TF antibodies also show 
to bind TF-related structures differently (9). Un-masked and 
unsubstituted TF structure is known to occur in about 90% of all 
cancers (5). There is a considerable amount of literature showing 
a positive correlation between the occurrence of TF and tumor 
progression in various types of cancer (10–12).

MOLeCULAR MeCHAniSMS LeADinG TO 
inCReASeD TF OCCURRenCe  
in CAnCeR

Despite unequivocal evidence of the widespread appearance of TF 
in cancer cells, the exact mechanisms underlying this increased 
TF availability in cancer is not fully understood. Biosynthesis 
of the mucin-type O-linked glycans occurs by transferation of 
individual carbohydrate moieties from nucleotide sugar donor 
molecules to the acceptor in a stepwise manner in the Golgi 
apparatus (6, 13). TF antigen is an intermediate structure in the 
biosynthesis of complex O-linked oligosaccharides. Its formation 
is carried out by the addition of galactose (Gal) from UDP-Gal 
to the precursor structure GalNAc (Tn antigen) by core 1 β1,3-
galactosyltransferase, also known as T synthase (13, 14). It is 
believed that unbalanced expression of glycosyltransferases 
involved in the glycosylation pathways, such as T synthase, β1,6-
GlcNAc-transferase, sulfotransferase, and sialyltransferases, as 
well as altered availability of precursor monosaccharide  molecules, 
is responsible for altered glycosylation patterns in cancer and thus 
are probably the main factors responsible for enhanced availability 
of TF disaccharide (15–19). In addition, changes in acidification 
of Golgi apparatus have been shown to correlate to enhanced TF 
expression in breast and colorectal cancer cells (20). Furthermore, 
the availability and activity of molecular chaperone Cosmc, which 
is required for proper folding of a functional T synthase (21), 
also influences the overall TF appearance in cancer. Mutations 
of Cosmc in human colon carcinoma LSC cells have been shown 
to account for the reduced T synthase activity and enhanced 
occurrence of Tn and sialyl-Tn antigens (22). Cosmc knockdown 
in pancreatic cells was seen to lead to aberrant O-glycosylation 
and acquisition of oncogenic properties (23). Forced expression 
of Cosmc in HCT116 colon cancer cells resulted in enhanced TF 
expression and increased cell growth, migration, and invasion 
(24). It should be noted, however, that in breast cancer cells, TF 
antigen was seen to be still expressed along with Tn and sialyl-Tn 
antigens in the absence of Cosmc, suggesting that the chaperone 

function of Cosmc is not a sole determinant in the enhanced 
expression of TF in those cells (14).

TF AnTiGen-eXPReSSinG PROTeinS  
in CAnCeR

A number of proteins are known to carry the unsubstituted TF 
structure in cancer. These include the adhesion molecules CD34 
and CD44 (25, 26) and the transmembrane mucin proteins MUC1 
and MUC4 (5, 27, 28). Interestingly, CD34 and CD44 are also 
known as cancer stem cell markers, which are unique for specific 
types of cancer, for example, CD34 in leukemia and sarcoma, 
whereas CD44 in colon and breast cancer (5, 29). CD34, identi-
fied as hematopoietic cell surface antigen, is a transmembrane 
protein involved in cell adhesion and homing of leukocytes to the 
endothelium during inflammatory responses (30), whereas CD44 
is a major hyaluronan receptor that is involved in hematopoietic 
stem cell and leukemia-initiating cell homing and migration (31). 
The TF-bearing protein MUC1 is a large and heavily glycosylated 
transmembrane mucin protein that is overexpressed by most can-
cer cells of epithelial origin (2, 32). Cancer-associated MUC1 also 
carries other truncated oligosaccharides such as Tn and sialyl-Tn 
antigens (33). In contrast to its polarized localization on the apical 
surface of epithelial cells in normal epithelium, cancer-associated 
MUC1 loses its apical localization and is expressed on the entire 
cell surface (2, 34).

Over the past decade, more and more evidence has revealed 
that the pan-carcinoma-associated TF antigen is a natural ligand 
of the galactoside-binding galectins and the TF–galectin interac-
tion influences a number of key steps in cancer progression and 
metastasis.

GALeCTinS

Galectins are a family of 15 (so far) mammalian β-galactoside-
binding proteins. Each galectin member contains one or two well 
conserved carbohydrate recognition domains (CRDs) that recog-
nize galactose-terminated glycans (35, 36). Galectins are widely 
expressed by human cells and are divided into three subgroups 
of proto-type, tandem repeat type, and chimera type based on 
their structural differences. The prototype galectins include 
galectin-1, -2, -5, -7, -10, -11, -13, -14, and -15, each with one 
CRD. The tandem repeat type galectins include galectin-4, -6, -8, 
-9, and -12, each contains two CRD connected by a short linker 
region. Galectin-3, the only chimera type galectin, consists of one 
CRD at its C-terminus and an extended and flexible N-terminal 
(35, 37). The N-terminal domain of galectin-3, which is often 
referred to as collagen-like domain, is responsible for galectin-3 
 multimerization upon galectin-3 contact with multivalent ligands 
(38, 39). Despite sharing conserved CRDs, galectins often display 
significant differences in their binding specificities to branched, 
repeated, or modified galactose residue (40, 41). These binding 
differences of galectin members toward oligosaccharides are 
believed to have implications in their biological activities in 
physiological and pathological conditions (41).

A number of galectins show altered expression, very often 
increased expression, in tumor cells compared with their normal 
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TABLe 1 | influences of TF–galectin interaction on cancer cell behaviors 
in cancer progression and metastasis.

Consequences of TF–galectin interaction Reference

Galectin-1 Increased cancer cell–cell homotypic aggregation (47)
Increased cancer cell–endothelial adhesion (47)

Galectin-2 Increased cancer cell–endothelial adhesion (57)
Galectin-3 Changes of MUC1 cell surface polarization (54)

Increased cell–cell homotypic aggregation (46, 47, 55)
Increased cancer cell–endothelial adhesion (27, 45–47, 53)
Formation of circulating tumor emboli (55)

Galectin-4 Increased cancer cell–endothelial adhesion (57)
Galectin-8 Increased cancer cell–endothelial adhesion (57)

3

Sindrewicz et al. TF-Galectin Interaction Promotes Metastasis

Frontiers in Oncology | www.frontiersin.org March 2016 | Volume 6 | Article 79

counterparts. In many cases, the altered expression of galectins 
correlates to the acquisition of aggressive and metastatic phe-
notype (42, 43). There is a large body of evidence showing that 
galectins play important roles in tumor transformation, cancer 
cell adhesion, invasion, migration, and angiogenesis through 
multiple mechanisms (44). These divergent actions of galectins 
are partly derived from the ability of galectins to interact with 
various galactose-terminated glycans in different environments.

inTeRACTiOn OF CAnCeR-ASSOCiATeD 
TF wiTH CAnCeR- AnD  
enDOTHeLiAL-ASSOCiATeD GALeCTinS 
in CAnCeR PROGReSSiOn AnD 
MeTASTASiS

In 2000, Glinsky and colleagues first reported an interaction of 
TF with galectin-1 and -3 in cell–cell homotypic aggregation 
and cell adhesion to cultured human vascular endothelial cells 
of human breast and prostate cancer cells. They showed that 
these galectin-mediated cell–cell interactions were inhibited by 
the presence of TF-binding peptide P-30, TF-antigen mimicking 
compound lactulosyl-l-leucine, or anti-TF monoclonal antibody 
(45–47). Interaction of cancer-associated TF with endothelium-
associated galectin-3 showed to affect initial stages of cancer 
cell–endothelium adhesion (45–47). Several other investigations 
subsequently also reported a role of galectin-3–TF interaction in 
mediating cancer cell adhesion to the endothelium in vitro and in 
mice (48–50). Inhibition of the galectin–TF interaction by anti-
TF antibody, anti-galectin-3 antibody, modified citrus pectin, or 
lactulosyl-l-leucine suppressed the adhesion of human breast 
carcinoma cells to HUVECs and endothelial bone marrow cells 
60 (HBMECs-60) in vitro and in ex vivo perfused porcine dura 
mater model (48).

Cancer cell–endothelial interaction mediated by cancer cell-
associated TF was also shown to enhance expression of endothelial 
cell surface-associated galectin-3, resulting in increased adhesion 
of breast and prostate cancer cells to the endothelium of intact 
well-differentiated micro-vessels (51). The same phenomenon 
of galectin-3 cell surface mobilization in endothelial cells was 
noticed in cell response to the highly metastatic, TF antigen-
expressing MDA-MB-435 cells but not in TF antigen-deficient 
MDA-MB-468 cells (45). These discoveries suggest that cancer 
cell-associated TF serves not only as a ligand for endothelia-
associated galectin-3 in cell adhesion but also as an activator for 
endothelial translocation of intracellular galectin-3 to the cell 
surface, where it may prime the endothelium for subsequent 
binding/docking of circulating tumor cells in metastasis (45).

inTeRACTiOn OF CAnCeR-ASSOCiATeD 
TF AnTiGen wiTH CiRCULATinG 
GALeCTinS in MeTASTASiS

Over expression of MUC1 as well as increased occurrence of 
TF antigen carried by MUC1 are both characteristic features of 
epithelial cancer cells. Increased levels of circulating galectin 

members, in particular galectin-3, are also commonly seen in 
cancer patients (52). Patients with metastasis are seen to have 
higher galectin-3 serum concentration than those with local-
ized tumors (52). Studies over the past 10  years have shown 
that the increased levels of galectins in the bloodstream, in 
particular galectin-3, may play an important role in promoting 
circulating tumor cells hematogenous dissemination to remote 
tumor sites as a result of their increased interactions with TF 
presented by MUC1 on the surface of tumor cells. Interaction of 
galectin-3 with TF on cancer-associated MUC1 causes MUC1 
cell surface polarization, resulting in exposure of the underly-
ing smaller adhesion molecules, which are otherwise masked 
by the large size of MUC1 (53). This showed to lead to increased 
adhesion of disseminating tumor cells to the blood vascular 
endothelium (54). Changes of MUC1 cell surface localiza-
tion in response to galectin-3 binding also induce cancer cell 
homotypic aggregation and the formation of circulating tumor 
emboli, thus preventing the cells from undergoing anoikis and 
prolonging the cell survival (55). It was found that a tiny 3% 
tumor cell clusters in the total circulating tumor cells could 
account for strikingly over 50% of the metastasis in a mouse 
metastasis model, and that the continued presence of even 5% 
tumor cell clusters in the blood was correlated significantly to 
reduced overall survival in breast and prostate cancer patients 
(56). Interaction of galectin-3 with the TF on the mucin protein 
MUC4 was also reported to produce a similarly enhanced cell 
adhesion of pancreatic cancer cells (27). Although with differ-
ent binding affinities, other galectin members also recognize 
TF antigen and several of them, such as galectin-1, galectin-2, 
-4, and -8, are shown to also have elevated levels in the circula-
tion of cancer patients (57). It is possible that, like galectin-3, 
the increased interactions of these galectin members with 
cancer-associated TF/MUC1/4 in circulation may also influ-
ence tumor cell metastatic spread. In support of this, exogenous 
introduction of recombinant galectin-2, -4, or -8 at broadly 
pathological concentrations observed in cancer showed to 
induce changes of MUC1 cell surface localization and increase 
of cancer cell adhesion to endothelial monolayers in cell culture 
(57). The reported actions of TF–galectin interaction on cancer 
cell behaviors in cancer progression and metastasis are sum-
marized in Table 1.

The influence of TF–galectin interaction on cancer pro-
gression and metastasis raises the possibility that therapeutic 
inhibition of such interactions may be a viable strategy to reduce 
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FiGURe 1 | Structural feature of galectin-3–TF interaction. Left panel: overall structure of galectin-3 CRD in complex with TF disaccharide (PDB 3AYA) (63). TF 
disaccharide (in stick model) binds to the CRD concave surf forms a E165-water-R186-water motif for TF recognition. Residues from strands S4–S6 (colored cyan) 
interact with the TF; L4 is the loop between S4 and S5. Middle panel: surface representation of strands S4–S6. Left panel: comparison between the structures of 
galectin-3 complex with the TF disaccharide and galectin-1 complex with Galβ1–3/4GlcNAc disaccharide (PDB 4XB1) (76). Galectin-3/TF is in green; galectin-1/
Galβ1–3/4GlcNAc in white cartoon/yellow sticks. g1-L4 and g3-L4 are, respectively, the L4 loop for galectin-1 and galectin-3, which are found to adopt different 
conformations due to differences in the lengths and amino acid sequences of the two loops. D54 and R73 make up D54-water-R73-water motif that mediates ligand 
interactions.
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cancer  progression and metastasis. Several possibilities are cur-
rently being explored by a few laboratories. These include the 
use of anti-TF antibodies, TF-mimicking peptides (49), negative 
galectin-3 mutants (58), and synthetic (59) and semi-synthetic 
oligosaccharides (60), and several approaches have shown prom-
ise in animal models and are currently undergoing clinical trials.

THe STRUCTURAL nATURe OF  
TF–GALeCTin inTeRACTiOn

All galectins contain at least one CRD, which is responsible for 
their binding to galactose-terminated glycans. This conserved 
sequence, consisting of approximately 130 amino acid residues, 
adopts a typical β-sandwich motif formed by six-stranded and 
five-stranded antiparallel β-sheets. The carbohydrate-binding 
site of galectins is localized within β-strands 1–6 of the concave 
surface (35, 61–63). Although all galectins share this CRD with 
well-conserved three-dimensional structure, the quaternary 
structures of galectins differ and are believed to influence their 
biological activities (35, 64). Studies using fungal galectin 
CGL2 from Coprinopsis cinerea, mouse galectin-9 N-terminal 
CRD, and mushroom Agrocybe aegerita galectin AAL provided 
structural insight into the recognition specificity and binding 
mechanisms between TF disaccharide and galectins (37, 65, 66). 
Not surprisingly, the galactose moiety of TF disaccharide was 
found to orientate and interact in the same manner as lactose/N-
acetyl-lactosamine-derived structures. The GalNAc moiety of 
the TF antigen is involved in TF interactions with fungal galectin 
CGL2 and mouse galectin-9 via formation of hydrogen bonds 
with Arg and Glu residues within their binding sites (37, 65). 
In contrast, studies using mushroom A. aegerita galectin AAL 
revealed specific Arg–water–Glu–water structural motif-based 
hydrogen bonding network that was unique for galectin–TF 
antigen association (66).

Among human galectins, galectin-1 and -3 gained most atten-
tion due to their cancer-related activities. The nature of TF inter-
action with human galectin-1 and -3 were first reported by Bian 
and co-workers (63). Their studies revealed differences in binding 
of the two galectins to TF disaccharides that were attributed to 
subtle difference in their CRD sequences. Isothermal titration 
calorimetry analysis showed that the galectin-3–TF interaction 
(Kd = 47 μM) is two orders of magnitude stronger than galectin-
1-TF interaction (Kd = 4 mM). The galectin-3 residues engaged 
in its interaction with TF occur on strands 4–6 of the concave 
β-sheet and the loop linking strands 4 and 5 (Figure 1). Currently, 
there is no experimentally determined galectin-1 complex with 
TF disaccharide; a recent study has reported galetin-1 in com-
plex with Gal β1-3/4GlNAc (67). Interestingly, detailed analysis 
of galectin-3 interaction with TF, particularly with the GalNAc 
moiety, brought to light the importance of hydrogen bond 
network, previously observed in mushroom galectin AAL. This 
Arg186-water1-Glu165-water2 structural motif-based hydrogen 
bond network was suggested to play a role as a major determinant 
for specific TF recognition and high affinity binding of galectin-3. 
Importantly, this unique recognition mode was also found in 
galectin-3 complexes with two TF antigen derivatives, TFN and 
GM1. The most restricting factor for TF binding to galectin-1 was 
found to be a pentad residue motif 51AHGDA55 at the loop 4 link-
ing β-strands 4 and 5, which was shown to force the loop to adopt 
different conformation from loop 4 in galectin-3. In addition, the 
His residue within the galectin-1 sequence exerts a serious steric 
hindrance for the carbohydrate binding. Mutagenesis experi-
ments confirmed the pentad residue sequence within galectin-1 
loop 4 to be the major factor influencing the difference between 
bindings of galectin-1 and galectin-3 to TF structure (63).

The TF disaccharide is linked to its carrier proteins via ser-
ine or threonine residues in glycans. Galectin interaction with 
TF has been reported to include galectin interaction with the 
TF-protein backbone, which additionally enhances the binding 
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(68–70). Structural analysis on binding of avian galectin-3 to 
TF-threonine conjugate shows transient interaction between 
galectin-3 and amino acid threonine (71). Kinetic analysis 
reveals that the linkage of TF disaccharide to MUC1 fragments 
influenced the thermodynamic binding profile of galectin-3. The 
binding affinity of galectin-3 to TF-carrying glycans showed to 
be more than fivefold higher than to free TF disaccharide (72). 
These discoveries are in line with previous observations of other 
carbohydrate-binding proteins showing that lectin binding to 
glycoconjugates tends to be stronger than binding to carbohy-
drates (73). It should be stressed that all the information obtained 
so far for the TF–galectin-3 interaction were conducted using the 
CRD domain of galectin-3 and no information is yet available for 
full-length galectin-3. As the protein backbone of TF-expressing 
proteins is actively involved in galectin binding to TF-expressing 
glycans, future studies with full-length galectin-3 will be para-
mount to understand the exact mechanisms of the TF–galectin-3 
interaction at molecular and submolecular levels.

Another feature of the galectin–TF interaction is protein 
multimerization. Cross-linking of multivalent glycoconjugates 
and receptors can lead to increase in galectin binding affinity. 
This phenomenon is known to play an important role in provid-
ing the required affinity and specificity of galectin actions (74). 
Isothermal titration micro-calorimetry analysis of galectin bind-
ing to multivalent carbohydrates by Dam et  al. suggested that 
galectin-induced glycan clustering could enhance subsequent 
binding events by as much as 10,000-fold (75). So, even though 
galectin binding to certain glycans shows low affinity in  vitro, 
their interactions in physiological and pathological conditions 
may be much stronger and hence functionally significant.

COnCLUSiOn ReMARKS

The occurrence of the oncofetal TF antigen and the increased 
expression of galectins are both common features in cancer. 
More and more evidence has revealed that TF antigen is a natural 
ligand of galectins in cancer, and the galectin–TF interaction 
promotes a number of key steps (e.g., cancer cell heterotypic 
adhesion and homotypic aggregation) in the cancer progression 
and metastasis. Such a cancer-associated molecular interaction, 
as a result of highly specific occurrence of TF antigen in cancer 
cells, offers a potential therapeutic target for the development of 
novel strategies for cancer treatment. Moreover, as galectins are 
widely expressed by many types of human cells, cancer-associated 
TF may interact with galectins expressed by other cell types (e.g., 
immune cells) and influence cancer progression and metastasis. 
Further investigations in these areas are warranted. Structurally, 
more studies are needed to understand the galectin–TF interac-
tion at atomic levels using full-length galectins.
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