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The emergence of novel immunomodulatory cancer therapies over the last decade, 
above all immune checkpoint blockade, has significantly advanced tumor treatment. For 
colorectal cancer (CRC), a novel scoring system based on the immune cell infiltration 
in tumors has greatly improved disease prognostic evaluation and guidance to more 
specific therapy. These findings underline the relevance of tumor immunology in the 
future handling and therapeutic approach of malignant disease. Inflammation can either 
promote or suppress CRC pathogenesis and inflammatory mediators, mainly cytokines, 
critically determine the pro- or anti-tumorigenic signals within the tumor environment. 
Here, we review the current knowledge on the cytokines known to be critically involved 
in CRC development and illustrate their mechanisms of action. We also highlight simi-
larities and differences between CRC patients and murine models of CRC and point out 
cytokines with an ambivalent role for intestinal cancer. We also identify some of the future 
challenges in the field that should be addressed for the development of more effective 
immunomodulatory therapies.
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iNTRODUCTiON

Colorectal cancer is the second and third most common malignant disease in women and men, 
respectively (1). Estimations predict that there will be over 750,000 new cases and more than 350,000 
deaths from colorectal cancer (CRC) in developed countries in 2015 alone [reviewed in Ref. (2)]. 
A large number of genetic aberrations have been identified that underlie CRC (3, 4). Somatically 
altered genes or polymorphisms that are repeatedly found in CRC often affect the KRAS-, MYC-, 
Wnt-, mitogen-activated protein kinase (MAPK)-, or TGF-β/bone morphogenetic protein (BMP)-
signaling pathways, lamina structural proteins or components of the DNA repair machinery [reviewed 
in Ref. (2, 5)]. Recently, several factors have received increased attention that are distinct from 
tumor cells and that substantially contribute to cancer progression. These include non-cancerous 
cells in the vicinity of the tumor, which are commonly referred to as tumor microenvironment 
or stroma, and the microbiota. Non-malignant cells in the tumor mass comprise (myo)fibroblasts, 
endothelial cells, and immune cells (6). Although fibroblasts and endothelial cells can promote CRC 
(7–9), the immune infiltrates in the tumor microenvironment appear to differently modulate CRC 

Abbreviations: AOM, azoxymethane; CAC, colitis-associated (colorectal) cancer; CAF, cancer-associated fibroblasts; CRC, 
colorectal cancer; DSS, dextran sulfate sodium; IBD, inflammatory bowel disease; IEC, intestinal epithelial cell; IL, interleukin; 
ILC(s), innate lymphoid cell(s); LPS, lipopolysaccharide; MDSCs, myeloid-derived suppressor cells; Th, CD4+ T helper cell; 
TNF, tumor necrosis factor; Treg, regulatory T cell(s); WT, wild-type.
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FiGURe 1 | Cytokine networks in the pathogenesis of colorectal cancer. Cytokines expressed by tumor and/or stromal cells cluster to form networks with 
anti-tumor, pro-tumor, or bivalent properties. IFN-γ, interleukin-12 (IL-12), IL-15, IL-17F, and IL-18 inhibit CRC development. IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, 
IL-23, IL-33, TNF, TGF-β, and VEGF are pro-tumorigenic. The contribution of IL-1, IL-9 IL-10, IL21 and GM-CSF to intestinal cancer remains unclear.
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development, depending on their nature. Initial studies report-
ing a correlation between the inflammatory cell pattern in CRC 
tumors and the prognosis (10, 11) have been further elaborated 
by Galon and colleagues into the “Immunoscore,” a classification 
that has improved the prognostication of CRC development 
(12–14). In essence, this work established that analysis of the 
composition of the immune infiltrates enhances the accuracy 
of prognostic information and predictability of response to 
therapy. Therefore, it provides complementary information to the 
traditional American Joint Committee on Cancer (AJCC)/Union 
for International Cancer Control (UICC)-TNM classification 
applied for more than 80 years. The Immunoscore analyzes the 
regional density of all (CD3+) T cells, including CD8+ cytotoxic 
T cells, in human CRC. This allows in a next step to associate  
T cell differentiation with CRC progression; e.g., a T helper 1 (Th1) 
signature correlates with better disease-free survival, whereas a 
Th17 signature is predictive of the opposite (15).

A central feature of activated immune cells is the production 
and release of growth factors and cytokines that modulate the 
inflammatory milieu in tumor tissues. Systemic and local changes 
in the cytokine profile have been shown in CRC (16–18). Recent 
work indicates that multiple pro-tumorigenic and also anti-
tumorigenic cytokines are differently expressed in distinct CRC 
tissues (19). Therefore, it is critical to study the specific contribu-
tion of individual cytokines to CRC development, progression, 
and patient survival.

Here, we review the current knowledge on cytokines known 
to modulate intestinal tumor development. Each listed cytokine 

is systemically presented according to the following scheme: (1) 
role as a biomarker in samples of CRC patients, (2) phenotype of 
knockout or transgenic mice in experimental models of CRC or 
intestinal inflammation, (3) tissue of origin or type of the secret-
ing cells, (4) nature of the receptor-expressing cells in the tumor 
stroma, (5) biological effect on human/murine primary cells or 
cell lines, and (6) molecular mechanisms and pathways activated 
upon receptor engagement.

As a synthesis, we highlight two major, functionally different 
inflammatory networks: a network of inflammatory mediators 
driving (antigen)-specific anti-tumor immunity to inhibit tumor 
development (19, 20) and a nexus of cytokines supporting 
chronic, unspecific, pro-tumorigenic inflammation in the CRC 
microenvironment (Figure 1), which is associated with a disrup-
tion of the intestinal barrier and invasion by microbial products 
(21). It is likely that the balance between these two opposite 
inflammatory networks within the tumor stroma determines the 
course of CRC development. We also propose that these different 
groups of cytokines may be used as biomarkers to strengthen the 
diagnostic based on the Immunoscore, and that they represent 
targets for the design of therapeutic approaches.

iNTeRLeUKiN-1

The role of IL-1 in CRC is controversial. IL1B transcripts are 
increased in tumor biopsies of patients with metastatic CRC 
(22) and polymorphisms in IL-1 receptor antagonist (IL-1RA) 
(encoded by IL1RN) may be associated with CRC (23). IL-1β 
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is activated by caspase-mediated cleavage subsequent to the 
activation of the leucine-rich repeat (NLR) inflammasome as a 
response to cell stress or infection. The NLR inflammasome plays 
an important role in the development of colitis-associated cancer 
(CAC). In vivo blockade of IL-1β using recombinant IL-1RA sig-
nificantly decreased tumor development in the AOM/DSS mouse 
model of CAC (24), indicating a pro-tumorigenic role of IL-1β in 
this setting. IL-1β is expressed by tumor-associated macrophages 
(TAMs) (25) and neutrophils (24). IL-1β can act on intestinal 
epithelial cells (IECs) (24) and directly on tumor cells (25) to 
induce their proliferation. IL-1β also promotes the recruitment 
of myeloid-derived suppressor cells (MDSCs) to tumors, which 
supports cancer progression (26–28). Furthermore, colon cancer 
cell-derived IL-1α may upregulate angiogenesis by modulating 
stromal cells within the tumor microenvironment (29).

Interleukin-1 binds to either IL-1Rα (encoded by IL1R1) that 
has a long cytoplasmic domain to relay signaling or to IL-1Rβ 
(encoded by IL1R2) that may act as a decoy receptor. Upon IL-1 
binding, IL-1Rα forms a complex with IL-1 receptor accessory 
protein (encoded by IL1RAP). This induces the recruitment and 
activation of the IRAK and TRAF6 adapter molecules and the acti-
vation of nuclear factor κB (NF-κB), JNK, AP-1, and p38 MAPK 
pathways [reviewed in Ref. (30)]. Furthermore, IL-1β induces the 
activation of the Wnt signaling pathway by phosphorylation of 
GSK3β (25). Importantly, all these signaling pathways are key for 
intestinal tumorigenesis (31–33), thereby further supporting the 
central role of IL-1 for CRC pathogenesis.

iNTeRLeUKiN-4

Interleukin-4 is overexpressed in early events of CRC develop-
ment, including hyperplastic polyp, adenoma, and serrated 
adenomas, whereas in adenocarcinomas, IL-4 levels are not 
elevated compared with normal mucosa (34). In addition, 
higher serum levels of IL-4 were found in CRC patients with 
distant metastases (M1) compared with patients without metas-
tases (M0) (16). However, presence of a Th2 gene signature  –   
comprising IL4, IL5, and IL13 – in human CRC does not appear 
to have a prognostic value (15).

In experimental animal models of CRC, Il4-deficient mice 
treated with AOM developed fewer tumors compared with wild-
type (WT) mice (35). In the AOM/DSS model of tumorigenesis, 
signaling through IL-4 receptor α (IL-4Rα) promoted intestinal 
tumor growth (36). However, both IL-4 and IL-13 engage IL-4Rα, 
which prevents a clear estimation of IL-4 function in CRC in 
this study. To bypass this issue, Ingram et al. evaluated intestinal 
tumor formation in AOM-treated Il13−/− mice, thus only allowing 
signaling of IL-4 trough IL-4Rα. They found that intestinal tumor 
development was markedly increased in Il13−/− compared with 
WT mice (37), which further indicates a pro-tumorigenic effect 
of IL-4 in CRC.

Th2 and double-positive CD4+ CD8αβ+ αβ T cells as well as 
cancer-initiating cells are important sources of secreted IL-4 
in CRC (38, 39). IL-4 signaling occurs through either the type 
I or type II IL-4 receptor. The type I IL-4 receptor complex is 
composed of IL-4Rα and the common gamma chain, whereas 
the type II IL-4 receptor consists of the IL-4Rα and IL-13Rα1 

subunits (40). Type I IL-4 receptor is predominately expressed 
on hematopoietic cells, whereas type II IL-4 receptor expression 
is high on transformed IECs (36). This expression pattern sug-
gests that IL-4 may have a direct and an indirect effect on CRC 
development. Indeed, the proliferation of several CRC cell lines 
was increased after IL-4 stimulation (36). Furthermore, in vitro 
coculture of IL-4-secreting CRC-derived tumor-initiating cells 
with peripheral blood mononuclear cells (PBMCs) was found to 
inhibit the proliferation of these PBMCs, which could be restored 
upon addition of IL-4 blocking antibodies. This may serve as a 
mechanism for tumor-initiating cells to escape immune surveil-
lance and in turn promote CRC progression (39).

Mechanistically, IL-4/IL-4 receptor engagement leads to signal 
transducer and activator of transcription (STAT)-6 phospho-
rylation in hematopoietic (41) and epithelial cells (42). Increased 
STAT6 phosphorylation in CRC tumors negatively correlates 
with survival in patients (43). Of note, IL-4 has also been shown 
to inhibit tumor growth and progression in other tissues, such as 
renal cancer (44) and glioblastoma (45). This was dependent on 
tumor-specific CD8+ T cells or associated with a marked eosino-
phil infiltrate, respectively. In addition, Th2 immune responses 
have been shown to induce IL-4- and eosinophil-dependent 
anti-tumor activity (46). Thus, IL-4 may have distinct functions, 
depending on the tumor environment. However, in CRC IL-4 
rather appears to drive tumor development.

iNTeRLeUKiN-6

Interleukin-6 is a prototypic inflammatory cytokine clearly 
involved in the development of sporadic CRC and CAC (47). 
IL-6 is overexpressed in CRC tissues (48, 49) and elevated levels 
of serum IL-6 correlate with larger tumor size, occurrence of 
liver metastases, and reduced survival (50). Moreover, increased 
blood concentration of IL-6 is an independent adverse prognostic 
marker of survival in CRC patients (51). Patients suffering from 
inflammatory bowel disease (IBD) – who have an increased risk 
for developing CAC – show elevated levels of IL-6 in the serum 
and lamina propria (52, 53).

In the AOM/DSS model of CAC, genetic ablation of Il6 or 
treatment with anti-IL-6 receptor ameliorated tumor develop-
ment. This is explained by the fact that IECs critically depend on 
IL-6 trans-signaling for their survival (54, 55). Lamina propria 
T cells, macrophages, and cancer-associated fibroblasts (CAFs) 
can all secrete IL-6 in the CRC stroma (53, 55–57). IL-6 was also 
described to promote angiogenesis (56) and DNA mismatch repair 
defects (58). In addition, IL-6 directly promotes the accumulation 
of MDSCs in tumors, thereby facilitating tumor progression (26). 
Furthermore, MDSC-produced IL-6 limits the development of 
CD4+ Th1 cells (59).

Intestinal epithelial cells do not express IL-6R themselves but 
rely on IL-6 trans-signaling. IL-6 trans-signaling requires soluble 
IL-6R generated through alternative mRNA splicing of IL6R or 
ADAM17-dependent limited proteolysis of IL-6R on other cells. 
Soluble IL-6R, then, associates with the ubiquitously expressed 
glycoprotein 130 (IL-6 ST/GP130) (60). Engagement of IL-6 with 
its receptor leads to activation of STAT3, which promotes the 
proliferation of cancer cells and tumor progression (55, 61). Thus, 
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it is not surprising that the level of STAT3 phosphorylation in 
CRC patients negatively correlates with survival and is therefore 
indicative of a poor prognosis (62, 63).

iNTeRLeUKiN-8

In CRC patients, IL-8 expression is upregulated in tumor tissue 
compared with adjacent healthy colonic tissue (64). Moreover, 
germline polymorphisms of IL-8 and vascular endothelial growth 
factor (VEGF), two genes involved in tumor angiogenesis, are 
associated with increased risk of recurrence in stage III CRC 
patients treated with adjuvant chemotherapy (65).

Upon AOM/DSS treatment, transgenic mice expressing 
human IL8 were found to show increased CRC tumor numbers 
and load compared with WT counterparts. IL-8 resulted in higher 
IEC proliferation in these transgenic mice (64).

In humans, the epithelial–mesenchymal transition (EMT) 
activator protein SNAIL regulates Il8 expression in CRC stem-
like cells (66).

Interleukin-8 mainly acts on myeloid cells to enhance their 
mobilization (64). These myeloid cells have immune suppressive 
functions and promote tumor progression (64, 67).

Mechanistically, IL-8 promotes tumor growth, metastasis, 
chemoresistance, and angiogenesis, as assayed in CRC cell line 
models (68, 69). IL-8 signals through its receptor CXCR1/2 to 
activate the Akt and MAPK pathways and promote the expres-
sion of genes responsible for cell proliferation, invasion, and 
angiogenesis (70). Therefore, blockade of IL-8 signaling pathway 
may represent a promising therapeutic strategy to restrain CRC 
development.

iNTeRLeUKiN-9

Interleukin-9 seems to have a dual role for cancer development. 
Although IL-9 possibly promotes lymphomagenesis (71), it 
can also inhibit the growth of melanoma either directly or 
by promoting anti-tumor immunity (72, 73). Compared with 
healthy individuals, CRC patients showed decreased levels of 
IL-9 in the serum and intestinal tissues, and IL-9 expression 
in these samples negatively correlated with tumor progression 
(74). By contrast, another study found no significant changes 
in IL-9 expression in serum of CRC patients, with possibly a 
trend toward higher levels of IL-9 in patients with high-grade 
tumors (16). Interestingly, in a heterotopic tumor model 
using the colon carcinoma cell line CT26, Il9−/− animals were 
protected from CRC development and showed better survival 
compared with challenged WT animals, a phenotype that was 
T cell-dependent (75).

Various immune cells in the colon have been shown to pro-
duce IL-9, such as T cells, dendritic cells, and natural killer (NK) 
T cells (76–78). Moreover, stromal cells, including CAFs, also 
produce IL-9 during CRC (79). IL-9 receptor is expressed both on 
hematopoietic cells and IECs. Therefore, IL-9 may have a direct 
or indirect mode of action for CRC development (80). Of note, 
stimulation of human CRC cell lines with IL-9 has also yielded 
conflicting data. Caco-2 cells showed reduced proliferation and 
wound closure in the presence of recombinant IL-9 (80), whereas 

the proliferation of KM12C and KM12SM cell was enhanced 
upon stimulation with IL-9 (79).

Engagement of the IL-9 receptor leads to STAT5 phosphoryla-
tion (80), the expression of which is predictive of poor prognosis 
and shorter survival in CRC patients (81).

In conclusion, IL-9 may either enhance or inhibit CRC devel-
opment. Therefore, further studies are required to clearly dissect 
the role of IL-9 during intestinal tumorigenesis.

iNTeRLeUKiN-10

In patient samples, IL-10 serum levels increase over time during 
CRC progression (82, 83), and high preoperative serum levels 
of IL-10 correlate with poor survival of CRC patients (84). This 
suggests a tumor-promoting role of IL-10 in CRC patients. 
In contrast, IL-10 appears to play a protective role in animal 
models of CRC. IL-10 was required in regulatory T cells (Treg) 
to reduce tumor burden in ApcMin/+ mice (85). However, during 
CRC development, Treg cells may switch their cytokine produc-
tion from IL-10 to IL-17, which promotes tumor development 
(86). Furthermore, oral administration of IL-10 microparticles 
decreased polyposis in the ApcMin/+ model by suppressing the 
development of IL-17-producing Treg and inducing conventional, 
IL-17-negative Treg (87). In the ApcΔ468 model, T cell-restricted 
ablation of IL-10 increased the number of intestinal polyps by 
promoting the accumulation of microbes and eosinophils in 
intestinal tumors (88). In CAC, Il10-deficient mice were shown 
to be more susceptible to spontaneous intestinal tumor develop-
ment compared with WT animals (89).

In the intestine, a number of cells, including T cells, mono-
cytes, macrophages, and epithelial cells, have been shown to 
produce IL-10 (90–92). The IL-10 receptor is a heterotetramer 
complex consisting of two IL-10Rα and two IL-10Rβ molecules. 
Although IL-10Rα is specific for IL-10, IL-10Rβ is also used for 
IL-22 and IL-26 signaling. IL-10Rα is constitutively expressed on 
most hematopoietic cells and colonic IECs (93); yet, it can also 
be induced on a number of other cells [reviewed in Ref. (94)]. 
Binding of IL-10 to its receptor activates STAT1, STAT3, and 
STAT5 (95), and it is not clear which of these pathways is prefer-
entially activated by IL-10 in CRC. This may explain the divergent 
findings on IL-10 in CRC, and elucidation of the precise role of 
IL-10 for CRC remains one of the future challenges in the field.

iNTeRLeUKiN-11

Interleukin-11, a family member of the IL-6 family of cytokines, 
has recently been implicated in CRC pathogenesis. IL-11 and its 
receptor have both been shown to be overexpressed in sporadic 
CRC specimens (96, 97). Moreover, multiple cell types upregu-
late IL11 transcript levels during CRC development, including 
hematopoietic cells, CAFs, and also tumor cells (7, 97). The 
pro-tumorigenic effect of IL-11 on tumorigenesis was found to 
be stronger than the one of IL-6, both in models of CAC and 
sporadic CRC (97). IL-11 has thus emerged as a novel cytokine 
driving STAT3-dependent intestinal tumorigenesis similarly to 
IL-6, and further investigation will help to evaluate its role as a 
diagnostic or therapeutic target for CRC.
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iNTeRLeUKiN-12

Active IL-12 is constituted of two subunits, IL-12p35 and 
IL-12p40 that are encoded by IL12A and IL12B, respectively. 
These subunits may form either an agonistic IL-12p70 heterodi-
mer or an antagonistic IL-12p80 homodimer (98). The IL-12p35 
subunit is shared to generate IL-35 (99, 100), whereas IL-12p40 
is shared to form IL-23 (101). Therefore, it is difficult to study the 
effect of IL-12 without interfering at the same time with IL-23 or 
IL-35 signaling. Nevertheless, in CRC patients high preoperative 
IL-12p40 serum levels predicted a better survival (102), whereas a 
low production of IL-12p70 in dendritic cells was associated with 
a poor prognosis (103).

In mice, the anti-tumor effect of IL-12 has been described in a 
variety of murine tumor models, including melanoma, sarcoma, 
renal cell carcinomas, and lymphomas (104–107). Moreover, in a 
heterotopic tumor model of CRC metastasis, recombinant IL-12 
inhibited metastatic events to the lung (105). In the intestine, 
dendritic cells, macrophages, and B cells have been reported to 
produce IL-12p35 and IL-12p40. Of note, stimulus by microbial 
products, such as lipopolysaccharide (LPS) and CpG oligode-
oxynucleotide, and also IL-10 are necessary for IL-12 production 
(108, 109).

Natural killer cells and γδ T cells are the main type of cells 
expressing IL-12 receptor (110), thus suggesting an indirect 
action of IL-12 on tumor cells. IL-12 plays a central role both for 
the induction and the expansion of Th1 responses as well as the 
activation of cytotoxic immune effectors, such as NK and CD8+ 
T cells (111). IL-12 activates and induces IFN-γ production in 
these cells, which limits tumor growth and metastasis (112–115).

Taken together, these data indicate a protective role of IL-12 
in CRC. Although administration of IL-12 as an adjuvant leads 
to specific immunity against tumor antigens in some patients 
(116), the net clinical benefit of IL-12 treatment was found to 
be rather moderate (117, 118). The immunosuppressive effect of 
the tumor environment and tumor escape mechanisms appear to 
be the reasons for the failure of the IL-12-based immunotherapy 
applied so far in human cancers [reviewed in Ref. (119)]. Whether 
improved administration of IL-12 or combined immunomodula-
tory approaches that may induce more potent anti-tumor activity 
remains to be addressed.

iNTeRLeUKiN-15

Colorectal cancer patients with genomic deletion of IL15 have a 
significantly higher risk of tumor recurrence and show reduced 
survival compared with patients with intact IL15 (19). Moreover, 
IL-15 is expressed in human CRC cells in situ (120).

In the AOM/DSS model of CAC, Il15−/− but not Il15ra−/− mice 
showed higher tumor incidence and tumor size than WT coun-
terparts. Therefore, residual low-affinity IL-15 signaling via the 
shared IL-2Rβ/γc subunits of the IL-15 receptor appears to be able 
to decrease CAC pathogenesis in Il15ra−/− mice. Furthermore, 
in the same study, loss of IL-15 was found to be associated with 
an upregulation of inflammatory mediators involved in CRC 
progression (120). Transgenic mice overexpressing Il15 better 
controlled transferred MC-38 colon carcinoma cells and showed 

no pulmonary metastasis compared with WT mice. Accordingly, 
in the same model, Il15−/− mice showed more rapid tumor growth 
and died from lung metastases (121). In another study, IL-15 was 
found to potentiate the effect of immune checkpoint blockade 
using combined anti-PD-L1 and anti-CTLA-4, thereby leading 
to prolonged survival in a metastatic murine CT26 CRC model 
(122). Similarly, IL-15 lead to a synergistic enhancement of ago-
nistic anti-CD40 therapeutic treatment in mouse models of lung 
metastasis using CT26 or MC38 CRC cells (123). Consequently, 
IL-15 may have a promising immunotherapeutic potential in the 
treatment of CRC.

Interleukin-15 is produced by a broad range of cells, includ-
ing stromal and epithelial cells, and also myeloid cells, such as 
monocytes, macrophages, and dendritic cells. Dendritic cells, 
effector CD8+ T cells, and NK cells all express the IL-15 receptor 
that is composed of three distinct receptor chains (124–126). 
IL-15 can either bind directly to the IL-2Rβ/γc heterodimer with 
low-affinity or it can be trans-presented to this same heterodimer 
after binding the high-affinity IL-15Rα subunit (125). Cytotoxic 
T and NK cells represent the most important immune effectors to 
integrate the anti-tumorigenic function of IL-15 by activating the 
APO-1/FAS- or granule-mediated cytotoxic pathway (124, 126). 
Thus, IL-15 regulates anti-tumor cytotoxicity and modulates the 
inflammatory tumor microenvironment.

iNTeRLeUKiN-17

interleukin-17A
Of the six members of the IL-17 family identified so far, namely 
IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F (127), 
only IL-17A and IL-17F have been studied in greater detail 
for their contribution to CRC development. Expression of 
IL17A transcripts is enhanced stepwise along the adenoma-to-
carcinoma sequence in the stroma and adenomatous/cancer-
ous intestinal epithelium of CRC patients (128). Furthermore, 
IL-17A serum levels were elevated in CRC patients compared 
with healthy individuals, positively correlated with tumor size 
(129) or circulating tumor cells (130), and predicted poor sur-
vival (130). Patients with high expression of genes associated 
with a Th17 signature in CRC tissues have a poor prognosis 
(15, 131).

In mice, Il17a deficiency partially protected from CRC in the 
ApcMin/+ as well as AOM/DSS models (132, 133). Furthermore, 
there is probably a link between IL-17A and IL-6 expression, as 
Il17a−/− mice showed markedly reduced IL-6 levels in the AOM/
DSS model of CAC (133). Thus, IL-17A may indirectly activate 
STAT3 through IL-6.

CD4+ Th17 immune cells are the main source of IL-17A in 
CRC tumors and adjacent tissues (134, 135); yet, CD8+ T cell 
subsets, γδ T cells, and innate lymphoid cells (ILCs) are also 
important producers of IL-17A (136–139). IL-17A binds to a 
heterodimeric receptor comprising an IL-17RA and an IL-17RC 
chain. The IL-17 receptor is expressed on a variety of cells, such 
as hematopoietic, fibroblastic, and epithelial cells (140, 141). 
Although this indicates that engagement of IL-17 receptor signal-
ing may act directly and indirectly on tumor cells, a recent study 
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reports that direct signaling on transformed colonic epithelial 
cells is sufficient to promote CRC development (140).

interleukin-17F
Contrarily to IL-17A, IL-17F, another IL-17 family member, 
appears to have anti-tumorigenic properties. In a cohort of 102 
Tunisian CRC patients, individuals with WT IL17F had a longer 
overall survival compared with patients with polymorphisms in 
IL17F (142). Similarly, the IL17F TT genotype was associated with 
a lower risk of CRC compared with the TC genotype and C allele 
in CRC patients from Iran (129). Furthermore, Il17f-deficient 
mice developed more and larger intestinal tumors compared 
with WT animals in the AOM/DSS model of CAC (143). In a 
heterotopic tumor model where HCT 116 CRC cells were engi-
neered to overexpress IL-17F, tumor growth was inhibited likely 
through inhibition of angiogenesis (143). Even though IL-17F is 
strongly expressed in the colon by activated T cells and colonic 
epithelial cells (143, 144), IL-17F is downregulated in colorectal 
tumors (143). As for IL-17A, IL-17F binds to a receptor complex 
comprising IL-17RA and IL-17RC. Thus, IL-17F may also affect 
CRC development directly and indirectly.

It is so far still elusive how IL-17A and IL-17F exert such 
opposing functions through a same receptor. The differential 
regulation of IL-17A and IL-17F expression during CRC may 
provide a partial explanation to this paradox. Furthermore, 
IL-17F has a reduced ability to activate the downstream signaling 
cascade compared with IL-17A. Finally, IL-17RA and IL-17RC 
have different binding affinities for IL-17A and IL-17F, which may 
also account for the different roles of these cytokines [reviewed 
in Ref. (145)].

Mechanistically, IL-17A activates the NF-κB pathway in CRC 
cells (146), thereby driving tumor survival and growth [see also 
tumor necrosis factor (TNF)]. Of note, IL-17F does not lead to 
the activation of NF-κB in CRC cells, further highlighting the 
difference between IL-17A and IL-17F signaling (146).

Overall, these studies highlight the differential effect of IL-17A 
and IL-17F on CRC development. Il17ra−/− animals, which are 
insensitive to IL-17A and IL-17F, show reduced intestinal tumor 
number, size, and load during sporadic CRC (21). Therefore, 
the pro-tumorigenic effect of IL-17A is probably dominant 
over IL-17F in this model. Given different binding affinities of 
IL-17RA and IL-17RC for IL-17A and IL-17F, it may be relevant 
to assess CRC development also in Il17rc−/−animals.

iNTeRLeUKiN-18

Interleukin-18 is an anti-tumorigenic cytokine. Humans het-
erozygous for the IL-18 A607C polymorphism exhibit increased 
risk for CRC development (147). Compared with normal mucosa, 
IL-18 production is decreased in colon adenocarcinomas. In half 
of the cases, this reduction in IL-18 expression correlated with 
lack of IFNG and FASLG expression in the CRC tissue and the 
presence of distant metastases (148). Of note, mutations in the 
IL-18 receptor accessory protein (IL18RAP) gene are associated 
with Crohn’s disease and IBD (149).

Damage of IECs promotes the formation of the NLRP3 
inflammasome, which in turn leads to the caspase-1-dependent 

processing and secretion of active IL-1β and IL-18 (150, 151). 
Mice deficient in Il18 or Il18r1 developed more tumors upon 
AOM/DSS treatment, compared with WT controls (152). In 
this model of CAC, IL-18 seems to be particularly important 
during the early inflammatory phase of the treatment. Indeed, 
Il18−/− mice showed a more severe clinical and histopathologi-
cal manifestation of colitis than WT animals upon challenge 
with DSS, a phenotype recapitulated in Nlrp3−/− or Casp1−/− 
mice (153).

Murine IECs produce IL-18 under steady state. Secreted IL-18 
stimulates IL-18 receptor (IL18-R1) that is expressed by CD4+ 
cells in the lamina propria. IL-18 signaling restricts inflammation 
in the intestine by limiting the differentiation of Th17 cells and 
promoting the expression of effector molecules in Treg (154). In 
addition, IL-18 is involved in the repair of the intestinal epithe-
lium (155, 156), possibly via IL-22 (157), and it downregulates 
intestinal Il22bp expression (157). IL-18 also promotes protective 
host immunity mediated by cytotoxic cells, including CD8+  
T lymphocytes, and NK cells (158).

Binding of IL-18 to its receptor IL-18Rα leads to the recruit-
ment of IL-18Rβ to form a high affinity complex that recruits 
intracellular signaling effectors, including MyD88, IRAK, and 
TRAF6. As for IL-1 signaling, this cascade eventually results in 
the activation of NF-κB, JNK, and p38 MAPK (30). Although 
IL-1 and IL-18 pathways use the same signaling molecules 
downstream of their respective receptor complexes, they exert 
opposite function in CRC. This apparent contradiction may be 
explained by the distinct types of cells each of these cytokines 
activates within the tumor stroma.

iNTeRLeUKiN-21

Interleukin-21 appears to have an opposite role for CRC devel-
opment in humans versus mice. IL-21 is upregulated in patients 
with ulcerative colitis-associated colon cancer and in the murine 
model of CAC based on AOM/DSS treatment (159). A systems 
biology approach aiming at quantifying different immune cell 
subpopulations in situ in human tumor found a positive correla-
tion between IL-21 expression and disease-free survival (131). A 
preclinical study using IL-21 combined with cetuximab (an anti-
EGFR monoclonal antibody) indicated an activation of immune 
response biomarkers on NK and T cells in stage IV CRC patients, 
yet it did not evaluate treatment efficacy (160).

Compared with WT controls, reduced tumor size and numbers 
were found in Il21−/− mice treated with AOM/DSS. Il21-deficient 
tumors show higher cell apoptosis and reduced cell proliferation, 
with high IFNγ and low IL-17 (161). In another study, resistance 
to CAC in Il21−/− mice was associated with reduced CD4+ T cell 
infiltration and decreased production of IL-6 and IL-17A in the 
intestinal mucosa (159). This suggests a pro-tumorigenic role of 
IL-21 in the setting of AOM/DSS-induced CAC.

CD4+ T helper cells, including Th1 and Th17 cells, activated 
NKT cells and T follicular helper cells all can secrete IL-21. 
IL-21 can act on a broad range of cells, such as B cells, NK cells, 
activated T cells, dendritic cells, macrophages, fibroblasts, and 
IECs (159, 162, 163). IL-21 enhances anti-tumor NK and CD8+ 
T cell responses (164, 165). In tumors of AOM/DSS-treated WT 
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mice, lamina propria mononuclear cells and tumor-infiltrating 
immune cells, mostly T and myeloid cells, express the IL-21 
receptor (159).

Interleukin-21 signals via heterodimers of the IL-21 receptor 
(IL-21R) and the common cytokine receptor γ-chain (IL-2Rγc). 
Upon receptor engagement, IL-21 induces the activation of JAK1, 
JAK3, and mainly STAT3 [reviewed in Ref. (163)].

Taken together, IL-21 has a possible impact on the polarization 
of the T helper cell response in CRC. Further investigation on the 
role of IL-21 for CRC may reconcile the current discrepancies 
from human and mouse studies, e.g., by using animal models of 
CRC in which inflammation is less central than for the AOM/
DSS model.

iNTeRLeUKiN-22

Interleukin-22 has recently emerged as a novel player in CRC 
development. In patients, the accumulation of Th22 cells is associ-
ated with CRC development (166). Furthermore, high levels of 
IL-22 in the serum or CRC tissue are predictive of a poor survival 
of patients, and IL-22 promotes resistance to chemotherapy 
(167). Moreover, the rs1179251 polymorphism in IL22 gene is 
associated with an increased risk for CRC (168).

In animal models, IL-22 has been shown to ameliorate experi-
mentally induced colitis and enhance wound healing (169–171). 
In Helicobacter hepaticus/AOM-induced intestinal tumors, IL-22 
released by ILCs supported the growth of intestinal tumors in 
T and B cell-deficient Rag2−/− mice (138). Il22−/−; ApcMin/+ mice 
develop smaller tumors than controls. However, deficiency in Il22 
leads to delayed wound healing and increased inflammation and 
therefore promotes intestinal tumor development in the AOM/
DSS model of CAC (157). In addition, animal deficient in Il22bp, 
an antagonist of IL-22 signaling, developed strongly enhanced 
tumorigenesis. This likely relies on the IL-22BP-dependent 
regulation of IL-22 activity during intestinal tissue damage and 
tumorigenesis (157). Subcutaneous injection of primary CRC 
cells together with anti-IL-22 antibody treatment strongly inhib-
ited tumor development and growth (172).

CD3+CD4+IL-22+ ILCs represent the major source of IL-22 in 
the intestine (138). IL-22 signaling is transmitted through a receptor 
complex comprised of the IL-10Rβ and IL-22Rα1 chains. Of note, 
IL-10Rβ and IL-22Rα1 were recently shown to be upregulated in 
primary CRC tissue samples (173). IL-22 signaling directly activates 
STAT3 in epithelial cells and increases stemness and tumorigenic 
potential in tumor cells through the methyltransferase DOT1L 
(172). In addition, IL-22 protects CRC cells from chemotherapy 
via STAT3-dependent autocrine secretion of IL-8 (167).

In sum, IL-22 seems to promote CRC development via 
induction of stemness in tumor cells. The mechanisms how 
IL-22 confers stemness in tumor cells compared with other pro- 
tumorigenic cytokines also signaling through STAT3, such as IL-6 
and IL-11, warrant further investigation. This may be addressed 
by stratified analysis of the expression of IL-6R or IL-11R com-
pared with IL-22R on intestinal stem cells. Alternatively, the IL-22 
signaling is not negatively regulated by suppressor of cytokine 
signaling 3 (SOCS3), which is the case for IL-6 and IL-11 signal-
ing. Consequently, IL-22 signaling may be more sustained and 

more pro-tumorigenic compared with other STAT3 activators 
[reviewed in Ref. (174)].

iNTeRLeUKiN-23

Bioactive IL-23 is a heterodimeric complex consisting of IL-23p19 
(encoded by IL23A) and IL-12p40 (encoded by IL12B), which 
are specific for IL-23 or shared with IL-12, respectively. In the 
serum of CRC patients, IL-23 levels are increased and positively 
correlate with VEGF (175). In primary CRC tissue, IL23A and 
IL12B transcripts are overexpressed, whereas IL12A mRNA is not 
upregulated (176). Moreover, high IL-23 levels together with low 
SOCS3 expression in primary tumor tissue were predictive of a 
higher rate of CRC metastasis (177).

Il23a deficiency in mice resulted in fewer and smaller tumors 
compared with WT controls in a model relying on heterozygous 
loss of Apc (21). Furthermore, IL-23 enhanced the metastatic 
capabilities of SW620 CRC cells after injection into nude mice. Of 
note, the pro-metastatic effect of IL-23 was dependent on SOCS3, 
as concomitant overexpression of IL-23 and SOCS3 in SW620 
cells reduced the number of metastases (177).

Dendritic cells, macrophages, and neutrophils have been 
shown to produce IL-23 during intestinal inflammation (178–
180). A variety of hematopoietic cells in the intestine can react to 
IL-23, among them ILCs, Treg, and Th17 cells. The net biological 
effect of IL-23 signaling may vary in different cell populations. 
For instance, IL-23 signaling promotes IL-22 secretion by ILCs 
and IL-17 production by Th17 cells, while it abrogates Treg cell 
activation (181–183).

Overall, this suggests that IL-23 may indirectly promote tumor 
cell survival. Indeed, IL-23 has been reported to drive intestinal 
inflammation by inducing other pro-inflammatory cytokines, 
such as IL-6, IL-17, and IL-22 (184–186). These cytokines may in 
turn activate tumor cell proliferation through STAT3 and NF-κB.

iNTeRLeUKiN-33

Interleukin-33 is a member of the IL-1 family of cytokines, which 
has recently received greater attention for its contribution to 
intestinal inflammation and CRC. IL-33 is thought to function as 
an “alarmin” released upon cellular stress or damage to promote 
or amplify inflammation (187, 188). Unlike other IL-1 family 
members, such as IL1-β and IL-18, IL-33 becomes inactivated 
through caspase-1 cleavage. Cathepsin G and neutrophil elastase 
have been shown to cleave IL-33 and enhance it bioactivity (189, 
190). The role of IL-33 for CRC development and its function 
in intestinal inflammation are still ambiguous. In IBD patients, 
expression of IL-33 and its receptor, ST2, positively correlate 
with the extent of inflammation (191, 192). In animal models 
of colitis, activation of the IL-33/ST2 pathway either promotes 
or restrains immunopathology and different phases of intestinal 
disease (188, 192, 193). Furthermore, IL-33 promotes intestinal 
Treg function in the inflamed intestine (183). Therefore, the IL-33/
ST2 pathway may either promote or inhibit CRC development 
and was therefore the focus of several recent studies.

In CRC patients, we found overexpression of both IL-33 
and ST2 in intestinal adenomas and adenocarcinomas. 
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Although several high-grade adenocarcinomas showed a strong  
expression of IL-33 and ST2, both proteins were predominately 
overexpressed in low-grade adenocarcinomas (194). Similar 
results were reported in a smaller CRC cohort where increased 
microvessel density of IL-33-positive and ST2-positive tumors 
was additionally observed (195). Higher amounts of serum IL-33 
were measured in CRC patients compared with healthy individu-
als, thereby further suggesting a tumor-promoting effect of IL-33 
(196).

In AOM/DSS-treated mice we could show that intestinal 
tumor number, size, and grade were markedly reduced in St2−/− 
compared with WT mice (194). Similarly, ApcMin/+ mice on an 
Il33-deficient background developed fewer and smaller intestinal 
tumors. In the same study, CRC development was also abrogated 
by treatment with ST2-blocking antibody (196). This indicates 
that the nuclear function of IL-33 as a regulator of gene transcrip-
tion (197) and its role as a soluble cytokine upon secretion (198) 
may promote CRC pathogenesis in this model. Other studies 
using heterotopic models suggest that IL-33 signaling may also 
play a protective role (199) or promote metastasis (200) in CRC.

Epithelial cells and myofibroblasts are the main IL-33-
expressing cells in the CRC microenvironment (196, 201, 202). 
Extracellular IL-33 binds to the IL-33 receptor consisting of ST2 
and IL-1 receptor accessory protein (IL-1RAP). ST2, the IL-33-
specific subunit of the IL-33 receptor, is expressed on epithelial 
cells, myofibroblasts, and immune cells (183, 194, 196). Our data 
suggest that IL-33 does not directly affect the proliferation of 
tumor cells, but rather decreases the barrier function of the intes-
tine. This in turn allows for increased translocation of bacterial 
products to normally sterile tissues and induces the production of 
pro-tumorigenic cytokines, such as IL-6, by immune cells (194). 
Cytokines, such as IL-6, may then activate STAT3 to promote 
tumor growth. IL-6 is likely not the only downstream target of 
IL-33 in CRC. IL-33 stimulation of subepithelial myofibroblasts 
induced the expression of extracellular matrix components and 
growth factors associated with intestinal tumor progression 
(196). Furthermore, IL-33 may foster angiogenesis in CRC (195). 
As IL-33 and angiogenesis have been linked in previous studies 
(203, 204), it is conceivable that IL-33 triggers the production of 
or synergize with pro-angiogenic factors, such as VEGF, which 
may promote CRC progression and metastasis.

GRANULOCYTe-MACROPHAGe COLONY-
STiMULATiNG FACTOR

Granulocyte-macrophage colony-stimulating factor (GM-CSF) 
has an ambivalent role for CRC in humans versus mice. GM-CSF 
expression is elevated in primary colon tumors compared 
with healthy controls. Moreover, overexpression of GM-CSF 
and its receptor in intestinal tissue correlates with improved 
overall survival of CRC patients (205). Interestingly, patient 
stratification revealed that increased levels of GM-CSF benefit 
mismatch repair-proficient, yet not repair-deficient patients. 
This favorable prognostic effect of GM-CSF production by CRC 
cells was independent from CD16+ myeloid and CD8+ T cell 
infiltrations (206).

GM-CSF promotes CAC in AOM/DSS-challenged mice as 
treatment with a neutralizing anti-GM-CSF antibody decreased 
tumor development and colitis score in this model (207).

GM-CSF is produced by IECs and even more by neoplastic 
colonic epithelial cells (206, 207). Commensal microbiota-
derived LPS triggers GM-CSF expression in IECs (207). Stromal 
fibroblasts and lymphocytes adjacent to the CRC tumor have 
also been found to be positive for GM-CSF (208). More recently, 
ILC3-derived GM-CSF has been shown to play an important role 
for intestinal inflammation (209).

Cancerous epithelial cells, monocytes, and antigen-presenting 
cells all express the GM-CSF receptor in the CRC microenviron-
ment (205–207). GM-CSF induces autocrine or paracrine VEGF 
release by IECs (207), thereby promoting angiogenesis; yet, it 
does not have a direct proliferative effect on these cells (208). 
GM-CSF can act on dendritic cells to promote an anti-tumor 
response (210) and on monocytes/macrophages to inhibit CRC 
cell proliferation (206). GM-CSF also recruits and activates 
eosinophils in the intestine to induce colitis in mice (211), yet 
high eosinophil counts in human CRC tumor infiltrate are associ-
ated with favorable patient outcome (212).

The GM-CSF receptor is a heterodimer consisting of a major 
binding subunit (GMRα, encoded by CSF2RA) and a signaling 
subunit (βc, encoded by CSF2RB and shared with IL-3 and IL-5). 
GM-CSF binding to its receptor activates the JAK-STAT, the 
MAPK, and the PI3K pathways, which results in cell survival and 
proliferation [reviewed in Ref. (213)].

iFN-γ
IFN-γ expression is reduced in PBMCs of CRC patients (214). 
There is an association between high serum IFN-γ and absence 
of nodal metastases in CRC patients (16) and CRC patients with 
high IFN-γ levels in the supernatant of stimulated PBMC cultures 
indicate a trend toward better survival in donor CRC patients 
(215). These data suggest that IFN-γ induces a protective, anti-
tumor response in CRC patients. Animal models of CRC support 
these clinical findings as Ifng−/− mice show more and larger 
intestinal tumors compared with WT controls (35). Moreover, 
in the sporadic ApcMin/+ tumor model, heterozygous loss of Ifng 
promoted adenoma progression and induced adenocarcinoma 
development (216).

Lymphocytes and activated dendritic cells represent the main 
sources of IFN-γ in the colon (217–219). The IFN-γ receptor 
(IFNGR) is expressed on almost all nucleated cells, including 
mature T cells, B cells, macrophages, endothelial, and epithelial 
tissues (220). IFN-γ signaling is a key determinant for a Th1 
polarization of immune responses. It enhances MHC class I 
antigen representation and promotes CD8+ T-, NK cell-, and 
macrophage-mediated cytotoxicity. Hence, IFN-γ robustly 
stimulates anti-tumor immunity [reviewed in Ref. (221)]. Of 
note, exogenous IFN-γ inhibited whereas knockdown of Ifngr1 
promoted the growth of HT-29 CRC cells (216).

Mechanistically, IFN-γ acts on CRC cells by inducing STAT1 
phosphorylation and inhibiting the EGFR/Erk1/2 and Wnt/β-
catenin signaling pathways, thereby restraining cell  proliferation 
(216). Since increased nuclear STAT1 is associated with a  
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better survival in CRC patients (222) and Th1 polarization – also 
induced through IFN-γ – correlates with prolonged survival of 
CRC patients (15), immunomodulatory approaches selectively 
inducing IFN-γ production may be considered for CRC therapy. 
However, IFN-γ can also compromise the barrier function of 
IEC monolayers in vitro (223–225) and possibly alter the colonic 
epithelial barrier in  vivo (226). As increased intestinal perme-
ability can drive intestinal inflammation to foster CRC formation 
(21), approaches promoting IFN-γ production likely represent a 
balancing act and need to be tightly controlled.

TGF-β
TGF-β has a dual function during intestinal tumorigenesis. In 
early tumors, TGF-β is a potent tumor suppressor that induces 
induced cell cycle arrest (227). The relevance of TGF-β for can-
cer is corroborated by the frequent occurrence of inactivating 
mutations found in molecular components of TGF-β signaling 
(228, 229).

In contrast, high TGF-β levels in the primary tumor or serum 
correlate with poor survival of CRC patients (7, 230–232). 
In animal models, a dual function of TGF-β for CRC has also 
been observed. Loss of TGF-β signaling induced more tumors 
in AOM-treated mice compared with controls (228). Moreover, 
heterozygous loss of Smad4, a downstream effector molecule of 
TGF-β receptor, caused larger and more invasive intestinal carci-
nomas in ApcΔ716/+ mice (233). This indicates a tumor-suppressive 
activity of TGF-β in these models. On the other hand, TGF-β was 
recently shown to promote EMT and metastasis of CRC cell lines 
in  vivo, through mechanisms involving SOX4 and miR-1269a 
(234). Furthermore, TGF-β acting on CAFs promoted the growth 
of HT-29 cells in a xenograft model of CRC (9). Therefore, TGF-
β also has a pro-tumorigenic function. TGF-β and its receptors 
TGFBR1 and TGFBR2 are commonly expressed on epithelial 
cells [reviewed in Ref. (235, 236)]. However, other cells in the 
tumor microenvironment, including CAFs, respond to or secrete 
TGF-β (237).

Although the exact mechanisms underlying the dual role 
of TGF-β for CRC have yet to be delineated, a recent study by 
Calon et al. sheds new light on this paradox. While activation of 
TGF-β signaling in epithelial cells rapidly induces the expression 
of cell-cycle checkpoint genes leading to growth arrest [reviewed 
in Ref. (238)], Calon et  al. showed that activation of TGF-β 
signaling in fibroblasts promotes the metastatic capabilities of 
intestinal tumor cells (9). Therefore, TGF-β may indirectly exert 
a pro-tumorigenic effect on CRC cells, via the stroma. Indeed, 
TGF-β may for instance promote IL-11 secretion by CAFs (7), 
which in turn activates STAT3 and drives the proliferation of 
tumor cells (97).

TUMOR NeCROSiS FACTOR

As indicated by its name, TNF was first identified as an anticancer 
agent. Yet, it was thereafter recognized as a key cytokine linking 
inflammation and cancer (239). TNF expression is increased 
in CRC tissues and TNF serum levels positively correlate with 
CRC progression and reduced patient survival (240, 241). 

Accordingly, TNF blockers may possibly reduce the frequency 
of CAC in treated IBD patients (242–244), yet additional IBD 
cases are needed to strengthen this initial observation. Another 
open question remains whether patients with sporadic CRC 
may also benefit from a therapy based on TNF blockade. In 
addition to the evaluation of clinical parameters, the efficacy 
of such a blockade may be also directly assessed in  vivo, via 
confocal laser endomicroscopy, as already performed in IBD 
patients (245).

Hematopoietic cell-produced TNF is critical for intestinal 
polyp formation in ApcΔ468 mice, a model of sporadic CRC devel-
opment (246). Furthermore, TNF blockade strongly diminished 
tumor development in AOM/DSS-treated mice (247). Similarly, 
TNF neutralization in obese mice reduced the growth of tumors 
in a xenograft model using the human CRC line HT-29 (248).

Activated macrophages are the main producers of TNF in 
CRC (249, 250). TNF signals through TNF receptor 1, which is 
expressed on most cells, and TNF receptor 2 (TNFR2), which 
is mainly expressed on hematopoietic cells (251). However, in 
colitic mice and in IBD patients, TNFR2 expression becomes 
upregulated on IECs (252). Accordingly, binding of TNF to 
TNFR2 triggers the proliferation of IECs and CRC cell lines in 
a STAT3-dependent manner (252, 253)  –  similar to the IL-6-
dependent activation cascade discussed above. In addition, TNF 
signaling drives the accumulation of MDSCs by promoting their 
survival (254). Activation of the signaling cascade downstream 
of the TNF receptors results either in the nuclear translocation of 
NF-κB and AP-1, which promotes cell survival and proliferation, 
or induces cell death through caspase activation [reviewed in 
Ref. (255)].

Most studies in the field of CRC suggest that TNF rather 
promotes cell survival and thus promotes CRC development. 
Nevertheless, few reports indicate that TNF may also have an 
anti-tumor effect in CAC, possibly by providing early antibacte-
rial protection in Il10−/− mice (256). In addition, TNF may also 
serve as a marker of tumor-specific T cells (20). Therefore, the net 
contribution of TNF to CRC may be determined by the timing 
of its secretion during tumorigenesis or the type of the immune 
cells secreting it.

vASCULAR eNDOTHeLiAL  
GROwTH FACTOR

Vascular endothelial growth factor is a potent angiogenic factor 
that is frequently upregulated in cancer where it promotes tumor 
angiogenesis. In CRC, VEGF expression is elevated in tumor tis-
sue and positively correlates with advanced tumor stage as well 
as positive lymph node and liver metastasis (257). Furthermore, 
CRC patients with VEGF-positive tumors show reduced life 
expectancy (257, 258). VEGF plasma levels are elevated in CRC 
patients compared with healthy individuals, and high preopera-
tive VEGF plasma levels predict reduced survival (259).

In AOM/DSS-treated mice, both VEGF and its receptor 
VEGFR2 are strongly upregulated and anti-VEGF treatment 
reduced tumor growth (260). Antibody-mediated or genetic 
blockade of VEGF limited tumor growth and increased the 
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survival of ApcMin/+ mice (261). Inhibition of VEGF receptor 
signaling similarly reduced intestinal tumor burden in ApcMin/+ 
animals (262).

Various cells, such as TAMs, CAFs, tumor cells, platelets, 
and mast cells, produce VEGF (6). There are several different 
molecules comprising the VEGF family, namely VEGF-A, 
VEGF-B, VEGF-C, and VEGF-D, as well as different isoforms of 
VEGF-A and VEGF-B with potentially different function. Their 
mode of action has already been reviewed in detail elsewhere 
(263). Of note, VEGFA, VEGFB, VEGFC, and VEGFD expres-
sion is modulated during the adenoma–carcinoma sequence 
in CRC. For instance, VEGFA is upregulated in adenomas 
and carcinomas, whereas VEGFD is more abundant in normal  
tissues (264).

Secreted VEGF binds to either VEGFR1 and VEGFR2 or 
VGFR3, which are expressed on endothelial cells. In CRC, 
VEGFR2 is thought to mainly drive angiogenesis to foster tumor 
development, whereas the function of VEGFR1 is still unclear. 
However, more recent data reveal that VEGFR1 is expressed on 
CRC cells and that VEGFR1 signaling actives the β-catenin/Wnt 
signaling pathway to promote tumor growth (265). In addition, 
β-catenin/Wnt signaling regulates VEGF expression in CRC 
(266). Furthermore, engagement of VEGF/VEGFR2 signaling 
directly in CRC cells leads to STAT3 phosphorylation and pro-
motes tumor development (260).

Taken together, VEGF signaling can support CRC tumor 
development indirectly, by acting on endothelial cells, to stimulate 
angiogenesis (267). In addition, VEGF may also directly promote 
tumor growth through STAT3 and Wnt signaling and represents, 
therefore, an interesting target for CRC therapy.

CONCLUSiON – DiSCUSSiON

Tumors are comprised of tumor cells, immune cells, endothelial 
cells, and (myo)fibroblasts. These cells form together a micro-
environment that determines tumorigenesis and they interact, 
among others, through the intermediate of cytokines. These 
cytokines in the tumor stroma critically influence CRC develop-
ment and progression either by directly stimulating neoplastic 
epithelial cells or by altering the function or activity of non-tumor 
cells in the CRC microenvironment. Particular cytokines inhibit, 
whereas other promote CRC progression (Figure 1). Therefore, 
it is critical to identify cytokine networks to be either repressed 
or enhanced using combinatorial therapeutic approaches, as 
neutralization of individual cytokines may not suffice for thera-
peutic efficacy (146). Moreover, the net effect of the inflammatory 
response on the tumor cells may be better predicted by analyzing 
the molecular signatures downstream of cytokine receptors, 
rather than solely quantifying individual cytokines. Eventually, 
further investigations aiming at elucidating the precise reasons 
for the apparent ambivalent function of certain cytokines are 
critical, as these studies may also reveal novel mechanisms to be 
leveraged for therapy.

We discuss below five aspects that we consider to be of particu-
lar relevance for the development of future therapeutic strategies 
for CRC.

CRC Cancer Types and  
Cytokine Signatures
Genetic aberrations are necessary for malignancy to be established 
and to determine the general behavior of the different subtypes of 
CRC identified so far (268). Of note, differences in the quantity 
of lesion-infiltrating immune cells are already distinguishable 
at a very early stage of CRC tumorigenesis, in dependence on 
subtypes of CRC (269). There is increasing evidence that distinct 
genetic signatures may be associated with specific cytokine 
networks. Enterocyte-restricted loss of Trp53, which encodes 
murine p53, is associated with increased intestinal perme-
ability that results in an NF-κB-dependent inflammatory tumor 
environment (270). Moreover, p53 can negatively regulate IL-6 
signaling (271), whereas gain-of-function mutant p53 prolongs 
TNF-induced NF-κB activation to increase susceptibly to CAC 
(272). Therefore, inhibition of the IL-6 and TNF pathways may 
represent an adjuvant therapy specific for CRC with p53 muta-
tions, i.e., CRC subtype with “canonical” molecular signature 
(CMS2) (268).

As presented earlier, DNA mismatch repair-proficient CRC 
patients may benefit from a treatment activating the GM-CSF 
pathway (206), whereas IL-6 blockade may be more suitable in 
cases of mismatch repair-deficiency (58), i.e., for the subtype of 
CRC characterized by microsatellite instability (CMS1) (268).

Importantly, several of the studies performed so far using 
human samples or data from The Cancer Genome Atlas may 
have overlooked the presence of certain cytokines specifically 
produced by hematopoietic cells, since immune infiltrates are 
proportionally low in CRC tissues compared to cancerous and 
non-malignant stromal cells (268). Further research may unveil 
additional connections between molecular signatures that segre-
gate CRC subtypes (268) and distinct cytokine networks, which 
may be used for immunomodulatory regimens more specific to 
tumor subtypes.

Role of Acute versus Chronic  
Cytokine-Mediated inflammation in  
CRC Tumorigenesis
The pro- versus anti-tumorigenic effect of inflammation is not 
only determined by the mere presence of define cytokines at 
a given time in CRC tumors but also by the duration of the 
induced inflammatory stimulus. Indeed, prolonged or constant 
exposure to cytokines promotes tumorigenesis, as illustrated by 
a higher risk for CRC in IBD patients who suffer from chronic 
intestinal inflammation (273). Chronic inflammation contrib-
utes to the generation of MDSCs (274), which are also found 
in increased frequency in the blood of IBD patients (275). As a 
matter of fact, CRC tumor-elicited inflammation and MDSC-
meditated immunosuppression are closely associated (139). 
Inflammation-induced accumulation of MDSCs in tumors 
leads a downregulation of immune surveillance and anti-tumor 
immunity, thereby facilitating tumor growth (276). Myeloid 
cells, in particular the so-called TAMs, are mainly responsible 
for the activation and maintenance of the chronic inflammatory 
process in tumors. The TAM-induced chronic inflammatory 
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microenvironment may additionally promote genetic instability 
within the developing tumor epithelial cells [reviewed in Ref. 
(277–279)].

In contrast to this pro-tumorigenic chronic inflammation, 
short cytokine exposure or acute inflammatory signals may 
rather stimulate an anti-tumor response, e.g., by promoting T cell 
function (280, 281). For instance, treatment with endotoxin was 
shown to activate lymphocytes and induce an anti-tumor effect in 
some CRC patients (282). Therefore, therapeutic strategies aim-
ing at changing the pro-tumorigenic chronic inflammation to an 
acute, antitumor inflammatory state may be beneficial.

Modulation of Cytokine Networks  
in the CRC Stroma Using immune 
Checkpoint Blockade
Immunomodulation via inhibition of CTLA-4 or PD-1/PD-L1 
signaling has recently emerged as a potent means for the treat-
ment of malignancies (283). A beneficial effect of CTLA-4/PD-1 
blockade has been shown in melanoma, lung, renal, and kidney 
prostate (283–285). CRC tumors with RAS mutation have a low 
expression of inhibitory molecules and fewer infiltrating immune 
cells (286). On the other hand, defects in mismatch repair are 
associated not only with a Th1 microenvironment in CRC 
tumors but also with upregulated expression of multiple immune 
checkpoints (287). This implies that particular CRC subtypes may 
show different susceptibility for immune checkpoint therapy. 
Nevertheless, immune checkpoint blockade for CRC therapy has 
not yielded promising results so far (288, 289).

Therapeutic Cytokine Blockade in CRC
Approaches targeting selected cytokine pathways or networks 
may directly restrain CRC tumorigenesis or improve the response 
rate of CRC tumors to chemotherapies or checkpoint inhibitors. 
As a matter of fact, clinical trials are completed or ongoing to 
evaluate the effect of blocking cytokines, such as IL-1α, IL-1β, 
IL-6, IL-10, IL-21, TNF, or VEGF. In spite of the above-presented 
multiple function of VEGF signaling in CRC, therapeutic anti-
body-mediated blockade of VEGF-A (using bevacizumab) did 
not prolong the survival of stages II and III CRC patients when 
given in combination with chemotherapy (290). Nevertheless, 
treatment with the same VEGF-A blocking antibody (bevaci-
zumab) in combination with a different chemotherapy improved 
the outcome in patients with metastatic CRC (291). Furthermore, 
a phase I/II trial and a phase III trial have been completed in 
patients with solid malignancies to evaluate a blockade of IL-6 
or TNF, respectively. Unfortunately, both trials showed little 
to no effect in disease control (292, 293). Indeed, inhibition of 
single cytokines will probably not yield strong results as cytokine 
signals are often overlapping. For instance, IL-6 exerts its pro-
tumorigenic function through STAT3, a signaling pathway also 
switched on by multiple other cytokines, such as IL-11, IL-21, 
or IL-22. Therefore, combinatorial approaches targeting multiple 
cytokines or their downstream signaling molecules, also con-
jointly with chemotherapy or immune checkpoint blockade, may 
prove to be more effective. Such approaches may possibly also 

permit a lower treatment dose of checkpoint inhibitors, thereby 
reducing the risk for immune-related adverse events (294, 295). 
Such type of therapeutic strategy has actually already shown 
increased anti-tumor activity in a murine model of metastatic 
CRC (122).

Manipulation of the Microbiota
Manipulation of the microbiota may represent an additional 
future therapeutic strategy for the treatment of CRC. Overall 
changes in microbial communities have been found in the 
adenoma-to-carcinoma sequence of CRC, compared with healthy 
controls (296). Different bacterial communities are either under- 
or overrepresented in cancerous versus adjacent non-cancerous 
intestinal tissues (297). Importantly, certain types of commensal 
bacteria can influence the host immune system by promoting the 
accumulation of Th17 or Treg in the intestinal mucosa (298, 299). 
In addition, commensal and pathogenic bacteria species induce 
different cytokine responses in IECs (300, 301). Alterations in 
the microbiota have been shown to drive IL-17C production 
from IECs to promote tumorigenesis (302). Intestinal tumors 
are frequently covered by microbial biofilms, which correlates 
with enhanced epithelial cell IL-6 and STAT3 activation (303). 
Moreover, bacteria-derived butyrate induces IL-18 in the colonic 
epithelium (304). Finally, the intestinal microbiota can influence 
the outcome of tumor immunotherapy, possibly by augmenting 
dendritic cell function and subsequent priming of anti-tumor 
T cells (305, 306). Therefore, it is conceivable that modulation 
of the microbiome may permit to influence the composition of 
the immune effectors and the cytokine networks within the CRC 
stroma, which may be used as adjuvant for therapy. A future 
objective in the field will, thus, be to advance our understanding 
on how microbes cross talk with the host to either promote or 
inhibit CRC formation. Improved knowledge of such commu-
nication pathways will likely ameliorate the treatment of CRC.
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