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Cullin-RING ubiquitin ligases are the largest E3 ligase family in eukaryotes and are mul-
tiprotein complexes. In these complexes, the Cullin protein serves as a scaffold to con-
nect two functional modules of the ligases, the catalytic subunit and substrate-binding 
subunit. To date, eight members of the Cullin family proteins have been identified. In the 
Cul3 ubiquitin ligases, Bric-a-brac/Tramtrack/Broad complex (BTB) domain-containing
proteins function as a bridge to connect Cul3 and substrates. While the BTB domain
is responsible for Cul3 binding, these proteins usually contain an additional domain for 
substrate interaction, such as MATH, kelch, Zn finger, and PAM, Highwire, and RPM-1 
(PHR domain). With the existence of a large number of BTB proteins in human, the Cul3 
ubiquitin ligases ubiquitinate a wide range of substrates involving in diverse cellular func-
tions. In this review, we will discuss recent advances on the functions of Cul3 ubiquitin 
ligases in cancer development, progression, and therapeutic response and the dysreg-
ulation of Cul3-mediated ubiquitination events in human malignancies. In particular, we 
will focus on three Cul3 substrate adaptors, kelch-like ECH-associated protein (Keap1), 
kelch-like family member 20 (KLHL20), and speckle type BTB/POZ protein (SPOP), with 
the intent to highlight novel targets in cancer therapy.
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iNTRODUCTiON

The ubiquitin–proteasome system controls a wide range of physiological processes and disease 
conditions, including cancer. In this system, the addition of ubiquitin moiety to the lysine residue of 
protein is mediated by a cascade of enzymatic reactions involving E1 activating enzyme, E2 conjuga-
tion enzyme, and E3 ubiquitin ligase, in which substrate specificity is conferred by E3 ubiquitin 
ligase (1, 2). Cullin-RING multiprotein complexes comprise the largest family of ubiquitin ligases, 
in which one particular Cullin serves as a scaffold for linking two functional modules: the catalytic 
RING finger protein Roc1 or Roc2 and the substrate-binding module for bringing substrate within 
the proximity to the catalytic module (3). The human Cullin family consists of eight members: 
Cul1, Cul2, Cul3, Cul4A, Cul4B, Cul5, Cul7, and Cul9. In the Cul3 family of ubiquitin ligases, the 
Bric-a-brac/Tramtrack/Broad complex (BTB) domain-containing protein functions as the substrate 
adaptor to bridge Cul3 and substrate and, therefore, is in analogous to the Skp1–F-box heterodimer 
in the Cul1 complex (4, 5). Structural analysis indicates that the BTB domain adopts a five α-helical 
fold resembling other Cullin-binding proteins in the Cullin-RING ligase complexes, such as Skp1 
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and ElonginC (6). However, two features are unique for the BTB-
domain proteins among the substrate adaptors of Cullin family. 
First, BTB proteins are capable of dimerization and, therefore, can 
organize two Cul3 molecules in one E3 ligase complex. Second, 
many BTB proteins contain additional domains and can be clas-
sified into subfamilies based on these domains, such as MATH, 
kelch, Zn finger, and PAM, Highwire, and RPM-1 (PHR). These 
additional domains are responsible for the interaction of BTB 
proteins with the substrate of Cul3 complex. Although human 
genome encodes ~200 BTB proteins, not all of them serve as sub-
strate adaptors of Cul3 ubiquitin ligases. For instance, BTBD12, 
which lacks a 3-box region critical for binding Cul3, does not 
copurify with Cul3 from cells (7). In addition, KLHL39, which 
contains certain non-conserved residues in the BTB domain, fails 
to bind Cul3 (8).

With the existence of a large number of substrate adaptors, 
Cul3 ubiquitin ligases have recently been shown to participate in 
diverse cellular processes, such as cell cycle regulation, protein 
trafficking, development, and stress responses. In human, func-
tional alterations of this family of ubiquitin ligases are associated 
with several disease states, such as muscle diseases, metabolic 
disorders, and cancers (4). This review will provide insights into 
the functions of Cul3 ligases in tumorigenesis and progression, 
their dysregulation in human cancers, and therapeutic implica-
tions. In particular, we will focus on Cul3 complexes containing 
the following three substrate adaptors, kelch-like ECH-associated 
protein (Keap1) , kelch-like family member 20 (KLHL20), and 
speckle type BTB/POZ protein (SPOP). All three proteins bind 
Cul3 through their BTB domain and elicit profound effects on 
tumorigenesis and progression.

THe DUAL ROLeS OF Keap1–Nrf2 
PATHwAY iN CANCeR

Kelch-like ECH-associated protein is a Cul3 substrate adaptor 
containing BACK and kelch-repeat domains in addition to the 
BTB domain (9–11). Keap1 was first discovered as a key inhibitor 
of the transcription factor Nf-E2-related factor 2 (Nrf2) (12, 13), 
which binds to the antioxidant response element (ARE) present 
in the promoters of downstream genes encoding proteins partici-
pating in the cellular antioxidant responses and detoxification of 
xenobiotics and drugs (14). Under basal conditions, Keap1-based 
Cul3 complex targets Nrf2 for ubiquitin-dependent degrada-
tion (9–11). In the presence of oxidative or electrophilic stress, 
a number of reactive cysteine residues in Keap1 are covalently 
modified, leading to its conformational change to prevent Nrf2 
ubiquitination. Consequently, Nrf2 is stabilized and undergoes 
nuclear translocation. Through this mechanism, the Keap1–Nrf2 
pathway plays a major role in anti-oxidation and cell defense 
responses.

Since oxidative stress plays an important role in carcinogen-
esis, the chemopreventive function of Nrf2 is expected to sup-
press the initiation of carcinogenesis. In support of this notion, 
Nrf2−/− mice are more prone to chemical carcinogen-induced 
tumor formation in the stomach, bladder, and skin (15–19). In 
addition, Nrf2 deficiency accelerates tumor growth in a mouse 

lung cancer model induced by B-RafV600E (20). These findings 
suggest that activation of Keap1–Nrf2 pathway could be used as 
a chemopreventive strategy.

Although the chemopreventive function of Keap1–Nrf2 
pathway protects normal cells from carcinogenesis, once tumor 
is formed, cancer cells hijack this pathway for acquiring survival 
and growth advantage to cope with stressed conditions. For 
instance, increased Nrf2 expression in cancer cells decreases 
their sensitivity to a variety of chemotherapeutic agents as well 
as ionizing radiation, whereas Nrf2 knockdown sensitizes them 
to cancer therapy (21–24). A similar chemoresistant phenotype 
is found in cancer cells with elevated Nrf2 activity due to reduced 
Keap1 expression (21). Although Nrf2-induced activation of 
antioxidant enzymes accounts for one mechanism of its chemore-
sistance/radioresistance effect, Nrf2 can also cross talk with other 
pathways to affect tumor-cell survival. For instance, increased 
Nrf2 expression is shown to interfere with p53-induced apop-
tosis (25). Apart from conferring the resistance of tumor cells to 
therapy, Keap1–Nrf2 pathway also promotes proliferation. It has 
been found that Nrf2 expression is elevated in response to several 
oncogenes, such as K-Ras, B-Raf, and Myc. As a consequence, 
Nrf2-mediated antioxidant responses suppress ROS production 
in response to the activation of oncogenes, and Nrf2 deficiency 
suppresses oncogene-induced proliferation and tumorigen-
esis (26). Evidence has emerged that the proliferative effect of 
Keap1–Nrf2 pathway is associated with metabolic reprograming 
(27). Several genes in the pentose phosphate pathway, such as 
glucose-6-phosphate dehydrogenase (G6PD), phosphogluconate 
dehydrogenase (PGD), transaldolase 1 (TALDO1), and transke-
tolase (TKT), are Nrf2 targets. Nrf2 also activates other metabolic 
genes, such as malic enzyme 1 (ME1), phosphoribosyl pyroph-
osphate amidotransferase (PPAT), methylenetetrahydrofolate 
dehydrogenase 2 (MTHFD2), and isocitrate dehydrogenase 1 
(IDH1). These enzymes support NADPH generation, purine 
production, and glucose flux, thereby providing cancer cells with 
energy and building blocks of DNA and RNA for accelerating 
proliferation.

The dual functions of Nrf2 in cancer are nicely demonstrated 
by a mouse model of carcinogenesis. It has been found that 
Nrf2−/− mice show increased tumor formation at 8th week, after 
the administration of carcinogen urethane, but become less 
advanced in malignant progression at 16th week (28). Such find-
ing also suggests that transient activation of Nrf2 in normal cells 
is protective but prolonged Nrf2 activity enhances tumor survival 
and progression.

DYSReGULATiON OF Keap1–Nrf2 
PATHwAY iN CANCeR

Accumulating evidence indicates that Nrf2 expression is aber-
rantly elevated in many types of cancer. Dysregulation of Nrf2 
in tumors can be mediated by multiple mechanisms. Among 
them, somatic mutations in the components of Keap1–Nrf2 
pathway have been found in many cancer types. Loss-of-
function mutations in KEAP1 were initially identified in human 
lung adenocarcinoma cell lines, which cause reduced affinity of 
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Keap1 to Nrf2 (29). Since then, Keap1 mutations have also been 
found in several other cancer types, such as NSCLC, gallblad-
der, ovarian, and liver cancers (21, 30–33). In some cases, Keap1 
mutations have a dominant-negative effect on wild-type Keap1, 
and thus, a heterozygous mutation is sufficient to cause Nrf2 
activation (34). As to Nrf2, gain-of-function mutations have 
been found in several cancers, including lung, head and neck, 
and esophageal carcinoma (35, 36). The mutations are found 
exclusively within the DLG and ETGE motifs of Nrf2, which 
are both required for binding to Keap1 (37). Genetic alterations 
of KEAP1 or NFE2L2 (Nrf2 gene) in cancers, especially in lung 
cancers, are also uncovered by large-scale omic project (38). In 
addition to Keap1 and Nrf2, somatic mutations leading to Nrf2 
accumulation in cancers have also been discovered in other 
key components of the Keap1–Nrf2 pathway, such as Cul3 and 
Rbx1 (39–41).

Kelch-like ECH-associated protein downregulation in cancers 
can also be mediated by epigenetic mechanisms. For instance, 
hypermethylation of the KEAP1 promoter has been found in 
lung, prostate, malignant glioma, and colorectal cancers, leading 
to Nrf2 accumulation (42–44). In some cases, KEAP1 hyper-
methylation is associated with poor prognosis of patients (45). 
Besides DNA methylation, miRNA-induced silencing is another 
mechanism for modulating Keap1–Nrf2 pathway in cancer. For 
instance, miR-200a, which is frequently repressed in cancer, is 
found to target Keap1, thereby indirectly regulating Nrf2 (46). In 
addition, downregulation of several Nrf2 targeting miRNAs in 
esophageal squamous cell carcinoma is found to associate with 
poor prognosis (47).

Additional mechanism for regulating Keap1–Nrf2 pathway 
involves proteins that disrupt the Keap1–Nrf2 interaction. One 
such protein is p62 (also known as sequestosome 1), which 
contains an STGE motif that is similar to the ETGE motif in 
Nrf2. Through this motif, p62 functions as a pseudosubstrate 
of Keap1 by competing with Nrf2 for Keap1 binding (48–51). 
Interestingly, p62 is a transcriptional target of Nrf2, indicating 
the existence of feedback regulation between the two proteins 
(49). By acting as an autophagic cargo, p62 level is elevated in 
response to the blockage autophagic flux. In this context, the 
elevated p62 sequestrates Keap1 in the autophagosome, thereby 
stabilizing Nrf2 (52). Moreover, p62 phosphorylation through 
an mTOR-dependent mechanism increases its affinity to Keap1, 
leading to persistent Nrf2 activation to enhance tumor growth 
(53). While p62 interrupts Keap1–Nrf2 pathway by binding to 
Keap1, the p53 downstream target p21 binds to the ETGE and 
DLG motifs of Nrf2 to prevent its recruitment to Keap1 (54). A 
similar effect was observed from the tumor suppressor BRCA1, 
which interacts with the ETGE motif to prevent the binding of 
Nrf2 to Keap1 (55).

Dysregulation of Keap1–Nrf2 pathway in cancer can also 
be mediated by metabolites. In the hereditary type 2 papillary 
renal cell carcinoma, homozygous loss-of-function mutation in 
the fumarate hydratase leads to the accumulation of fumarate, 
a metabolite of the Krebs cycle. The excessive fumarate forms 
adduct on the cysteine residues of Keap1, thereby preventing Nrf2 
ubiquitination to promote tumorigenesis (56, 57).

TARGeTiNG Keap1–Nrf2 PATHwAY FOR 
CANCeR PReveNTiON AND CANCeR 
TReATMeNT

Given the dual roles of Keap1–Nrf2 pathway in cancer, manipula-
tion of this pathway could in principle offer therapeutic benefits. 
For instance, compounds that activate Nrf2 may be used for 
cancer prevention, whereas Nrf2 inhibitors could be used as 
adjuvants in chemotherapy to overcome chemoresistance. Among 
the Nrf2 activators, many are naturally existing phytochemicals. 
The prototype and most studied agent is SFN found in cruciferous 
vegetables. SFN has been shown to exert chemopreventive effect 
against several cancer types, such as colon, skin, lung, and stom-
ach cancers (58). To date, certain Keap1–Nrf2 activating agents 
have been tested in clinical trials for their chemopreventive effects 
against various types of cancer (59, 60). As to Nrf2 inhibitors, a 
number of small molecules have been identified to inhibit Nrf2 
expression or activity, such as IM3829 and brusatol (61, 62). In 
addition to directly manipulating Nrf2, autophagy pathway that 
intersects with Keap1–Nrf2 pathway via p62-dependent degrada-
tion may also be used as a strategy to modulate the activity of Nrf2.

KLHL20–DAPK PATHwAY iN iNTeRFeRON 
ReSPONSeS

Kelch-like family member 20 possesses the same domain archi-
tecture as Keap1, that is, an N-terminal BTB domain, followed 
by a BACK domain and six kelch repeats. Similar to Keap1 and 
many other KLHL proteins, KLHL20 binds to Cul3 through its 
BTB domain to function as a substrate adaptor of Cul3 ubiquitin 
ligase (63). This protein was uncovered in our laboratory as an 
interacting partner of death-associated protein kinase (DAPK), 
a tumor-suppressor protein involved in several cell death para-
digms, including apoptosis, autophagic death, and programed 
necrosis (64–66). In addition to promoting cell death, DAPK elic-
its other anticancer functions, such as suppressing cell migration 
and adhesion and promoting cytoskeleton remodeling (67, 68). 
Consistent with these pleiotropic tumor-suppressive functions, 
DAPK expression or activity is often suppressed in tumors by 
epigenetic, posttranscriptional, or posttranslational mechanisms 
(64, 69–71). The finding that DAPK binds to the kelch-repeat 
domain of KLHL20 suggests its function as a substrate of the 
Cul3–KLHL20 ubiquitin ligase. Subsequent biochemical analyses 
have validated this notion. Moreover, KLHL20-dependent ubiq-
uitination results in the degradation of DAPK by proteasomes. 
Through this mechanism, KLHL20 antagonizes the cell death-
promoting effect of DAPK (63).

Death-associated protein kinase was originally discovered 
based on its involvement in interferon (IFN)-induced cell death 
(72). Interestingly, we found that the KLHL20-mediated DAPK 
ubiquitination and degradation can also be modulated by IFN, 
in particular, IFN-α and IFN-γ (63). In response to IFN-α/γ 
treatment, KLHL20 is relocated to a subnuclear domain called 
PML–nuclear body (PML–NB). This is due to IFN-α/γ-induced 
transcriptional upregulation of promyelocytic leukemia (PML) 
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(73, 74), the major component of PML–NBs, along with the 
competition between PML and DAPK for KLHL20 binding (63). 
As a consequence, DAPK can no longer gain access to KLHL20 
and is, therefore, stabilized under IFN-α/γ treated conditions. 
The stabilization of pro-death DAPK explains its contribution 
to IFN-induced apoptosis and autophagic death. In certain 
multiple myeloma cells where IFN-α/γ cannot induce PML and 
PML–NBs, DAPK is persistently ubiquitinated and degraded by 
KLHL20. Importantly, this mechanism contributes to the resist-
ance of these multiple myeloma cells to IFN-based therapy. Thus, 
the KLHL20–DAPK pathway plays a determining role in the 
efficacy of IFN-based anticancer therapy.

KLHL20 PROMOTeS THe DeGRADATiON 
OF TUMOR-SUPPReSSOR PML

Death-associated protein kinase is not the only tumor-suppressor 
protein targeted by KLHL20. The finding that PML competes with 
DAPK for KLHL20 binding suggests its function as a KLHL20 
substrate. The PML gene was identified at the break point of 
the t(15:17) chromosome translocation of acute promyelocytic 
leukemia, which results in the generation of oncogenic PML–
RARα fusion protein (75). The PML protein is crucial for the 
assembly of PML–NBs and elicits pleiotropic antitumor effects, 
such as suppression of proliferation, angiogenesis, cell migration, 
and metastasis, and promotion of apoptosis and senescence 
(76–79). Additionally, PML regulates cancer cell metabolism 
and suppresses cancer stem cell maintenance (80, 81). Consistent 
with these tumor-suppressive functions, the expression of PML 
protein, but not its mRNA, is frequently lost or reduced in a wide 
range of human malignancies, such as colon, lung, prostate, breast, 
brain tumors, germ cell tumors, and non-Hodgkin’s lymphoma 
(82). Evidence has emerged that ubiquitin-mediated proteasomal 
degradation is a key mechanism for PML degradation in tumors 
(83–85). The Cul3–KLHL20 complex is one of the ubiquitin 
ligases that target PML for ubiquitination and proteasomal 
degradation. However, two consecutive posttranslational modi-
fications are required for PML binding to KLHL20, that is, phos-
phorylation at S518 by CDK1/2 followed by prolyl isomerization 
of the pS518–P519 peptide bond by Pin1 (86). This mechanism 
allows a cell cycle-dependent regulation of PML. Accordingly, 
PML abundance is gradually declined with the progression of 
cell cycle (87), correlating with the gradual increase of CDK1/2 
activity. Furthermore, since CDK1/2 activity and Pin1 expression 
are frequently upregulated in tumors, KLHL20-dependent PML 
ubiquitination and degradation is expected to be enhanced in 
tumors. Through degradation of PML, KLHL20 is expected to 
elicit oncogenic roles by blocking PML tumor-suppressive effects. 
Indeed, KLHL20 confers tumor-promoting functions, such as 
transformation, migration, and survival, which are dependent 
on PML downregulation (86).

KLHL20 iN TUMOR HYPOXiA ReSPONSeS

The finding that KLHL20 is a transcriptional target of hypoxia-
inducible factor-1 (HIF-1) unravels an additional layer of the 

regulation of KLHL20-mediated PML ubiquitination (86). HIF-1 
and its paralog HIF-2 are key molecules to mediate the adapta-
tion of hypoxia by transcriptional activation of a large panel of 
genes containing “hypoxia responsive element” (HRE) on their 
promoters (88). This transcriptional program plays crucial roles 
in many aspects of cancer biology, including immortalization, 
autocrine growth, metabolic reprograming, invasion, metastasis, 
angiogenesis, cancer stem cell maintenance, and resistance to 
chemotherapy and radiotherapy (89). The promoter of KLHL20 
contains two HREs, which are both involved in hypoxia-induced 
transactivation (86). Due to the induction of KLHL20 by HIF-1, 
PML ubiquitination and degradation is potentiated under hypoxia 
conditions. Interestingly, PML is itself a negative regulator of 
HIF-1 protein translation through a mechanism involving mTOR 
repression (76). Thus, the HIF-1-induced, KLHL20-mediated 
PML degradation together with the PML-induced, mTOR-medi-
ated HIF-1α downregulation should constitute a double-negative 
feedback loop to maximize HIF-1α accumulation in hypoxia. 
Indeed, evidence has supported the participation of KLHL20/
PML pathway in this feedback regulation to lead to a robust 
induction of both HIF-1α and HIF-2α in response to hypoxia 
(86). Thus, KLHL20-mediated PML ubiquitination results in 
not only the inhibition of PML tumor-suppressive functions but 
also a robust induction of various tumor hypoxia responses to 
contribute to the aggressiveness of diseases.

DYSReGULATiON OF KLHL20 iN CANCeR

Since HIF-1α is frequently upregulated in tumors through 
hypoxia-dependent or -independent mechanism (90), KLHL20 
expression is expected to be upregulated in certain cancers. In 
line with this notion, KLHL20 expression is elevated in prostate 
cancers compared to its expression in benign prostatic hyperpla-
sia. Furthermore, this upregulation correlates with dysregulation 
of several other key molecules in the KLHL20–PML pathway, 
including HIF-1α upregulation, Pin1 upregulation, and PML 
downregulation (86). More importantly, patients displaying the 
signature of high HIF-1α, high KLHL20, high Pin1, and low PML 
expression pattern are found to be progressively increased with 
disease progression. These clinical findings support the signifi-
cance of KLHL20–PML pathway in the progression of prostate 
cancer and suggest a promise for targeting this pathway in the 
treatment of aggressive prostate cancers.

In addition to the regulation of its expression level, the activ-
ity of Cul3–KLHL20 E3 ligase can be regulated in tumors by an 
inhibitor (8). Interestingly, this inhibitor, called KLHL39, shares 
a similar domain structure with KLHL20. However, due to the 
presence of certain atypical residues in its BTB domain, KLHL39 
fails to bind Cul3. Rather, it interacts with KLHL20 through the 
kelch domain of two proteins. We found that KLHL39 cannot 
serve as a substrate of the Cul3–KLHL20 ubiquitin ligase but 
disrupts the interaction of KLHL20 with its substrate such as 
PML and DAPK. Surprisingly, KLHL39 also blocks the binding 
of KLHL20 to Cul3 through an unknown mechanism. Through 
these dual inhibitory roles, i.e., inhibition of KLHL20 binding 
to Cul3 and substrates, KLHL39 blocks KLHL20-dependent 
ubiquitination and degradation of DAPK and PML, leading to an 
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increase of their steady-state levels. Clinically, low expression of 
KLHL39 in human colon cancer correlates with low expression 
of PML and DAPK, higher tumor grade, lymph node metastasis, 
and distant metastasis. Furthermore, by comparing the primary 
tumors with lymph node metastases of the same patient, low 
expression of each KLHL39, DAPK, and PML is more frequently 
observed in the metastatic lesions. Consistent with the clinical 
observations, KLHL39 suppresses colon cancer migration, inva-
sion, and metastasis, and these tumor-suppressive effects are all 
mediated through a PML- and DAPK-dependent manner. These 
findings indicate a tumor-suppressive function of KLHL39 by 
blocking KLHL20-dependent ubiquitination of PML and DAPK.

THe TUMOR-SUPPReSSive  
FUNCTiONS OF SPOP

Speckle type BTB/POZ protein comprises an N-terminal MATH 
domain, a BTB domain, a 3-box domain, and a C-terminal 
nuclear localization sequence. Similar to other BTB proteins, 
SPOP serves as a substrate adaptor of Cul3 ubiquitin ligase, 
and substrate binding is mediated by its MATH domain, which 
binds to a SPOP-binding consensus (SBC) motif φ-π-S-S/T-S/T 
(φ = non-polar; π = polar) on the substrate (7). The linkage of 
SPOP to cancer was first revealed by cancer genomic analyses, 
which uncovers SPOP as a significantly mutated gene in human 
prostate cancers (91). Subsequent analyses using larger prostate 
cancer patient cohorts confirmed this finding (92–95). Most of 
these SPOP mutations occur in the MATH domain, suggesting 
that mutations impair substrate binding. To date, a number of 
SPOP substrates have been identified in the context of prostate 
cancer, including androgen receptor (AR), steroid receptor coac-
tivator (SRC)-3, DEK, ERG, and SENP7 (96–101).

Androgen receptor signaling is crucial for prostate cancer 
initiation, progression, and development of resistance to antian-
drogen therapy (102). AR is found as a bona fide substrate of SPOP-
based Cul3 ubiquitin ligase and an SBC motif in the hinge region 
of AR mediates its interaction with SPOP (97). SPOP-mediated 
AR ubiquitination leads to its proteolysis in the proteasome. 
Importantly, prostate cancer-associated SPOP mutants fail to 
target AR for ubiquitination, whereas AR splicing mutants lack-
ing hinge domain are refractory to SPOP-mediated degradation. 
This study also revealed that SPOP-mediated AR degradation is 
antagonized by androgens and promoted by antiandrogens, sug-
gesting that ligand binding-induced conformational change of 
AR could affect its recruitment to SPOP. In addition to AR, SPOP 
binds to SRC-3, a preferred coactivator of hormone-activated 
AR (103, 104), and targets it for Cul3-mediated ubiquitination 
and degradation (99). Again, prostate cancer-associated SPOP 
mutants cannot target SRC-3 for degradation (105). Thus, these 
SPOP mutants could enhance AR functions in prostate cancers 
by inhibiting the turnover of both AR and its coactivator SRC-3.

The role of AR in prostate cancer initiation is mediated in 
part by the translocation of oncogenic ETS family transcription 
factors, such as ERG and ETV1, to the loci of androgen regulated 
genes including TMPRSS2 (106, 107). Among them, the most 
common fusion is TMPRSS2-ERG, which occurs in >50% of 

prostate cancers. This fusion allows AR-induced ERG overex-
pression, which elicits oncogenic functions such as proliferation, 
migration, and invasion (108). Recent studies indicate that ERG 
is targeted to SPOP-based Cul3 ubiquitin ligase for ubiquitina-
tion and degradation, and an SBC motif in the N-terminus of 
ERG is responsible for SPOP recognition (96, 98). Importantly, 
prostate cancer-associated SPOP mutants fail to induce ERG 
degradation, whereas the majority of TMPRSS2-ERG fusions 
encoding N-terminal truncated ERG proteins are resistant to 
SPOP-mediated degradation. Since these two types of genetic 
alterations, i.e., SPOP mutations and TMPRSS2-ERG fusions, 
similarly lead to ERG stabilization, it is conceivable that their 
incidences are mutually exclusive in prostate cancers (93).

Using mass spectrometry-based ubiquitylome analysis, several 
SPOP substrates have been discovered from prostate cancer cells, 
such as DEK, TRIM24, and NCOA3 (100). Among them, DEK 
stabilization contributes to prostate cancer invasion and stem 
cell-like property and DEK upregulation correlates with SPOP 
mutations, in prostate cancer. Besides these substrates, SENP7 
desumoylase is also identified as a SPOP substrate (101). The 
SPOP–SENP7 axis promotes prostate cancer senescence, which 
is impaired by the presence of prostate cancer-associated SPOP 
mutants. Collectively, SPOP targets the degradation of multiple 
tumor-promoting proteins in prostate cancer to contribute to the 
carcinogenesis process.

Of note, SPOP mutations in the MATH domain are also 
found in endometrial cancers (109). In this cancer type, wild-
type SPOP, but not cancer-associated SPOP mutants, targets 
estrogen receptor-α for ubiquitination and degradation (110). In 
breast cancer, SPOP represents one of the highest loci for loss 
of heterozygosity (99). Progesterone receptor, which contributes 
to the development of breast cancer, is found to function as a 
substrate of SPOP is this cancer type (111). These findings suggest 
that SPOP governs the turnover of distinct hormone receptors to 
participate in the carcinogenesis of several cancer types.

THe TUMOR-PROMOTiNG  
FUNCTiONS OF SPOP

In contrast to the aforementioned cancer types, SPOP plays a 
tumor-promoting role in kidney cancer. SPOP high expression 
occurs in 99% of clear cell renal cell carcinoma (ccRCC) (112), the 
most prevalent type of kidney cancer. The pathology of ccRCC is 
tightly associated with HIF-1 accumulation resulted from defi-
ciency of VHL, which acts as a substrate adaptor of Cul2 ubiquitin 
ligase (113). Importantly, SPOP is a transcriptional target of 
HIF-1 and hypoxia potentiates the cytoplasmic accumulation of 
SPOP (114). This cytoplasmic retention of SPOP confers tumor-
promoting activities, which is opposite to the function of SPOP 
in the nucleus. Mechanistically, SPOP controls the ubiquitination 
and degradation of several tumor suppressors residing in the 
cytoplasm, such as PTEN, ERK phosphatases, Daxx, and Gli2. In 
addition to kidney cancer, SPOP is reported to mediate ubiquit-
ination and destabilization of breast cancer metastasis suppressor 
1 (BRMS1) in breast cancer, thereby derepressing metastasis-
associated genes (115). Thus, SPOP elicits context-dependent 
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functions in cancer development, which is influenced in part by 
its different subcellular distributions.

CONCLUDiNG ReMARKS

A significant number of recent studies shed light on the bio-
logical functions of Cul3 E3 ligases that regulate tumor devel-
opment, progression, and therapeutic response. In particular, 

Keap1, KLHL20, and SPOP are the most reported Cul3 substrate 
adaptors for their impacts on various cancer types. These three 
proteins mediate Cul3-dependent ubiquitination on multiple 
substrates to influence on tumor initiation, progression, and 
therapeutic response (Figure 1). While KLHL20 mainly plays a 
tumor-promoting role, SPOP elicits both tumor-promoting and 
suppressive effects depending on its subcellular localization and 
cell context. As to Keap1, its role in cancer varies with the stages 

FiGURe 1 | Summary of the functions and substrates of three Cul3 complexes in cancer. (Top) The Cul3–Keap1 ubiquitin ligase mediates Nrf2 degradation 
to suppress antioxidant responses, which plays dual roles in cancer initiation and progression. (Middle) The Cul3–KLHL20 ubiquitin ligase mediates the degradation 
of tumor-suppressor proteins PML and DAPK, thereby promoting tumor progression and therapy resistance. (Bottom) The Cul3–SPOP ubiquitin ligase possesses 
context-dependent tumor-promoting or -inhibiting role by regulating the degradation of multiple substrates.
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