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Translational regulation has been shown to play an important role in cancer and tumor 
progression. Despite this fact, the role of translational control in cancer is an understud-
ied and under appreciated field, most likely due to the technological hurdles and paucity 
of methods available to establish that changes in protein levels are due to translational 
regulation. Tumors are subjected to many adverse stress conditions such as hypoxia or 
starvation. Under stress conditions, translation is globally downregulated through several 
different pathways in order to conserve energy and nutrients. Many of the proteins that 
are synthesized during stress in order to cope with the stress use a non-canonical or 
cap-independent mechanism of initiation. Tumor cells have utilized these alternative 
mechanisms of translation initiation to promote survival during tumor progression. This 
review will specifically discuss the role of cap-independent translation initiation, which 
relies on an internal ribosome entry site (IRES) to recruit the ribosomal subunits inter-
nally to the messenger RNA. We will provide an overview of the role of IRES-mediated 
translation in cancer by discussing the types of genes that use IRESs and the conditions 
under which these mechanisms of initiation are used. We will specifically focus on three 
well-studied examples: Apaf-1, p53, and c-Jun, where IRES-mediated translation has 
been demonstrated to play an important role in tumorigenesis or tumor progression.
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inTRODUCTiOn

Gene expression is regulated at multiple levels: DNA, transcription, translation, messenger RNA 
(mRNA) turnover, mRNA or protein localization, and protein stability. Dysregulation of any one 
of these steps results in aberrant gene expression, which can be detrimental to the cell or organ-
ism. The sheer complexity of these processes and the energy that is invested in them demonstrates 
the importance of accurate regulation of gene expression. The major research focus in aberrant 
gene expression in cancer has been on alterations in DNA or transcription. However, the improved 
methods for proteomics and transcriptomics have revealed that there is a remarkably low correlation 
between mRNA transcript and protein levels (1), suggesting that protein expression is extensively 
regulated at the posttranscriptional or posttranslational level. This review focuses on translational 
control mechanisms during cellular stress. Global mechanisms of translational control in cancer 
were reviewed elsewhere (2).

The vast majority (>90%) of mRNAs are translated using a cap-dependent mechanism of 
initiation. Briefly, the eukaryotic initiation factor 4F (eIF4F) complex consisting of eIF4E, eIF4A, 
eIF4G recognizes and binds to the 5′ cap structure on the mRNA. The 40S subunit is recruited to 
the 5′ end of the mRNA as a 43S complex (40S, eIF5, eIF3, eIF1, eIF1A, eIF2, and Met-tRNAi). 
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The 40S subunit scans down the mRNA in a 5′–3′ direction until 
a start codon is recognized, the 60S subunit joins, forming an 
80S ribosome, and protein synthesis begins (3). Translation is 
a very energy-demanding process (4); therefore, under condi-
tions of cellular stress, cap-dependent translation is globally 
downregulated by several mechanisms, depending on the type 
and extent of the stress. Protein synthesis can be inhibited glob-
ally by phosphorylating eIF2α, which delivers the initiator met-
tRNAi for each round of initiation (5). There are four kinases that 
sense distinct cellular stresses and phosphorylate eIF2α. This 
globally downregulates protein synthesis while simultaneously 
enhances translation of certain mRNAs that encode for proteins 
involved in cell adaptation to cellular stress. Some IRESs are less 
sensitive to eIF2α phosphorylation during global inhibition of 
translation (6–8).

Mammalian target of rapamycin (mTOR) is a conserved 
protein kinase that regulates a multitude of cellular processes 
in response to growth factors or nutrients (9, 10). mTOR forms 
complexes with other proteins to form two distinct complexes, 
mTORC1 and mTORC2 (11). The mTORC1 complex is best 
understood and senses both intracellular and extracellular cues: 
growth factors, stress, oxygen, energy status, and amino acids. 
Signals that are pro-growth, such as growth factors, and nutri-
ents stimulate mTOR, whereas stresses inhibit mTOR activity. 
Inhibition of mTOR results in de-repression of eIF4E-binding 
protein (4E-BP), which sequesters the cap-binding protein 
[eukaryotic initiation factor 4E (eIF4E)] that is required for cap-
dependent initiation (12). 4E-BP inhibits the most predominant 
mechanism of translation initiation, cap-dependent initiation. 
Proteins synthesized from mRNAs under these conditions use 
a non-canonical, cap-independent mechanism of initiation 
from an IRES located in the 5′ untranslated region (5′UTR). 
Initiation of protein synthesis by an IRES involves internal 
recruitment of the 40S ribosome either upstream or directly at 
the start codon by an unknown mechanism that does not require 
a 5′ cap structure, eIF4E cap-binding protein, or a free 5′ end. 
IRES-containing mRNAs encode for proteins that are involved 
in cell growth, proliferation, apoptosis, and angiogenesis. 
There are several examples in the literature that demonstrate 
that IRES-mediated translation of certain mRNAs is required 
for tumor growth or vascularization (13–24) or resistance to 
apoptosis (20, 25, 26).

Viral IRESs were the first IRESs discovered, followed by the 
identification of cellular IRESs (27–29). IRESs are structurally 
and functionally diverse from one another and must be identi-
fied using a properly controlled functional assay, thus making 
identification of IRESs difficult. A commonly used functional 
assay has been the bicistronic reporter, whereby translation of 
an upstream open reading frame (ORF) is translated by a cap-
dependent mechanism and translation of the downstream ORF 
relies on an IRES in the intergenic region for translation. The 
bicistronic reporter is generally transfected into cells as DNA, 
depending on the cellular machinery to transcribe it into RNA, 
which is transported to the cytoplasm for translation. However, if 
there are cryptic splice sites or promoters that are introduced into 
the intergenic region (either in the IRES or instead of the IRES), 
then this can result in a transcript that encodes for a chimeric 

protein or a monocistronic message, respectively. Either way 
translation of the downstream reporter would be cap-dependent. 
Therefore, it is important to show not only that the bicistronic 
reporter yields expression of the downstream ORF but also that 
translation of the downstream ORF is independent of the first 
ORF and not from a monocistronic mRNA. Another potential 
false positive is if both ORFs are in the same reading frame, then 
there can be readthrough of the upstream stop codon, resulting 
in a chimeric protein that is translated cap-dependently. While 
readthrough is easy to control for, the others are difficult since 
this requires proving a negative that monocistronic mRNAs or 
alternatively spliced mRNAs are not present even at low levels 
(30). Since most of these artifacts arise from transfecting DNA, 
the obvious solution is to transfect RNA to bypass cellular splic-
ing and transcription; however, while this works fine for viral 
IRESs, many cellular IRESs may require a “nuclear experience,” 
to bind IRES-transacting factors that are important for stabiliz-
ing the IRES structure (31, 32). This may be due to the fact that 
unlike the highly structured viral IRESs, mRNAs that contain 
cellular IRESs may switch between cap-dependent and cap-
independent translation, depending on the cellular conditions. 
Stable RNA structures would be detrimental for cap-dependent 
translation, which involves scanning of the 40S subunit from the 
5′ end of the mRNA to the start codon. These challenges have 
led to the false reporting of some IRESs in the literature. This 
has resulted in a lot of controversies around cellular IRESs and 
which one have been correctly identified (33, 34). Nevertheless, 
there are compelling data demonstrating internal initiation of 
both cellular and viral IRESs (35–37), as well as their role in 
cancer development and gene expression during growth and 
development (16, 17, 24, 38–40).

In this review, we will describe the basic stress conditions 
that are known to upregulate IRES-mediated translation dur-
ing tumorigenesis. In order to demonstrate the significance of 
the role that cellular IRESs have in cancer, we have compiled a 
table of validated, bona fide IRES-containing cellular mRNAs 
with important roles in tumorigenesis (Table 1). In addition, 
we provide a detailed review of three cellular mRNAs that 
contain IRESs and discuss how their translational regulation 
impacts oncogenesis, cancer progression, and survival of the 
tumor cells.

iReS-MeDiATeD TRAnSLATiOn DURinG 
CeLLULAR STReSS

mRnAs encoding Proteins involved  
in Tumorigenesis and Cell Survival 
Are iReS-Dependent
Translation is globally downregulated under a variety of cellular 
conditions, such as mitosis, heat shock, cold shock, hypoxia, 
DNA damage, osmotic shock, starvation, and apoptosis 
(67–70). Many of these conditions accompany tumor progres-
sion, metastasis, and cancer treatments. In order for the tumor 
cells to survive and for the tumor to progress, proteins must be 
synthesized to cope with these stresses. Many of the mRNAs that 
encode for these proteins contain an IRES (Table 1), suggesting 
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TABLe 1 | iReS-containing cellular mRnAs with important roles in tumorigenesis.

Gene Cryptic promotera Cryptic splicinga Readthrough Reference

AML1/Runx1 No No No (41)
Apaf-1 (apoptotic protease-activating factor-1) No No No (42)
Cat-1 (cationic amino acid transporter) No No No (43)
c-IAP1 (cellular inhibitor of apoptosis protein 1) No No No (44)
cyp24a1 No No No (45)
EGR (early growth response) No No No (46)
EGFR/ERBB1/HER1 (epidermal growth factor receptor) No No ND (47)
Hox No No No (48)
Hif1α (hypoxia-inducible factor 1-alpha) No No No (14)
c-Jun No No No (49)
c-myc No No No (50, 51)
l-myc No No No (52)
n-myc No No No (40)
p16INK4a/CDKN2A No No ND (53, 54)
p27 Yes No No (55–57)
p53 No No No (58, 59)
p120 ND No ND (17)
SNAT2 (sodium-coupled neutral amino acid transporter) No No No (60)
c-src ND ND No (8)
SREBP-1a (sterol-regulatory-element-binding protein 1a) No No No (61)
VEGF (vascular endothelial growth factor) No No No (62–64)
XIAP (X-chromosome-linked inhibitor of apoptosis) No Yes No (21, 65)
Zeb2 No No No (66)

aThe presence of cryptic promoter or splicing activity does not exclude an mRNA from having an IRES, rather this means that a dicistronic DNA reporter cannot be used to validate 
the presence of an IRES or that there is a problem with the particular reporter construct, and it may present artifacts independent of the IRES being tested.
ND, not determined.
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that IRES-mediated translation must play an important role in 
tumor progression and survival. Direct evidence supporting this 
model comes from several studies (15–17, 71). IRES-mediated 
translation was shown to promote cell survival and the forma-
tion of tumor emboli in inflammatory breast cancer (16, 17). 
Another study showed that treatment of a 3D ovarian cell 
culture with a PI3K/mTOR inhibitor (to globally downregulate 
cap-dependent protein synthesis) resulted in apoptosis of the 
majority of the cancer cells. Importantly, a sub-population of 
the cells that were resistant to treatment overexpressed survival 
proteins that contained IRESs (15). These data demonstrate that 
IRES-mediated translation may be required for cancer progres-
sion and survival.

Additional support for the role of IRES-driven translation 
in tumorigenesis comes from studies of a genetic disorder 
called X-linked dyskeratosis (X-DC). Patients with mutations 
in the DKC1 gene, which causes X-DC, exhibit an increased 
susceptibility to cancer among other abnormalities (72). DKC1 
encodes for dyskerin, a pseudouridine synthase that isomerizes 
uridines on rRNA to pseudouridines in a sequence-specific 
manner. Biochemical evidence demonstrated that ribosomes 
with decreased pseudouridylation displayed a reduced affinity 
for IRES-containing mRNAs (73). Importantly, when rRNA 
pseudouridylation is reduced, there is a specific decrease in trans-
lation of some IRES-containing mRNAs: p27, XIAP, and Bcl-xL 
(74), while another IRES-containing mRNA, vascular endothelial 
growth factor (VEGF), is translationally induced (75). Reduced 
levels of p27, a tumor suppressor, could at least, in part, explain 
why patients with mutations in DKC1 have an increased suscep-
tibility to cancer (76). Altogether, these studies reveal a significant 

role for posttranscriptional control of gene expression during 
tumorigenesis that requires IRES-mediated initiation.

CAP-inDePenDenT TRAnSLATiOn in 
APOPTOSiS

p53 iReS-Mediated Translation is 
Required for p53 induction of Cellular 
Senescence and Apoptosis
The p53 tumor suppressor protein is dysregulated in over 
half of all cancers. It is a transcription factor that controls the 
expression of protein coding genes as well as micro-RNAs 
(miRNAs) (77, 78). It plays a critical role in cellular responses 
to DNA damage and other stresses by inducing cell-cycle arrest 
and programed cell death (79). Failure to induce senescence or 
apoptosis following DNA damage results in genetic instability 
or inappropriate survival of damaged cells. Thus, inherited or 
spontaneous mutations in p53 contribute to tumorigenesis.

Since p53 plays a vital role in controlling cellular functions, its 
activity is highly regulated. Optimal induction of growth arrest 
or apoptosis following DNA damage requires an increase in the 
intracellular p53 protein levels. Under normal growth conditions, 
the cell maintains a low level of p53 protein due to proteasomal 
targeting of p53 protein by the E3 ubiquitin ligase mouse double 
minute 2 (Mdm2) (80–82) (Figure  1, left). In addition, when 
Mdm2 and/or Mdm4 are bound to p53, they mask the transac-
tivation domain. Following DNA damage or cell stress, the level 
of p53 protein in the cell increases, while mRNA levels remain 
constant (83). The increase in p53 protein level is controlled by 
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FiGURe 1 | iReS-mediated translation is required for cell survival and tumor progression. Under normal conditions (left), p53 protein is synthesized 
predominately using a cap-dependent mechanism of initiation. The newly synthesized p53 protein is recognized by an E3 ubiquitin ligase (Mdm2), ubiquitinated, and 
degraded by the proteasome. In response to multiple stresses, p53 is phosphorylated, thus stabilizing it by preventing its interaction with Mdm2. In addition, 
IRES-mediated translation of the p53 mRNA is upregulated generating ΔNp53 and resulting in increased p53 levels. The phosphorylated p53 translocates to the 
nucleus to promote transcription of a number of genes involved in cell cycle arrest, DNA repair, and apoptosis.
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two distinct mechanisms: stabilization of the p53 protein caused 
by the loss of Mdm2 recruitment and an increase in translation 
of the p53 mRNA (20, 84–86) (Figure 1, right). The TP53 gene 
can express 12–13 different isoforms of the p53 protein with the 
major transcriptional start site generating a transcript with a 147 
nucleotides long 5′UTR that contains an IRES (58, 87). IRES-
mediated translation of the p53 mRNA generates ΔNp53 (also 
known as p54/47, p47, and Δ40p53) (25, 58, 88). Interestingly, 
IRES-mediated translation of p53 was shown to be important for 
increasing p53 protein levels following DNA damage in order to 
induce senescence (25, 26, 71).

The p53 IRES binds two IRES transacting factors, translational 
control protein 80 (TCP80), and RNA helicase (RHA) (25, 86), 
which were shown to modulate p53 IRES activity. If these proteins 
were either knocked down or overexpressed in cells, p53 proteins 
levels decreased or increased, respectively (25). This suggests that 
defective p53 regulation may be observed in cells with wild-type 
p53, but with dysregulated TCP80 or RHA. Thus, it is conceivable 
that many cancer cells that have wild-type p53 may still be unable 
to induce p53 due to defective p53 IRES-mediated translation 
(20, 25, 26).

Apoptotic Protease-Activating Factor-1 
Regulation Requires iReS-Mediated 
Translation during Apoptosis
Apaf-1 plays a central role in initiating the intrinsic or mitochon-
drial apoptotic pathway following cellular stresses, such as DNA 
damage (89–91). Under normal conditions, Apaf-1 is present in 
the cytoplasm as a monomer (92, 93). However, early apoptosis 
signals induce Apaf-1 oligomerization, which commits the cell 
to apoptosis. Briefly, exposure to proapoptotic stimuli triggers 
release of cytochrome c from the outer mitochondrial membrane 
into the cytoplasm. Binding of cytochrome c to dATP stimulates 

Apaf-1 oligomerization to form an apoptosome, which recruits 
and activates caspase 9 (91), which in turn induces the caspase 
cascade and commits the cell to apoptosis (91). Interestingly, 
Apaf-1 is expressed in all tissues except for muscle, which could 
be to avoid inappropriate activation of apoptosis when the mito-
chondria swell or degenerate following strenuous exercise (42, 
94). Apaf-1 knockout mice are embryonic lethal due to reduced 
apoptosis resulting in an accumulation of neurons in the central 
nervous system causing many morphological abnormalities (95, 
96). Overexpression of Apaf-1 increases the sensitivity of cells to 
proapoptotic stimuli (97). Cell lines that have Apaf-1 knocked out 
exhibit an increased propensity toward oncogenic transformation 
when c-Myc is overexpressed in cells (98). Significantly, a reduc-
tion in Apaf-1 expression is a negative prognostic marker for a 
variety of cancers including melanoma, cervical carcinoma, colon 
cancer, and acute myeloid leukemia (99, 100).

The Apaf-1 5′UTR is long, G-C rich, contains upstream start 
codons, has 56% homology between human and mouse, and was 
inhibitory to 40S scanning (42). This suggests that Apaf-1 is trans-
lationally regulated through a conserved mechanism. Indeed, the 
5′UTR of Apaf-1 contains an IRES, and any possibility of cryptic 
promoter, cryptic splicing, or readthrough was ruled out (42). 
Furthermore, the Apaf-1 IRES was shown to be dependent on 
the ribosomal protein S25 (RPS25/eS25), which has been shown 
to be required for IRES-mediated translation, but has no affect 
on cap-dependent initiation (59, 101). Additionally, the Apaf-1 
IRES is active if it is transfected into the cell as an RNA (102), 
which is highly significant since many cellular IRESs are only 
functional when they are transfected as a DNA. RNA transfec-
tion bypasses cellular splicing and transcription machinery, 
which are the major sources of false positives in the bicistronic 
reporter assay. Lastly, in response to ultraviolet C irradiation, 
an increase in Apaf-1 IRES activity correlates with an increase 
in Apaf-1 protein levels  without a corresponding increase in 
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mRNA levels (89), indicating Apaf-1 expression is translationally 
regulated. Furthermore, Apaf-1 protein levels are associated with  
increased sensitivity to ultraviolet-induced apoptosis (95, 103, 104).

Since proapoptotic stimuli triggers downregulation of cap-
dependent translation (105, 106), IRES-mediated initiation of 
Apaf-1 ensures that Apaf-1 protein levels are maintained dur-
ing apoptosis, which is necessary to ensure propagation of the 
caspase cascade (89, 107). Moreover, while many mRNAs that 
have cellular IRESs can be translated by both cap-dependent and 
cap-independent mechanisms, the 5′UTR of Apaf-1 is inhibitory 
for the scanning mechanism of initiation (42, 102). Therefore, the 
Apaf-1 mRNA represents an exquisite example of gene expres-
sion control in which mRNA is translationally repressed when 
cap-dependent translation predominates and is translationally 
upregulated upon stresses that downregulate cap-dependent 
translation such as apoptosis (108, 109). A possible mechanism 
for such regulation of Apaf-1 during apoptosis comes from studies 
of death-associated protein 5 (DAP5) protein. DAP5 is an eIF4G 
family member that gets activated, while other eIF4G proteins 
are inactivated during apoptosis by caspase cleavage (109, 110). 
Upon cleavage, DAP5 can stimulate IRES-mediated translation 
of Apaf-1 but not cap-dependent translation because it lacks the 
domain that binds eIF4E (the cap-binding protein).

Many cellular IRESs are cell type specific and Apaf-1 is no excep-
tion (111, 112). The Apaf-1 IRES activity is highest in neuronal cells 
(111). This cell type specificity is consistent with the fact that Apaf-1 
protein is highly expressed in neurons, and the knockout mice 
exhibit defects in brain formation (95, 96). In fact, it was reported 
that the Apaf-1 IRES is significantly more active in neuronal cell 
lines compared to HeLa or HEK293T cells due to a stronger bind-
ing preference for the neuronal pyrimidine tract binding (nPTB) 
over the PTB1 that is expressed in non-neuronal cell types (111).

iReS-MeDiATeD TRAnSLATiOn in 
TUMOR PROGReSSiOn

Cap-independent Translation of c-Jun is 
Required for Tumor Progression
The oncoprotein, c-Jun, is a component of the activator protein 
1 (AP-1) transcription factor, which is involved in regulating 
proliferation, differentiation, growth, apoptosis, cell-migration, 
and transformation (113). AP-1 is regulated at many levels, which 
include dimer composition, transcriptional, translational, and 
posttranslational regulation (49, 114, 115). The c-Jun protein is 
known to stimulate transcription of components of the cell cycle, 
repress transcription of tumor suppressor genes such as TP53, and 
induce expression of metalloproteinases, which are proteolytic 
enzymes that promote growth, invasion, and metastasis of cancer 
cells (116). Surprisingly, c-Jun mRNA expression levels are only 

elevated in a few cancers (115, 117, 118). However, high c-Jun 
protein levels have been observed in glioblastoma, malignant 
melanoma, invasive breast cancer, and colorectal cancers without 
corresponding increases in mRNA levels or changes in protein 
stability. Likewise, the c-Jun protein levels are low in normal 
cells, but high in glioblastoma and melanoma cell lines (49, 115). 
Together, these data support a model whereby c-Jun expression 
is translationally controlled (49, 114, 115, 119).

The 5′UTR of c-Jun is 974 nucleotides long, conserved across 
species, and contains an IRES (49). Importantly, IRES-mediated 
translation of c-Jun mRNA resulted in accumulation of c-Jun 
protein without an increase in mRNA levels or changes in pro-
tein stability (120). IRES-mediated translation of c-Jun can be 
induced by loss of cell–cell contacts, such as when there is a loss 
of E-cadherin, which causes a disruption or restructuring of the 
cytoskeletal network (114, 120, 121). Disruption of the cytoskel-
etal network activates a signaling pathway that upregulates IRES-
mediated translation of c-Jun and induces an invasive program 
(122, 123). Thus, IRES-mediated translation of c-Jun likely plays 
an important role in tumor progression, following the loss of 
adhesion molecules and/or restructuring of the cytoskeleton.

COnCLUSiOn

Cap-dependent translation is the primary mechanism of initiat-
ing translation for the majority of mRNAs; however, cancer cells 
must adapt to many stresses that downregulate cap-dependent 
translation, including, but not limited to, hypoxia, nutrient dep-
rivation, and DNA damage. In order for the cancer to progress, 
it must rely on other translational mechanisms, such as IRES-
mediated translation, to support survival, growth, angiogenesis, 
and metastasis. Many genes that have been shown to be important 
in tumorigenesis have also had IRESs identified in their 5′UTR 
(Table 1). Thus, there is a need to better understand how IRES-
mediated translation contributes to proteome changes in both 
healthy and tumor cells. This information will be critical for prog-
nosis and development of more effective anticancer therapeutics.
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