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Growing interest in proton and heavy ion therapy has reinvigorated research into the 
fundamental biological mechanisms underlying the therapeutic efficacy of charged- 
particle radiation. To improve our understanding of the greater biological effectiveness of 
high-LET radiations, we have investigated DNA double-strand breaks (DSBs) following 
exposure of plasmid DNA to low-LET Co-60 gamma photon and electron irradiation and 
to high-LET Beryllium and Argon ions with atomic force microscopy. The sizes of DNA 
fragments following radiation exposure were individually measured to construct fragment 
size distributions from which the DSB per DNA molecule and DSB spatial distributions 
were derived. We report that heavy charged particles induce a significantly larger 
proportion of short DNA fragments in irradiated DNA molecules, reflecting densely and 
clustered damage patterns of high-LET energy depositions. We attribute the enhanced 
short DNA fragmentation following high-LET radiations as an important determinant of 
the observed, enhanced biological effectiveness of high-LET irradiations.

Keywords: short Dna fragments, radiation, aFM, low-leT, charged particle

inTrODUcTiOn

DNA is the critical target of ionizing radiation-induced cellular damage, and DNA double-strand 
breaks (DSBs) are the most lethal of more than 100 various DNA lesions induced by ionizing 
 radiation (1–3). Biological observations implicate DNA DSBs resulting from high-LET radiation in 
cell death and carcinogenesis to a greater extent than that observed following low-LET radiations 
(4–6). Mechanisms underlying such observations have focused on dense and complex ionization 
events resulting in clustered DNA DSBs that are more difficult to repair (7, 8).

Established methods for measurements of DSBs include sucrose gradient sedimentation (9), 
neutral filter elusion (10), continuous or pulsed-field gel electrophoresis (PFGE) (11–13), the 
comet assay (14, 15), and, more recently, the γ-H2AX foci quantification (16, 17). DSBs induced 
in cellular environment and in denatured DNA have been determined (18–23); however, measured 
DSBs following high-LET radiations were reported equal to or only marginally greater than that 
observed following low-LET radiations (6, 24, 25). This is in contradiction to the observed greater 
relative biological effectiveness (RBE) by several fold for cell survival following high-LET radiation 
exposures (26, 27). However, a better correlation between RBE survival and DSB induction was 
found with assays of unrepaired DSBs (28–31).
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This apparent discrepancy between RBE for cell survival as 
compared to DSB induction contradicted the accepted thesis of 
DSB as the primary lesion for cell killing. Subsequently, detailed 
examination of the techniques used for DSB measurements has 
revealed that they were reliable only for DNA fragments in the 
kilobase-pair region and possible shorter DNA fragments were 
potentially unaccounted for (32–34).

In addition to experimental investigation of DSB induction 
by ionizing radiation, theoretical modeling employing individual 
particle track structures has also been pursued (35–38). Ionizing 
events by individual particles based on established physics prin-
ciples have shown that heavy charged-particle radiations produce 
a much greater clustered energy depositions (within a few base 
pairs) imparting sufficient energy to generate free radicals, which 
can lead to DNA DSBs or directly cause DSBs when occurring 
on the opposite strand within a certain distance (39–41). Such 
Monte Carlo simulations have revealed induction of short DNA 
fragments less than a few hundred base pairs by both low- and 
high-LET radiations, which were not quantified in experimental 
measurements (41, 42).

As a single molecule imaging instrument, the atomic force 
microscopy (AFM) offers the resolution to image individual 
atoms of solid state materials and nanometer resolution to visu-
alize biological molecules, e.g., DNA molecules (43–46). Unlike 
Electron Microscopy or Scanning Tunneling Microscopy, AFM 
requires minimum sample preparation, reducing or eliminating 
potential distortions attributable to sample preparation (47, 48). 
In addition, its ability to measure biomolecules in aqueous solu-
tions, similar to the native environment, offers the possibility for 
examining in vitro behaviors and interactions of biomolecules of 
interest (49–51).

We have previously reported the presence of short DNA 
fragments in neutron irradiated plasmid DNA, reflecting the 
high-LET energy deposition of neutrons (52). Here, we address 
the effectiveness of high-LET charged-particle irradiation in 
producing short DNA fragments in plasmid DNA. Use of plas-
mid DNA molecules as the targets allows for high-resolution 
imaging and easy identification of DNA fragmentation in sizes 
of a few to a few hundred nanometers in lengths. We investi-
gated DNA fragmentation following radiations of the low-LET 
Co-60 photon and electron, and the high-LET Beryllium and 
Argon ions.

MaTerials anD MeThODs

Dna samples
Plasmid DNA (pUC19, 2686 bp in length) was purchased from 
New England Biolab at a concentration of 1000 μg/ml in HEPES 
buffer (Beverley, MA, USA). The samples were diluted to a con-
centration of 5 μg/ml in buffer containing 10 mM HEPES and 
1  mM MgCl2 and aliquoted into vials containing 250  μl DNA 
solution each.

irradiation
Irradiation of the aliquots of DNA solutions was performed at 
the following sites.

Electron irradiations were performed at the Georgetown 
University Medical Center in Washington, DC, USA on a medical 
linear accelerator with 6 MV energy (Varian 2100 C/D, Varian, 
Palo Alto, CA, USA) to doses of 1000–8000 Gy in 1000 Gy incre-
ment. The dose was calibrated using a NIST traceable ionization 
chamber.

Co-60 photon irradiations were performed at Neutron 
Products in Dickerson, MD, USA using an industrial Co-60 
irradiator at a dose rate of 20 kGy/h in the same dose range as 
that for electrons.

Beryllium ion irradiations were performed at the Oak Ridge 
National Laboratory in Oak Ridge, TN, USA. The energy of 
the Beryllium particle beam was 100 MeV/n, and the LET was 
11.6  keV/μm. The doses delivered ranged from 3 to 12  kGy, 
calculated as the product of the particle fluence rate and the LET 
of the ion multiplied by the time the beam was on.

Argon ion irradiations were performed on the HIMAC 
charged-particle accelerator at the National Institute of Radio-
logical Science in Chiba, Japan. The energy of the Argon ion 
beam was 390 MeV/n, and the LET was 99.5 keV/μm. The doses 
delivered were 3–12 kGy, using a similar way for dose determina-
tion as that for Beryllium irradiation.

As a control, a set of three un-irradiated DNA samples was 
prepared for each experiment.

aFM imaging
A Bruker Nano Scope IIIa AFM (Bruker, Santa Barbara, CA, 
USA) was used for DNA imaging in tapping mode in air. The 
AFM cantilevers were commercially available from Bruker 
with a tip radius of approximately 10  nm. Sample preparation 
for imaging consisted of deposition of 2 μl of the DNA solution 
on freshly cleaved mica surface, followed by a gentle rinse with 
1 ml of distilled water and subsequent drying in the gentle flow 
of Nitrogen gas. The Scanning frequency was 1 Hz and typical 
scanning size was 2 μm × 2 μm.

The sizes of the DNA fragments in each image were measured 
individually using the NanoScope IIIa software. Over a thousand 
DNA fragments were measured for each irradiated DNA sample 
to ensure a statistical uncertainty of <5%. Fragment size distri-
bution profiles relating the numbers of DNA fragments to their 
sizes were constructed. The average numbers of DSBs per DNA, 
per broken DNA, and DSB distributions as a function of spatial 
distance were derived from the constructed size distribution 
profiles. For details on the technique and data analysis, the reader 
is referred to our previous paper (52).

resUlTs

Figures 1A–E show representative AFM images of the plasmid 
DNA of un-irradiated controls and following irradiation by 
Co-60 photon, electron, Beryllium, and Argon ions to doses of 
6 kGy. As shown in Figure 1A, the majority of the control DNA 
molecules were in relaxed circular conformation with occasional 
super coiling of one or two twists. In Figures 1B,C, the amount 
of DNA fragmentation and sizes appear similar, demonstrating 
similar physical characteristics of low-LET energy deposition 
patterns following Co-60 photon and electron irradiations. 
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FigUre 1 | (a) Sample image of un-irradiated pUC19 plasmid DNA. The size of the image is 2 μm × 2 μm, as that for the rest of the images. (B) Sample image of 
Co-60 photon irradiated pUC19 plasmid DNA. The radiation dose is 6 kGy. (c) Sample image of electron irradiated pUC19 plasmid DNA. The radiation dose is 
6 kGy. (D) Sample image of Beryllium ion irradiated pUC19 plasmid DNA. The radiation dose is 6 kGy. (e) Sample image of Argon ion irradiated pUC19 plasmid 
DNA. The radiation dose is 6 kGy.
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Examination of Figures 1D,E shows that DNA fragmentation is 
markedly greater than that shown in Figures 1B,C. Furthermore, 
the average sizes of DNA fragments are shorter, demonstrating 
the enhanced capability of the high-LET Beryllium and Argon 
ions to fragment DNA to a much greater extent.

Figures  2A–E show the corresponding reconstructed DNA 
fragment size distributions based on individually measured 

DNA fragment sizes for each irradiated samples. The size of the 
original, un-fragmented pUC19 plasmid DNA is 850 nm and is 
evenly divided into 50 nm bins in the range of 0–850 nm. Size 
profile of the un-irradiated DNA was marked by a near 100% 
uni-spike at the 850 nm bin, represented by the unbroken and 
occasional DNA molecules with one break only. Mirroring images 
shown in Figures  1B,C, the DNA fragment size distributions 
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in Figures  2B,C are essentially identical, and approximating 
an exponential distribution as a function of the fragment sizes. 
However, the size distributions shown in Figures 2D,E are quite 
different from that in Figures  2B,C, marked by pronounced 
spikes of fragments in the shortest bin of 50 nm. This demon-
strates a much enhanced induction of short DNA fragments by 
the Beryllium and Argon ions. Size distributions in bins longer 
than 50 nm follow a similar exponential-like distribution as that 
in Figures 2B,C, but at a more accelerated drop off with increas-
ing fragment size.

Based on the measured DNA fragment sizes, the average 
numbers of DNA DSB per DNA molecule are derived for DNA 
molecules including both fragmented and intact DNA. In addi-
tion, DSBs per DNA for fragmented DNA molecules only are also 
derived to further illustrate the DNA fragmentation capability by 
different types of radiation. Derivation of these quantities is based 
on the following considerations. If a plasmid DNA contains only 

one DSB, it becomes linearized as a single linear DNA fragment of 
the original length of 850 nm; if it contains two DSBs, a plasmid 
is broken into two pieces and the combined lengths of the two 
fragments add up to the original DNA length and this pattern 
holds for DNA containing N DSBs. Therefore, the number of 
fragments equals the number of DSBs, and consequently, the 
number of DSBs per DNA molecule simply equals to the number 
of fragments divided by the total number of DNA molecules from 
which the fragments are originated, which can be calculated as 
the sum of all the fragment lengths divided by the length of an 
intact DNA.

In addition to the average number of DSB per DNA, which 
provides a general indication of the DNA breaking capability by 
ionizing radiation, information on the spatial correlation of the 
DSBs on a DNA molecule can be further derived from the size 
distributions. As an illustrative example, we calculate the num-
ber of DSBs distributed within a distance of 50 nm on a DNA 
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FigUre 2 | (a) DNA fragment size distribution of un-irradiated pUC19 plasmid DNA. (B) DNA fragment size distribution of 6 kGy Co-60 photon irradiated DNA.  
(c) DNA fragment size distribution of 6 kGy electron irradiated DNA. (D) DNA fragment size distribution of 6 kGy Beryllium ion irradiated DNA. (e) DNA fragment size 
distribution of 6 kGy Argon ion irradiated DNA.
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FigUre 3 | DsB spatial distribution on a pUc19 plasmid Dna molecule induced by Beryllium ion and electron irradiation to a dose of 6 kgy.

TaBle 1 | Measured DsB per Dna molecule and corresponding rBe for 
radiations investigated in this and a previous report (52).

radiation DsB/Dna sTD rBe sTD leT (keV/um)

Electron 4.77 0.4 0.82 0.08 0.2
Co-60 5.83 0.33 1.00 0.08 0.2
Neutron 7.36 0.78 1.26 0.15 55
Be 6.24 0.71 1.07 0.14 11.6
Argon 26.09 5.69 4.48 1.01 99.5

The comparison was made for the radiation dose of 6 kGy. RBE was calculated with 
Co-60 as the reference. The LET value for neutron is the average LET of the recoil 
protons generated by the primary neutrons, and the LET for Co-60 photon is the 
average LET of the secondary electrons produced by the primary photon through 
Compton effects.
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molecule. This is derived by counting the number of fragments in 
the length interval from 0 to 50 nm, which is then divided by the 
total number of DNA molecules as determined in the previous 
paragraph. This calculation can be extended to determine DSBs 
distributed in other longer length intervals. By this information, 
we obtain a clear indication of whether DSBS are distributed in 
a confined small spatial region or more spread out on a DNA 
molecule. Correlation of this DSB distribution pattern with the 
type of radiation provides a simple measure for the assessment 
of ionization clustering. In Figure 3, we construct the number 
of DSBs per DNA for electron and Beryllium irradiated DNA 
samples to a dose of 6 kGy in relation to the fragment sizes to 
demonstrate the DSB spatial distribution on a DNA molecule. 
Clearly, Beryllium ions induce more dense and localized DSBs, 
whereas electrons generate more uniformly distributed DSBs on 
a DNA molecule, demonstrating the high degree of DNA damage 
clustering by high-LET irradiations.

We further calculated the RBE for DSB induction as a function 
of radiation quality. The RBE calculated in this report is defined 

as the ratio of the number of DSBs per unit DNA molecule of a 
given type of radiation to that by Co-60 photon. Table 1 gives 
the DSB per DNA molecule for the radiations investigated and 
the corresponding RBEs determined at 6 kGy. For comparison 
purposes, we also have included the RBE for neutron studied in a 
previous publication (52).

DiscUssiOn

In this report, we employ AFM for the measurement of DNA 
fragmentation by the charged particles of Beryllium and Argon 
in comparison to that by the low-LET photon and electron to 
demonstrate the enhanced DNA fragmentation capability of 
high-LET radiations. As shown in the AFM images, short DNA 
fragments are produced after plasmid DNA exposure to both 
low- and high-LET radiations. However, the relative amounts 
of short DNA fragments are substantially greater after high-LET 
irradiations, with Beryllium and Argon ions, demonstrating 
a prevalence of clustered DNA DSBs produced by high-LET 
radiations not previously quantified due to limitations in the 
conventional biological techniques.

As discussed in the Section “Introduction,” the RBE for cell 
killing reported in the literature are generally a few fold higher 
for high-LET radiations (4, 5), but the DSB induction as meas-
ured using gel electrophoresis or other biological techniques 
are approximately unity or only slightly higher (25), present-
ing a contradiction to the fundamental concept of lethality 
of DSBs. Using Monte Carlo modeling of radiation-induced 
DNA damage, the groups led by Paretzke and Goodhead have 
reported clustered DNA lesions after exposure of modeled DNA 
molecules to high-LET radiations (38, 41, 53, 54). Campa and 
coauthors have further calculated the frequency of short DNA 
fragments generation by high energy protons and ions (42). The 
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prominence of short DNA fragments induced by high-LET radia-
tions presented in this and our previous publications, as well as 
reports by other investigators, provide experimental validation 
of the model-predicted short DNA fragments (52, 55, 56). It is 
apparent that short DNA fragments were undetected by tech-
niques exploiting the migratory property of DNA fragments in 
gels, leaving accounted the DSBs corresponding to short DNA 
fragments, in particular, DSBs induced by high-LET radiations. It 
appears likely that with short DNA fragments included, the DSB 
induction by high-LET radiations should correlate better to RBE 
for cell survival.

To evaluate the capacity for DNA strand breakage by radiations 
of different quality, we calculated the RBE for DSB induction by 
the radiations investigated in this report together with that by 
neutrons for which the DNA fragment size distributions have 
been reported before (52). As shown in Table 1, the RBE increases 
as the LET of radiation increases, demonstrating the greater 
capacity of DNA damage by high-LET radiations. The ability of 
AFM to image short DNA fragments has permitted measurement 
of DSBs produced in close proximity resulting from clustered 
DSBs by high-LET radiations, and therefore offers a sensitive 
technique to quantify clustered DSBs not easily measurable using 
conventional biological methods.

In a previous report, we investigated the biological signifi-
cance of short DNA fragments in DNA damage and repair and 
their potentially important roles in cell survival and carcino-
genesis (57). We evaluated DNA binding and rejoining by Ku 
and DNA-PK, two major DNA repair proteins involved in the 
non-homologous end-joining (NHEJ) pathway and confirmed 
reports by other investigators on the minimum DNA length 
requirements for protein binding and activation (58, 59). When 
DNA fragments are short, the challenge to rejoin and repair them 
by the cell’s repair mechanisms becomes greater. Furthermore, 
the presence of un-rejoined and repaired short DNA fragments 
in cells can trigger genomic instability, leading to mutation or 
cell death by way of apoptosis (57, 60). Compared to longer DNA 
fragments, which are more frequently produced by low-LET 
radiations, short DNA fragments present a more lethal challenge 
to cellular repair mechanisms and survivability after exposure to 
high-LET radiations.

The fragment size distribution data for Co-60 photon and 
Argon ion at 10 kGy presented in this paper were for illustrative 
purpose only to show the greater capacity of high-LET radiations 
in generating short fragments. That data, as well as the data at 
6 kGy presented in this report, are a subset of the range explored 
in our experiments. Naturally, it would be desirable to construct 
a complete dose–response for DSB induction for all the doses and 
radiation types investigated. However, contamination of certain 
samples has precluded AFM image acquisition of sufficient qual-
ity for more extensive analysis as we performed in our previous 
study of neutron and electron irradiations (55). Nonetheless, the 
DSB data at 6 kGy clearly show a radiation quality dependence of 
RBE for DSB induction.

The RBE for DSB induction has been measured for both 
cells and in aqueous solutions. Prise et al. summarized the DSB 
induction data for radiations of varying quality for various 
cell line (25). It was shown that the RBE generally remained 

approximately close to 1 for a wide range of LET values from 
10.9 to 998 keV/μm. In a subsequent report, Prise et al. presented 
additional DSB induction data for a few additional ions in the LET 
range of 40–225 keV/μm obtained with the PFGE either using 
the fraction of activity released (FAR) or fragmentation method 
and showed a substantial difference in RBE values obtained with 
these two techniques (61). Again, the RBE values obtained with 
the FAR method remained close to 1 or less, but varied from 1.1 to 
1.5 when measured using the fragmentation method. They con-
cluded that the fragmentation method permitted quantification 
of shorter DNA fragments that were not measured with the FAR 
method and thus resulted in increased DSB collection.

The RBE values determined in this report were based on AFM 
measurement of individual DNA fragments induced in aqueous 
solution that were orders of magnitude shorter than what meas-
ured using the gel electrophoresis fragmentation method. The 
much larger RBE values obtained here reflect a much enhanced 
capability of AFM to measure short DNA fragments. It is, how-
ever, difficult to make a direct comparison of these RBE values to 
what Prise and coauthors have summarized, as our DNA model 
system is plasmid DNA in aqueous solution, while that in Prise’s 
report were DNA in cellular environments. The different DNA 
configuration and the substantially greater scavenging capacity 
of cells influence greatly the induction of DSB. Nevertheless, the 
techniques employed for DSB measurement have much greater 
impact on the accuracy of RBE values determined.

Therapeutic application of proton and heavy charged-particle 
irradiation has been gaining increasing acceptance, recognition, 
and popularity in the radiation oncology community worldwide 
(62–64). Heavy charged particles possess highly desired dosimet-
ric advantages over photon or electron irradiations, exemplified 
by their finite range in tissue and Bragg peak in energy deposition 
(65). Furthermore, the biological advantage, as represented by 
their greater RBE for cell survival, adds another important dimen-
sion to the medical application of charged-particle irradiation. 
As presented in this and previous studies, heavy charged-particle 
radiations produce significantly more short DNA fragments than 
do low-LET radiations. We propose that the greater RBE of high-
LET radiations is a result of the increased production of short 
DNA fragments by high-LET radiations.

cOnclUsiOn

Atomic force microscopy imaging of plasmid DNA molecules as 
the DNA targets of irradiation demonstrates that heavy charged 
particles induce a significantly greater proportion of short 
DNA fragments than observed following low-LET irradiations. 
The increased short DNA fragment generation is attributed to 
clustered DNA DSB generation following high-LET irradiations. 
The increased short DNA fragment production may be a critical 
factor underlying the greater biological effectiveness of heavy 
charged-particle radiation.
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