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Radiation therapy is a first-line treatment option for localized prostate cancer and
radiation-induced normal tissue damage are often the main limiting factor for modern
radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to
spare adjacent healthy tissues limits the likelihood of achieving local, long-term control.
Thus, the ability to generate personalized data-driven risk profiles for radiotherapy
outcomes would provide valuable prognostic information to help guide both clinicians
and patients alike. Big data applied to radiation oncology promises to deliver better
understanding of outcomes by harvesting and integrating heterogeneous data types,
including patient-specific clinical parameters, treatment-related dose–volume metrics,
and biological risk factors. When taken together, such variables make up the basis
for a multi-dimensional space (the “RadoncSpace”) in which the presented modeling
techniques search in order to identify significant predictors. Herein, we review outcome
modeling and big data-mining techniques for both tumor control and radiotherapy-
induced normal tissue effects. We apply many of the presented modeling approaches
onto a cohort of hypofractionated prostate cancer patients taking into account different
data types and a large heterogeneous mix of physical and biological parameters. Cross-
validation techniques are also reviewed for the refinement of the proposed framework
architecture and checking individual model performance. We conclude by considering
advanced modeling techniques that borrow concepts from big data analytics, such as
machine learning and artificial intelligence, before discussing the potential future impact
of systems radiobiology approaches.
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INTRODUCTION

Prostate cancer is the second most common cancer among men and is the fourth most common
cancer overall (1). In Europe alone, prostate cancer is the most commonly diagnosed cancer in men
and accounts for approximately one-quarter of newly diagnosed cases per annum (2).

Fractionated radiation therapy (radiotherapy) is a primary treatment method for prostate cancer
patients with localized disease – approximately one-quarter of patients have some form of radiother-
apy incorporated into their treatment regimen (3). The widespread acceptance of radiotherapy as a
first-line treatment modality can be attributed to high rates of local control and acceptable levels of
normal tissue toxicity (4, 5).

Modern external beam radiation therapy (EBRT) delivery technologies, such as stereo-
tactic body radiation therapy (SBRT) and volume-modulated arc therapy (VMAT), offer
increased conformity and total dose while minimally damaging adjacent normal structures (6–8).
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These advanced treatment tools generate vastly more amounts
of treatment-related data than contemporary counterparts, such
as three-dimensional conformal radiation therapy (3D-CRT). In
terms of outcomes analysis, this can render quantitative modeling
of treatment plans and retrospective outcomes exploration more
complicated.

Historically, dose–volume metrics alone were used in an
attempt to explain aberrant toxicities or biochemical relapses (9).
Canonical examples of this include either hot spots in overlapping
regions between PTV and normal structures that were thought
to independently induce adverse normal tissue effects or, con-
versely, suboptimal PTV coverage thought to be the main cause
for inadequate local control (10). In recent years, however, it has
been demonstrated that dose–volume metrics, while straightfor-
ward to obtain and contributing significantly to the analysis of
radiotherapy outcomes, are not the only determining factors of
success in predicting radiotherapy outcomes (11, 12). This has
been shown in prospective application of dose–volume metrics
whereby suchmetrics have proven to provide limited classification
performance (13, 14). Aside from dose–volume data, the emer-
gence of advanced imaging modalities and high-throughput “-
omics” methods have led to the generation of enormous amounts
of data that can similarly be used to predict outcomes.

The multi-dimensional space that EBRT-related biological,
dosimetric and clinical variables span is referred to herein as the
RadoncSpace. Two overarching predictive modeling approaches
that exploit big datasets and search different sub-spaces of the
RadoncSpace have surfaced in recent years: radiomics (use of
imaging datasets for outcome prediction) (15) and radiogenomics
(uncovering relationships between biological data and outcomes)
(16). Pioneering application of these two techniques speaks to
the ever-increasing application of data-mining techniques and big
data analytics (the so-called “panomics”) to modern oncology (4).

The specific objective of big data analytics in radiotherapy
is to develop predictive models that capture underlying factors
contributing to the development of selected endpoints without
over-fitting noise or under-fitting trends. In line with the nature
of big data and the heterogeneity of patient populations, a strict
requirement of such modeling frameworks is that input datasets
must be large enough to include variability, which accurately
reflects the underlying patient population. Otherwise, resulting
models can suffer from poor prospective prediction performance.

Clinically, it has already been demonstrated how such models
could be used to better inform patients of treatment-associated
risks. Namely, by integrating outcome models into treatment
planning systems (TPSs) and recommending dose-escalation or
dose-reduction (11). Given the potential future impact of outcome
models in the clinic, the selection of tools and models for the
fabrication of a predictive framework must be chosen carefully in
a way to facilitate identification of optimal models.

In this work, we focus our attention exclusively on outcomes
associated with EBRT; however, the presented modeling tech-
niques are easily generalizable to any dose distribution. In this
work, we briefly review the radiobiology of prostate cancer as
a basis for understanding the theoretical underpinnings of ana-
lytical outcome models. Analytical models attempt to predict
radiation-related toxicities by formalizing abridged versions of the

biological processes by which selected endpoints become man-
ifest. Subsequently, we discuss big data and data-driven model-
ing approaches based on techniques previously used successfully
for exploring outcomes in radiotherapy. In contrast to analyti-
cal models, data-driven models are entirely empirical in nature,
potentially making them more robust albeit more difficult to
analyze or interpret. We then consider techniques that optimize
model parameters in order to maximize model robustness and
prevent under-/over-fitting, which are two common pitfalls in
big data outcome modeling. The article concludes by presenting
modeling techniques based on advanced artificial intelligence as
well as on systems theory.

PROSTATE CANCER

Pathology
Adenocarcinoma of the prostate is the most common histopatho-
logical type of prostate malignancy and typically arises in the
peripheral zone (17). Up to one-half of men present with prostate
cancer at time of autopsy although tumors identified in many of
these cases are typically small, impalpable, and of low grade (18).

Prostate tumors are known to have remarkable biological het-
erogeneity from patient to patient and even across tumor volumes
(19–21). The metastatic potential of prostate cancer is similarly
variable and is furthermore reflected in the wide variation in
overall survival rates for those with localized disease at time of
diagnosis (21). Notably, the high degree of heterogeneity makes
standardization and characterization of prostate adenocarcinoma
phenotypes challenging and institution specific.

Basic Radiobiology
The α/β originates from the linear-quadratic (LQ) formulation of
in vitro cellular survival experiments (Eq. 1):

SF = e−(αD+βD2) (1)

where SF is the surviving fraction after a dose (D). The coefficient
α [Gy−1] in front of the linear dose term (D) relates to single-hit
inactivation and the β [Gy−2] coefficient pertains to the expected
rate of double-hit (two-track) cellular inactivation (22, 23). The
α/β ratio taken from the LQ model allowed numerous funda-
mental radiobiological questions to be answered quantitatively.
It remains a relevant parameter in radiotherapy today due to its
clinical significance as a measure of tissue-specific fractionation-
sensitivity.

It is well known that prostate cancers are relatively slow-
growing malignancies with low α/β ratios (24–27), unlike most
malignancies. When used in the context of biologically effective
dose (BED) (Eq. 2), the low prostate α/β ratio (~1.5Gy) translates
to a high sensitivity to fraction size:

BED = D ·
(
1 +

d
α/β

)
(2)

where D is the total dose of the radiotherapy regimen and d is the
fraction size. Furthermore, since the α/β ratio for prostate cancer
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is lower than that of normal tissues (~3Gy), an improved thera-
peutic ratio can be expected using hypofractionation (28–30).

In 2013, Vogelius and Bentzen performed a meta-analysis of
1965 patients derived from five separate studies (31). In line with
pioneering work by Fowler and colleagues (25), they showed that
prostate cancers do indeed have an exceedingly low α/β ratio.
Interestingly, after accounting for changes during treatment, their
estimate of α/β increased. This may indicate that the α/β for
prostate tumors changes throughout the course of radiotherapy
treatment, probably due to subpopulation selected induced by
radiotherapy itself.

Although α/β has provided insight into radiobiology of
prostate cancer, it remains unclear how relevant the ratio is in cases
of modern EBRT delivery, such as high-dose hypofractionated
SBRT regimens, mixed-modality treatments (photon with proton
boost) or when using charged particles, such as carbon ion, all of
which are becoming increasingly popular treatment options for
prostate cancer. In such cases, aggregation of large-scale datasets
serving as inputs to big data analytics may provide more use-
ful insight either as a supplement or as a substitute to classical
paradigms in radiobiological modeling.

TYPES OF OUTCOMES

Toxicity outcomes in radiotherapy can be segregated into two
categories: acute (effects observed within 3months after the ter-
mination of radiotherapy) and late (effects that manifest after
the 90-day cutoff). Furthermore, normal tissue damage can be
segregated by site; in prostate radiotherapy, normal tissue side
effects manifest themselves most frequently as one or more of
gastrointestinal (GI) toxicities, genitourinary (GU) toxicities, or
erectile dysfunction (ED).

Acute (Early) Outcomes
Acute effects due to normal tissue damage from ionizing radi-
ation in prostate cancer radiotherapy regimens include GI/GU
symptoms. Acute symptoms aremost often transient, self-limiting
events in that they appear and resolve within a matter of weeks
without contributing significantly to severe or long-term morbid-
ity, although some consequential late effects in prostate radiother-
apy have indeed been recorded (32–34).

A 2015 review article by Drodge et al. compiled the results of
22 prospective hypofractionated trials completed between 2001
and 2013 (35). Using the RTOG/EORTC toxicity grading scheme
and including studies that used different treatmentmodalities and
schedules, the authors concluded that Grade 3 acute toxicities, on
thewhole, affect less than 10%of prostate patient cohorts receiving
hypofractionated EBRT. Furthermore, Grade 2 toxicities affected
under half of patients. The study also expanded upon the practical
challenges in interpreting outcome data from independent trials
that may use different grading schemes or endpoints.

Proton therapy is becoming more common in modern times
for use in treating prostate cancer (36). Studies have shown that
the frequency of acute effects with proton for prostate cancer
is not significantly increased over that of conventionally frac-
tionated photon therapy regimens (37, 38). One dose-escalation
study with 85 prostate cancer patients using proton doses up to

82Gy-equivalent (GyE) yielded acute toxicity levels comparable
to photon radiation (39).

Late Normal Tissue Endpoints
Radiation-induced late normal tissue damage consists of toxicities
that occur >90 days after completion of radiotherapy. Late tox-
icities can range from mild, moderate, severe to life-threatening
requiring immediate intervention. They are categorized as either
GI or GU effects and many retrospective studies report only these
outcomes; however, sexual dysfunction is also considered herein.
Unfortunately, the full pathophysiology of the radiation-induced
manifestation of ED has yet to be fully elucidated.

The difficulty in assessing late toxicities is that often times
no quantitative physiological evidence exists or can readily be
obtained. Grading schemes have been developed to resolve such
issues. Grading schemes require physicians to assign integer val-
ues to the radiation-induced side effect based on selected criteria.
Some schemes utilize self-scoring questionnaires, while others
rely on grades assigned by attending oncologists. Interestingly,
several groups have sought to explore the correlation between
different scoring schemes using a single set of data in order to
explore what role grading schemes have on incidence rates of
toxicity (40–42). Such works bear significance for the use of big
data analytics as many frameworks utilize supervised learning
techniques that rely on the accuracy of outcome measures.

Local Control Endpoints
It is estimated that overall approximately one-third of prostate
cancer patients experience some type of biochemical relapse
within the first decade after completion of their EBRT treatment
regimen (43). In reporting local control outcomes, clinical studies
typically do so according to specific criteria, such as the ASTRO-
RTOGPhoenix definition of local biochemical failure (44).Guide-
lines often include prostate serum antigen (PSA) scores although
derivatives of simple PSA scores have also been considered, such
as PSA doubling time (43). However, it should be noted that a
rising PSA does not always indicate a local failure and it can
antedate the diagnosis of metastatic disease for many years; thus,
caution should be exercised when using it as a surrogate for local
failure endpoint.

DATA TYPES

Dose–Volume Metrics
Typical dose–volume metrics used in outcomes modeling include
dose to a given volume or volume of tissue receiving at least
a particular dose. These parameters can be readily extracted
from dose–volume histograms at the treatment planning stage.
Physiological changes, such as weight gain/loss or changes in
tumor composition or anatomical position, may take place during
treatment and, thus, dose delivered may not necessarily reflect
biologically absorbed dose. It is likely that dose–volume variables
could have their predictive accuracy improved by incorporating
intra-fractional computed tomography (CT) scan changes, as has
been considered in literature (45).

The equivalent uniform dose (EUD) (46) is a dose–volume
metric that can be used to describe inhomogeneous dose
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distributions. The generalized EUD (gEUD) (47) is a further
extension used for normal tissues of interest (Eq. 3):

gEUD =

(∑
i
viDa

i

)1/a

(3)

where the variables vi is fractional volume for the tissue exposed
to dose Di, the parameter a is a factor relating to the volume
effect of a given tissue type. These two metrics appear oftentimes
in analytical outcome models as they serve as excellent tools to
summarize dose distributions across volumes.

Clinical Parameters
Clinical data can be parameterized and used to investigate covari-
ates of interest. An example in the case of prostate cancer is
in patients receiving anti-coagulant therapy and presenting with
rectal bleeding (RB) late in their follow-up period, which can
otherwise easily be mistaken for a late toxicity. Another case is the
combined use of androgen deprivation therapy (ADT) since ED
can be a side effect of ADT alone and thereby lead to an increased
prevalence of late ED in a given prostate patient cohort.

Spatial Parameters
Spatial dose–volume histograms (zDVHs) can be used to compare
spatial treatment planning information to outcomes (48–50). The
advantage of incorporating spatial information is that it provides
modeling frameworks information about the location of dose
extremes and, thus, mitigates having to rely solely on approaches
based on volume-averages (or gEUD). This reduces the risk of
under- or over-valuing the contribution of hot or cold spots. Spa-
tial data can also provide information related to the contribution
of hot spots in accessory structures, for example, in the case of
rectal contour overlap with the PTV.

Biological Variables
Several types of biological variables have been used previously
in attempting to elucidate mechanisms by which prostate radio-
therapy toxicities become manifest. The most popular class of
variables found in literature today is related to genetic mutations.
Additionally, work has been performed on exploring the role of
epigenetics (51) and transcript expression levels (52) in long-term
radiotherapy outcomes.

Genetic Variables
Given the relatively disappointing prospective predictive power
of singular classes of genetic variables on their own (53–56), it
is likely that modeling frameworks will need to allow for several
types to be incorporated in a given model in order to maximize
prospective classification performance.

Single-nucleotide polymorphisms (SNPs) consist of single-
nucleotide changes. Their presence in certain genes or regula-
tory regions has been shown to be well correlated with prostate
radiotherapy-related outcomes (52, 54, 57, 58). This is probably
due to altering functional transcripts or protein confirmations
after translation.

Further to SNPs, copy number variations (CNVs) have recently
been of increasing interest to the radiotherapy community (59).

CNVs reflect the number of copies of a particular gene and are,
therefore, larger structural genetic mutations than SNPs. This
could mean that larger changes in a given genome could be seen
with CNV changes.

In our previous work, we have shown the value of integrat-
ing CNVs alongside SNPs (of the same gene) together with
dose–volume metrics (60). Specifically, we have demonstrated
that changes in the gene concentration of DNA repair gene
XRCC2 can predict severe (Grade 3) late RB for hypofractionated
prostate patients treated with 3D-CRT. More importantly, the
resulting radiogenomic models led to increased predictive power
as compared to using either type of genetic variable alone. We,
furthermore, demonstrated that the improvement using SNPs and
CNVs is not limited to data-driven frameworks but could also be
applied to analytical models. These results indicate that different
genetic mutations in the same gene may contribute similarly to
a given outcome. If proven to be the case, it is likely a result of
outcome scores being limited snapshots of complex pathophysio-
logical events reflecting more than one biological alteration.

Integrating Genetic Variables in Outcome Models
In the case of data-driven modeling, genetic parameters can
be considered as independent variables and regressed along-
side clinical risk factors and dose–volume metrics. For analytical
models, the method in which genetic parameters are integrated
depends on the nature of the model at hand. In 2006, two groups
showcased how dose-modifying factors (DMFs) extracted from
clinical risk factors could be used to stratify standard analyti-
cal models and thereby generate “mixed” data-type models (57,
61). In 2013, Tucker et al. expanded this approach to include
SNPs using an approach easily generalizable to any biological
variable and demonstrated significantly improved classification
performance (62). Rancati and colleagues further extended this
approach using clinical risk factors for Logit and EUD mod-
els (63), from which our group drew inspiration in developing
radiogenomic models using biological, clinical, and dosimetric
variables (60).

Other Biological Variables
Epigenetics
The importance of epigenetic alterations to the genetic code has
not by any means been understated by the scientific community
in recent years (64–67). However, the significance of epigenetic
modifications in radiotherapy remains to be fully understood.
Research related to epigenetics and radiotherapy could be compli-
cated by the fact thatmounting evidence implies that radiotherapy
itself can induce epigenetic changes (67).

Thus far, thousands of differentially methylated regulators have
been identified in many cancer types thanks to epigenome-wide
association studies (EWAS) (68). Differentially regulated pro-
moter may serve as novel biomarkers to predict risk of biochemi-
cal relapse or serve as indicators of normal tissue radiosensitivity.
In prostate cancer specifically, wide-ranging hypo- and hyper-
methylations have been identified that correlated with early-
stage carcinogenesis and aggressive tumor phenotypes (69, 70).
Efforts are underway to generate an epigenetic code (71–73),
which may facilitate the ability to perform and interpret EWAS
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results as well as provide a new class of input data for outcome
models (74).

High-throughput Proteomics and mRNA Expression Levels
Numerous methods used to quantify large numbers of biological
factors have been pioneered and introduced intomainstream biol-
ogy research within the last decade. These technologies include
well-characterized microarrays and proteomic analysis technolo-
gies that can quantify the levels of expression of up to tens of
thousands mRNA transcripts or proteins in a single sample.

After generating large quantities of data, high-throughput
modeling frameworks can be used that are able to deal with
large numbers of variables (75). This approach has been used
successfully in clinical oncology to stratify tumor phenotypes and
estimate prognoses to help guide optimal therapeutic regimens
(76–78). In the case of radiation oncology, high-throughput data
have yielded several multi-gene signatures for hypoxia (79–81).

The challenges of utilizing a large number of variables in
outcome models are well summarized by the multiple testing
dilemma: too few samples relative to a large number of variables
being tested can lead to spurious correlations. Even after utilizing
simple supervised learning algorithms to pre-process the data, the
number of mRNA transcripts that a single microarray experiment
can yield is often in the thousands (82). This issue can bemitigated
by large-scale validation studies but these are expensive, time-
consuming and patient accrual can limit achieving the necessary
sample size.

Alternatively, methods in artificial intelligence are becoming
increasingly popular to explore the complex, hidden relationships
between outcomes and biological variables (83). In contrast to
brute-force estimating of correlations, machine-learning tech-
niques in artificial intelligence have the ability to process highly
structured, high-dimensional data while controlling for over- and
under-fitting by drawing on methods from control, probability,
and information theory.

MODELING TECHNIQUES

Risk Quantification
The likelihood of obtaining local control is quantified mathemati-
cally by tumor control probability (TCP). TCP is a probability that
indicates chances for success of a treatment according to a par-
ticular endpoint, usually long-term control. Many studies using
TCP-based approaches have shown that cancer cells in situ have
complex, high-dimensional repopulation kinetics when exposed
to ionizing radiation and/or chemotherapy (84–87). Such kinet-
ics can lead to complex models and be dependent upon several
factors, such as repair capacity, quality of radiation, fractionation
scheme, and surrounding microenvironment (88).

In the case of normal tissue side effects from radiotherapy, risk
is quantified via normal tissue complication probability (NTCP).
NTCP values can be tailored to each individual treatment reg-
imen to reflect the risk of a given side effect. Conventionally,
such frameworks were limited to dosimetric data; however, it is
now understood that late normal tissue toxicities are furthermore
functions of a variety of biological, physical, and clinical factors
(16, 89).

Analytical Modeling
As previously described, models of the analytical class are based
on simplified theoretical mechanisms of action radiobiological
interactions. They include some level of mechanistic insight into
a specific mechanism by which radiotherapy outcomes become
manifest and are, therefore, also referred to asmechanistic models.

Tumor Control Probability
Cells that can lead to tumor growth are termed tumorigenic
stem cells or cancer stem cells. These cells are, in theory, the
primary targets of anti-cancer therapies. The probability that a
given treatment will induce eradication of cancer stem cells for
a given patient is mathematically given by the TCP.

The Linear-Quadratic
The LQ model has gained popularity in literature since it follows
survival closely at conventional doses of radiation. Furthermore,
themodel provides a simplified theoretical basis for how radiation
induces cellular deactivation: radiation tracks interacting with
DNA can induce severe damage on its own (α component) or
can combine with another track to increase density of damage (β
component).

Questions have, however, arisen to the relevance of the LQ
model for more modern treatment regimens, such as SBRT or
charged particle therapy. It has been shown that the LQ model
begins to deviate significantly from experimental data begin-
ning at or around 6–8GyE (22, 90, 91). Practically speaking,
this does not affect conventional treatment regimens utilizing
2–3Gy fraction sizes; however, the LQ model may predict effects
of hypofractionation regimes poorly. One such example is the
carbon ion lung trial in Japan whereby single fractions of 50GyE
were delivered (92). Furthermore, when considering cases in vivo,
the standard LQ model does not take into account repopulation
kinetics of cancer cells during intra-fraction periods, rendering it
approximate at best (93).

Modified LQModels
Modified versions of the canonical LQ model have been proposed
to address some of the aforementioned shortcomings. Examples
include generalized versions that have been further parameterized
to account for repopulation (94), mixed radiation qualities (95),
tumor heterogeneity, arbitrary or variable dose-rates (91), cell
death mechanisms (96), and others able to take into account more
than one of the aforementioned parameterizations (97).

In the case of charged particle therapy, the theory of dual
radiation action (TDRA) predicts an increased linear component
of LQ-modeled cell kill (α) over the quadratic component (β)
(98). Indeed, it has been shown that β remains relatively stable
in comparison to the variation of α across linear energy transfers
(LETs) (99). Consequently, by considering the relative biological
effectiveness (RBE) between a given high LET radiations and
clinical energy photons, TDRA predicts that RBE will reach a
minimum (RBEmin) at very high doses, while at low doses RBE
will reach an intrinsic maximum (RBEmax) (100). In practice, it
has been observed that both parameters α and β vary with LET.
Thus, a modified LQ model has emerged that RBEmin and RBEmax
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are taken into account by further parameterizing the high-LET α
and β values (Eq. 4a, b).

αΗ = αL · RBEmax (4a)

βH = βL · RBE2
min (4b)

where αH and αL refer to α components of the high and low
LET radiations, respectively, and βH and βL refer to the quadratic
components of the high and low LET radiations, respectively.

In considering high-dose per fraction, such as those delivered
by a SBRT prostate radiotherapy plan or charged particle therapy,
the modified LQ model first proposed by Sachs et al. in 1997
(101) and extended in 2004 by Guerrero and Li (91) has been
demonstrated to fit survival data well (Eq. 5a, b).

SF = e−αD−β·G(λT)·D2 (5a)

G(λT) = 2(λT + e−λT − 1)/(λT)2 (5b)
where λ is the repair rate andT is treatment delivery timewhile the
other parameters are taken from the standard LQ model. G(λT)
is the dose protraction factor that specifies the contribution of
misrepair to lethality (which is reduced at high, acute doses).
Using this formulation of the LQ model, the large differences in
cellular survival observed between predicted and experimental
data are practically eliminated up to doses of ~30GyE (91).

Review articles by Jones and Dale (23) and Zaider and Hanin
(102) have elegantly summarized and discussed additionalmodels
and can be consulted for further details.

Normal Tissue Complication Probability
The objective of NTCP models is to gage the risk of inducing
particular normal tissue effects, such as severe RB in the case of
late prostate radiotherapy. A plethora ofmodeling techniques have
been proposed for such purposes (103–105), some of which are
described in more detail below.

Lyman–Kutcher–Burman
The most readily applied analytical method for generating NTCP
values is through the Lyman–Kutcher–Burman (LKB) approach
(106) (Eq. 6a,b).

NTCP(D,D50,m) =
1√
2π

t∫
−∞

e
(

− u2
2

)
du (6a)

where t =
EUD − TD50

m · TD50
and TD50(V) =

TD50(1)
Vn (6b)

where m is the slope of the best-fit NTCP sigmoid, TD50(1) is the
dose at which NTCP= 50% for a specific endpoint, and TD50(V)
is the tolerance dose for a given partial volumewith tissue-specific
volume exponent n. Simply put, the LKB model stratifies patient
risk according to how much larger or smaller their EUD is relative
to the TD50. The EUD is a three-dimensional DVH reduction
technique according to Eq. 7.

EUD =

(∑
i
vi·D

1
a
i

)a

(7)

where parameter a is 1/n, and Di and vi are the dose and partial
volume, respectively, according to each DVH segment i. Expan-
sions and more intricate variations of the canonical LKB model
can be found readily throughout literature (57, 60, 62).

Binomial Models
The Critical Volume Functional subunits (FSUs) are thought to be
fundamentally underlying structured subunits housing numerous
cells in a given tissue. Perhaps the most readily available example
is the crypt subunit in the GI tract that together forms the organ.
FSUs have varying properties, shapes, and sizes and are tissue type
specific. Such variation can be exploited by the critical volume
(CV) model (Eq. 8) to account for the differences in radiation
response between different tissue types (107).

Pt =
(
N
t

)
PtFSU(1 − PFSU)N−t (8)

where the first term is the binomial coefficient of N and t. PFSU is
the probability that t ofN subunits will be deactivated by ionizing
radiation. Accordingly, the chance of M or more subunits being
deactivated in a single exposure can be calculated according to:

P =
N∑

t=M+1
Pt =

N∑
t=M+1

(
N
t

)
PtFSU(1 − PFSU)N−t. (9)

Two major classes of tissue exist in the context of FSUs
(Figures 1A,B): serial and parallel. Organs that are serial can have
their function compromised by exposure of a limited volume (a
“critical volume”) to a given dose, e.g., colon, spinal cord, brain
stem. Note that the output of a serial organ is not a sum of its
internal components as it is in the case of parallel organs. Thus,
for parallel-type tissues, catastrophic damage to one part of the
underlying physiological architecture does not risk the collapse of
the organ itself, e.g., liver, skin. In reality, every tissue has a mix of
both serial and parallel structures, a concept referred to “complex”
FSU arrangement (Figure 1C), although some tissues are more
one type than the other.

Interestingly, it has been shown that the LKB model can be
derived upon reformulation of the CV model. This implies that
the LKB model has a basis relating to FSUs (108).

Prior tomainstream applications of data-drivenmodeling tech-
niques, modifications to the CV model (109, 110) and extensions
of the FSU concept (111) were shown to be useful. Applications
of the CV model in prostate cancer to predict late endpoints relat-
ing to bladder, colon, bowel, penile bulb, and rectum have been
performed; however, their usefulness in practice has been limited
compared to models identified using contemporary data-driven
modeling approaches (112, 113).

Relative Seriality The relative seriality model for NTCP modeling
was developed in order to consider and exploit arbitrary combina-
tions of serial and parallel FSU arrangements (114). In such cases,
risk of normal tissue damage is given by the following equation:

NTCP(D,V) =
[
1 −

(
1 − P(D)S

)V/Vref
]1/s

(10)

where the exponent V/Vref is the fraction of volume that is being
irradiated to the given dose, D, and the parameter S relates to the
degree of seriality of the organ at risk – nearly 0 in the case of
highly parallel structures and higher formixed or serial structures.
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FIGURE 1 | Arrangements of functional subunits in (A) serial formation,
(B) parallel formation, and (C) complex, or mixed, formation. FSUs are
functional compartments of a given organ. The concept of FSUs underpins
many models for modeling NTCP, including the critical volume and relative
seriality models.

The function P(D) is the value of risk and can be derived via
Poisson statistics:

P(D) = e−No·S(D) (11)

where No is the number of FSUs and the function S(D) is the
probability of a given FSU in the order of interest to survive
irradiation to dose D.

Data-Driven Modeling
Data-driven approaches to modeling are often referred to as
phenomenological or statistical techniques. Models generated by
such frameworks are based on empirical combinations of obser-
vations and are, thus, generally more robust than their analytical
counterparts.

When considering dose–volume metrics alongside clinical and
genetic risk factors, the number of variables can quickly become
overwhelming and so data-driven modeling frameworks often
include steps that seek to optimize and pre-process input data.

Themost frequently employed approaches to data-drivenmod-
eling in radiotherapy are regression-based techniques. Regres-
sion link functions are typically chosen to be sigmoidal in order
to achieve the non-linear dose–responses seen experimentally.
Advanced methods in artificial intelligence that are able to handle
non-linear data more readily are discussed later in this section.
Such methods are becoming increasingly popular due to superior
prospective classification performance in many areas of oncology
(15, 115, 116).

Several review articles discussing the shortcomings and advan-
tages of data-driven modeling can be found elsewhere in the
literature (11, 117, 118).

Probit- and Logit-Based Regression
Link functions can be used in tandemwith regression frameworks
to fit either TCP orNTCPdata. The use of an inverse-logit (Eq. 12)
or -probit (Eq. 13) are examples of such functions.

π(Xi) = Φ (g(Xi)) (12)

π(Xi) =
eg(Xi)

1 + eg(Xi)
=

1
1 + e−g(Xi)

(13)

where g(xi) is the generalized linear model (GLM) formulation of
the input variables: xi:

g(Xi) = β0 +
s∑

j=1
βjXij, i = 1, . . . , n, j = 1, . . . , s (14)

where β coefficients are estimated according to maximum likeli-
hood estimation (MLE).

Historically, the logit function has been employed more often
than the probit function because of ease of use and mathematical
simplicity.

In terms of interpretation in the context of prostate radiother-
apy, data-driven models have the added benefit of being able to
handle multiple types of data while independently stratifying the
contribution of specific variables. This can again be contrasted
with analyticalmodels wherein parameters need only be estimated
rather than having to entirely develop the model itself.

Artificial Intelligence (Machine Learning)
Techniques in artificial intelligence applied to outcome modeling
consist of time-invariant statistical methods that are able, to a
degree, to mimic selected human hallmarks. Artificial intelligence
frameworks must first be able to learn (training phase) a pattern
and then produce models that are able to recognize the pattern in
a prospective setting (testing phase).

Success using artificial neural networks (ANNs), one of the
major classes of artificial intelligence, has been achieved in learn-
ing and reproducing critical elements from the fields of speech
pathology and handwriting recognition, both of which require
complex recognition. Each node on a neural net indicates a func-
tion and, as such, refers to a transformation. In this context, a neu-
ral network itself carries no valueswithout input data. In oncology,
neural networks have also been used successfully although they
have yet to be used prospectively (119–121).

Much criticism has arisen in recent years on the application of
ANNs to prediction problems in oncology (122). Single hidden
layer ANNs are universal function approximators, meaning that
they can theoretically represent any function, which is defined by
their topology and weighting values. This may lead to the fitting
of implausible functions to datasets yielding uninterpretable and
simply illogical results.

Feed Forward Neural Network
Feed Forward Neural Networks (FFNNs) (Figure 2) do not
include any recurring nodal inputs (“memories”) and are used
frequently in basic pattern recognition problems. FFNNs are fully
defined by their architecture such that arrangements of nodes into
different topologies can induce different system responses. The
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FIGURE 2 | Diagram of a feed forward neural network (FFNN). None of
the nodes within the network are recursive.

user decideswhat topology to employ for a given FFNNduring the
training phase although some have demonstrated the feasibility
of using separate optimization algorithms to optimize network
architecture itself (123–125). In radiation oncology, attempts have
previously been made to utilize FFNNs for their ability to classify
highly non-linear data (126, 127).

Each node of a FFNN represents a function with one or more
inputs. Inputs from previous nodes are transformed according to
an activation function. Examples of commonly used activation
functions are logit or probit functions. Other functions, such
as the radial basis function (RBF), can also be used if data are
suspected of originating from a specific type of distribution. After
transformation by activator functions, outputs from nodes are
stratified by weights. Such weights are the elements of the FFNN
that are trained when building a FFNN. Training of nodal weights
is relatively straightforward albeit time-consuming. The delta rule
can be used via back-propagation to adjust node input and output
weights until classification performance is optimized. Datasets
for training can be used all at once (batch training) or can be
segregated into pattern-based subgroups (sequential training).

One shortcoming of FFNNs is that extraction of relationship
data from within them can be notoriously difficult, if not, impos-
sible. Information for final output nodes is reliant on previous
inputs and outputs and, therefore, can become extremely mathe-
matically complicated. This disadvantage is somewhat of a trade-
off given that the only time-intensive procedure is training of
node weights, after which the network can be used for real-time
classification. Validated FFNNs are, therefore, indeed amenable to
clinical implementation.

At least one group has demonstrated the applicability of ANNs
in predicting late RB and in fact demonstrated improved pre-
diction performance over and above that of regression-based
approaches (123). Their findings exploited a genetic algorithm
for optimizing inputs into their neural network and, furthermore,
leveraged multiple cross-validation phases.

Generalized Regression Neural Network
In contrast to the FFNN, the generalized regression neural net-
work (GRNN) is a probabilistic neural network developed in 1991
and can, overall, be thought of as a best-fit estimator (128). The
technique generalizes canonical regression by not being limited to

a specific function (e.g., in linear regression) but instead expresses
an empirical regression function as a probability density deter-
mined using a technique known as Parzen window estimation. To
accomplish this, the technique utilizes the joint probability of the
input vector(s) and the outcomes to calculate conditional prob-
abilities and expected values. These values are used to estimate
the generalized regression of the outcomes onto the input data.
The joint probability of the input vectors and outcomes can be
estimated via non-parametric estimators if not known outright.

In the context of training, the advantage of GRNNs is that they
avoid having to backpropagate error to fine tune nodal weights,
which is computationally expensive and time-consuming. Back-
propagation is mitigated by dealing with probability distributions
rather than discrete raw input data. This means that one-pass
of the framework with training data is sufficient to estimate
parameter weights. Previous work by our group has shown that
GRNNs can outperform FFNNs when it comes to prospective
applications in radiation oncology (129). This is likely a result of
the probabilistic nature of nature and/or biological variables across
a patient cohort.

Kernel-Based Methods
Kernel-based approaches to classification problems are based on
clustering data according to non-linear combinations of variables
(such as hyperplanes) in order to separate data. Oncology data are
oftentimes highly non-linear, which gives motivation to explore
the application of such a technique. Kernel methods seek to
maximize distances between clusters that have undergone non-
linear transformations. In this sense, the technique is a non-
linear analog of Fischer’s linear discriminant (FLD) analysis and
principle component analysis (PCA) (Figure 3).

The most prominent member of the kernel-based learning
family is the support vectormachine (SVM). SVMs utilize support
vectors that are formulated according to the most difficult to
separate data and, therefore, are relied upon by the method in
order to select an optimum classifier. By formulating the distance
maximization problem between support vectors as a quadratic
programing problem, a computationally efficient SVM formula-
tion can be described by the following prediction function:

f(X) =
ns∑
i=1

αiyiK(Si,X) + αo (15)

where the number of support vectors is given by ns, K is the
kernel transformation, and αi is the coefficient determined by
quadratic programing. Further details on kernel-based methods
can be found readily in the literature (130–132) or in our previous
work (133).

Systems Biology Approach
The concept of an integrated systems approach is that of under-
standing a given problem in terms of all of its components
together, i.e., taking a “system-wide” view. This can be contrasted
with a reductionist approachwhereby each component of a system
is looked at separately. A given system can be thought of having
four principal components: structure (network topology), dynam-
ics (time evolution of system), control (response and regulatory
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FIGURE 3 | Comparison of the differences in classification procedures
of (A) canonical principle component analysis (PCA) and (B)
kernel-PCA. By utilizing a kernel transformation, non-linear thresholds can
be used to separate and classify data.

systems), and design (operational parameters or rules) (134).
In applying a systems approach to biological and physiological
systems, much insight could be gained that would otherwise be
extremely challenging to extract using phenomenological models
(135–137).

The biological effects induced by ionizing radiation are initiated
at the atomic level in the form of free radical reactions. Free
radical interactions occur rapidly and induce cascades of molec-
ular responses, such as inflammation, which ultimately lead to
recruitment of a variety of different molecular factors (138). Ulti-
mately, over time, cellular responses can manifest themselves as
clinical effects that are recorded as treatment outcomes, including
toxicities. Much mechanistic insight and predictive power would
be derived from a model that is able to combine these different
organizational levels and related biophysical properties. Unfortu-
nately, however, such a model requires expansive radiobiological
knowledge spanning very different time and length scales, thus
making the problem inherently complex.

In a related category, graphical models have been shown to
be of use in radiation oncology as they can capture complex
relationships between relevant factors and inter-dependencies
between variables (Figure 4) (139, 140). Graphical models differ
from aforementioned neural nets in that each random variable
is represented by a node within the system and forms part of

FIGURE 4 | Schematic diagram of relationships in a three-node
graphical model with two recursive relationships. Note how the model
does not have a singular output as the outputs from the middle node are used
as inputs. In contrast to artificial neural networks (ANNs), graphical models
can take into account how variables are related via such conditional
dependences.

an intricately connected web. The web simulates conditional
probability relationships making this class of algorithm classified
as a structured prediction technique as oppose to clustering or
regression (discussed previously). In previouswork, our group has
shown good classification performance using a graphical Bayesian
network in predicting radiation-induced pneumonitis (116).

MODEL ORDER ESTIMATION

Resampling Techniques
Frameworks that exploit resampling can be used tomake estimates
of model orders, parameters, or errors. In all cases, resampling
requires that a dataset is repeatedly sampled with replacement
in order to form many smaller, derived datasets. After several
iterations, testing models on the derived datasets provides esti-
mates on parameters of interest without requiring knowledge
of the underlying distribution, which is a major benefit when
little is known about the mechanics of the variable(s) of interest.
Below, we discuss the two most commonly employed resampling
techniques: jackknifing and bootstrapping.

Jackknifing
The jackknifing approach to parameter estimation entails system-
atically leaving out each of N samples and training N models
on each of the N− 1 remaining data points. The set of models
trained on N− 1 data points are then tested on the singular left-
out data point one at a time. Analysis of the resulting N testing
scores offers insight into how robust themodel is under conditions
of singular missing or inaccurate data (141, 142). Jackknifing is
an approximation to the more labor-intensive, though robust,
bootstrap technique.

Bootstrapping
“Bootstraps” are created from a given dataset by randomly resam-
pling a given dataset (with replacement). Estimation of param-
eters or errors from each of the respective subsamples (a pro-
cess known as bagging) can then be performed and averaged to
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yield an average value. The method is simple and not limited
to specific classes of parameters and is, therefore, an extremely
flexible technique (116, 118).

Bootstrapping is often used in cases where analytical error esti-
mation is unfeasible. One shortcoming of bootstrap resampling
is that it assumes independence of data points. In the context of
radiotherapy outcomes, each set of data points originates from a
specific patient and so this is often not an issue.

Information Theory Approaches
Theoretical approaches to order estimation based on concepts
borrowed from information theory can be used as alternatives to
resampling techniques. Thesemethods serve as tools to help iden-
tify which out of a finite number of models explain outcome data
best. Therefore, the two methods discussed herein only indicate
relative measures of fit and do not give any information on the
quality of any model in an absolute sense (143).

Akaike Information Criteria
The Akaike information criteria (AIC) is based on the principle
of good-of-fit and penalizes models that over- or under-fit data
(144). The approach utilizes the Kullback–Leibler (K–L) distance,
which quantifies the difference between two probability distribu-
tions. The K–L distance is used to estimate divergence of potential
models from their true sampling distributions. The AIC approach
furthermore rewards the models with the lowest value of the AIC
parameter, which is calculated by considering the likelihood (L)
of a particular model to explain outcome data (Eq. 16).

AIC = 2k − ln(L) (16)

where k is the number of parameters in the model. In order to
find the optimal AIC for a given set of models, the equation is
minimized via maximizing the log-likelihood term on the right-
hand side. The additional term 2k is a penalty factor that penalizes
over-fitting of data with increased number of variables. One short-
coming of AIC is that it can fail when large numbers of models are
under examination due to the multiple comparison dilemma.

Bayesian Information Criteria
The Bayesian information criteria (BIC) is a closely related con-
cept to AIC and can similarly provide information as to which out
of many models bests explains a given set of data best (145). The
BIC is based on Bayesian inference and is formally given by:

BIC = k · ln(n) − 2 · ln(L) (17)

where L is the maximum of the likelihood function, k is the
number of parameters in the model, and n is the number of data
points i.e., sample size. Threshold values for BIC that decidedly
indicate whether a particular model should be discarded have
been composed and tested by Kass and Raftery (p. 777) (146).

In comparison to the AIC, the BIC has a larger penalty term
k ln(n) and, thus, penalize over-fitting more than does the AIC.
As a result, BIC prefers models with fewer parameters than those
chosen by AIC. The BIC also suffers when k is large due to the
high-dimensionality problem of identifying variables that fit by
chance.

EVALUATION OF MODEL PERFORMANCE

There exist numerous methods in literature to evaluate the ability
of a givenmodel to classify data in a prospective sense.Oftentimes,
frameworks will employ more than one validation technique in
order to explore the shortcomings of outputted models.

Validation Coefficients and Metrics
Metrics and coefficients are themost readily available tools for cal-
culating the prediction or classification performance of outcome
models. Their simplicity is amenable to quick understanding of
model behavior and, when several are used together, can yield
insightful information.

The linear Pearson’s correlation is an example of a non-
parametric coefficient that is used frequently for estimating the
linearity of a relationship between two variables. More often
employed in outcome models is the Spearman Rank Coefficient,
which does not assume linearity and instead yields an estimate on
the direction of trend between two parameters.

Alternatively, receiver-operating characteristic (ROC) values
can be summed from ROC plots to readily convey classification
performance alongside sensitivity and specificity for the desired
classification cutoff value.

Cross-Validation by Resampling
Resampling with replacement can be used to quantify the clas-
sification performance of models as well as estimate confidence
intervals on model performance or provide estimate son the error
of classification statistics. In our experience, leave-one-out cross-
validation (LOOCV) on finalized models serves as an excellent
method to quickly estimate how robust a given model is without
having to rely on more computationally expensive methods, such
as bootstrapping.

MODEL PERFORMANCE VISUALIZATION

Octile Plots
Plots whereby outcomes are split into eight groups (octiles) are
called octile plots (Figure 5). By considering and plotting both
the predicted and observed outcomes, the plot provides a two-
dimensional method to visually assess model fit. Furthermore,

FIGURE 5 | Example of an octile plot demonstrating how patients are
sub-divided into eight groups and then stratified according to the risk
given by the model of interest.
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octile plots allow the reader to gage how the overall model output
varies with increasing magnitude of input parameters.

Receiver-Operating Characteristic Plot
As discussed previously, the ROC plot can provide a method for
visually assessing model performance. Although the AUC param-
eter derived from the ROC plot is reported more often, the ROC
plot itself is also useful as it provides information onhow the sensi-
tivity varies with the specificity for different threshold cut-offs. In
our work, we often use ROCplots alongside AUCs and correlation
coefficients to gain a full understanding of how a particular model
behaves under conditions of cross-validation (60).

Vector Biplots
Biplots display vectors that are constructed and presented along-
side PCA-derived information and patient-specific NTCP. In the
context of model visualization, vector biplots provide a rough
estimate of which variables are able to explain the data – this is
generally accomplished in two dimensions to aid visualizing the
model on paper.

PCA and Kernel-PCA
Principle component analysis is useful as a method to reduce the
dimensionality of data into either two- or three-dimensions to
facilitate performance visualization. The trade-off in using PCA
for outcomemodeling is that the relationships between inputs and
outcomes are highly non-linear and, therefore, true relationships
may not be adequately captured by the technique. Alternatively,
the previously described Kernel-PCA technique can be employed
to visualize data by improving separation between clusters. Vector
biplots, two- and three-dimensional kPCA plots can indeed be
used together in order to provide easy-to-interpret heat maps
colorized by estimated patient-specific risk (Figure 6) (147).

FIGURE 6 | Example of a color-washed vector biplot. The cardinal plane
represents the vector biplot relating to the magnitude of the contribution of
the variables contained within the model. The axes on which the vector biplot
is shown are derived via principle component analysis (PCA). Dummy patients
with toxicity were circled with empty red circles and color-washed according
to NTCP values generated via the model.

CONTROVERSIES

The number of variables in a big data analysis of outcome models
can accumulate quickly, especially if considering many biologi-
cal factors. Several of the modeling techniques presented herein
fail to take into account or mitigate the dilemma of multiple
comparisons of chance correlations. Therefore, in all aspects of
modeling, independent validation phases should be integrated
into frameworks that aspire to produce clinically relevant results.
Furthermore, although internal cross-validation techniques do
provide excellent estimates of model robustness, their usefulness
is limited if training samples are not retrieved from independent
sources.

Radiotherapy outcomes are complex pathological manifesta-
tions of the biophysical effects of ionizing radiation on the human
body. Therefore, models attempting to delineate such phenom-
ena should endeavor to incorporate as many different types as
possible.

By definition, big data requires the ability to work with
extremely large multi-dimensional datasets, which requires dedi-
cated infrastructure to support access as well as high performance
capabilities to facilitate efficient data exploration and modeling.
Such investments require capital expenditure and training in addi-
tion to the formation of data-sharing and privacy agreements
between institutions (148).

Once meaningful analytics can readily be extracted from mul-
ticenter databases, scientists and physicians are faced with the
dilemma of determining how their predictive models should be
used to maximize the TCP/NTCP ratio. No doubt, the afore-
mentioned biological and clinical risk factors that predispose a
prostate cancer patient to radiation toxicity can be quantified
before therapy and used to guide initial radiation treatment plan-
ning but such an approach ignores such factors as risk to long-term
quality of life, intra-treatment imaging data, physiological changes
during therapy, and symptoms the patient may develop during
and shortly after therapy.

SOFTWARE TOOLS

Many independently verified platforms exist for data-mining and
analytics exploration, several of which are listed below with brief
explanations of their scope and limitations. Further details on the
use and QA of such software can be found in AAPM Task Group
Report #166 (149).

BIOlogical Evaluation of PLANs (BIOPLAN)
Bioplan is a user-friendly software developed in the United King-
dom that allows an absorbed dose treatment plan to be converted
into its likely biological effect (150). It provides a variety of tools,
including DVH subtraction, and is able to calculate NTCP val-
ues according to previously described LKB and binomial-based
models.

Computational Environment for
Radiotherapy Research
Computational environment for radiotherapy research (CERR)
is an open-source computational environment that facilitates the
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conversion of treatment plan data into MATLAB (151). The
software allows for either retrospective or experimental treatment
planning and can read-inCTdata aswell as associated contours. In
the past, our group has used CERR in investigating both GU and
GI toxicities in prostate cancer. CERR can also be used to estimate
the contribution of joint-contours, such as rectal margin overlap
with the PTV, to toxicities.

Dose Response Explorer System
Dose response explorer system (DREES) is an open-source data-
mining tool for exploring dose–response relationships (142).
Using a built in subroutine called CERR+, the program imports
patient data from CERR. DREES provides a suite of tools for
either NTCP or TCP modeling of outcomes without restric-
tion as to the site or population size. The program includes a
GUI interface within MATLAB in order to simplify usability.
Examples of the functions contained with DREES include logis-
tic regression, LKB modeling, actuarial statistics, bootstrap val-
idation, Kaplan–Meier survival analysis, nomograms, boxplots,
and has the functionality for interfacing with SVMs. One of the
major advantages of using DREES is it that it freely distributed,
as is CERR, and is consistently updated, making it flexible and
adaptable.

FUTURE TRENDS

Implications of Charged Particle Therapy
The use of charged particle therapy in treating prostate cancer
has become more mainstream over the past decade, mainly in
the United States (152). Unfortunately, comparable outcome data
from a treatment delivery technology point of view on the use
of proton therapy vs. photon therapy for prostate cancer (to
an even lesser extent carbon ion therapy) are not yet readily
available. Unlike the mainstream adoption of RBE= 1.1 for pro-
ton therapy (153), the RBE debate for charged particles contin-
ues, which makes outcomes comparison to photons difficult for
heavier charged particles and prospective outcomes prediction
impossible.

Studies published using modulated proton techniques report
that GI/GU late effects post-RT are either unchanged (154) or
reduced (155–157). In the case of carbon ions, extensive long-
term biochemical outcomes are not yet available and so does the
interpretation of the efficacy of such treatments remains difficult.
In terms of late radiation-induced ED, at least one study has shown
no significant upregulation using protons (158).

The impact of charged particle therapy plans on outcome mod-
eling is that thresholds, such as those proposed by QUANTEC,
will likely need to be adjusted given the differences in dose distri-
bution and biological response relative to photon-based therapy
(159, 160).

Advanced Methods in Machine Learning
Examples of more complex modeling techniques include the use
of restricted Boltzmann machines (RBMs), which are energy-
based multilayered graphical models that estimate the joint prob-
ability distribution between inputs and outcomes using one or
more binary stochastic hidden layers (161–163). The concept of

an RBM was first proposed by Prof. Geoffrey Hinton from the
University of Toronto in 2006 as a method to efficiently train
and learn a constrained version of a Boltzmann machine (164).
RBMs as applied to oncology have shown promise in making
accurate predictions, however, they remain relatively poorly dis-
seminated techniques and their implementation to date has been
limited.

Multilayered networks, such as RBM or convolutional neu-
ral network, can perform deep learning in that data are passed
through more than one layers of machine-learning modules that
combine to form a framework capable of processing highly com-
plex patterns. More specifically, deep learning strategies attempt
to model high-level abstractions, such as the recognition of three-
dimensional objects, in order to label and classify. This may prove
extremely useful in the case of radiation-induced biological effects
given the physical understanding that such phenomena manifest
after cascading effects at the atomic, molecular, and then cellular
levels. Previously, modeling strategies involving deep learning in
the form of deep belief networks (DBNs) have been applied to
data in oncology viamultilayered RBMs, which are known as deep
Boltzmann machines (DBMs) (165, 166). Such applications are,
for instance, infrequent but may become more frequent as tech-
niques are disseminated and refined specifically for the purposes
of radiation oncology.

CONCLUSION

Prostate cancer is one of the most commonly diagnosed cancers
across the globe and radiation therapy is a primary modality in
treating such cases. Prostate cancer is a heterogeneous disease at
several levels (pathological, molecular/genetic, and clinical) and,
despite technical improvements, there is still a significant risk of
cancer recurrence after therapy. Treatment efficacy for localized
prostate cancer has increased greatly in recent years; however, few
efforts have been aimed at developing and testing personalized
predictive metrics, namely those identified through the rapidly
advancing field of big data analytics using machine learning and
artificial intelligence. Such analytics would allow prostate radio-
therapy regimens to be further tailored to the individual and gen-
erate treatment plans that are functions of not only dose–volume
metrics but also individual’s clinical risk factors and biological
parameters.

Given the apparent complexity of physiological response to
ionizing radiation, it is likely that systems-based approaches will
play a larger role in radiotherapy outcome modeling in the future.
Although regression-based techniques have yielded success in cer-
tain cases, their cross-validated prediction performance appears to
be generally limited, likely due to their inability to capture higher
order interactions between biophysical processes.

A chief limitation in modern outcome modeling projects is
the difficulty in pooling sets of data from multiple institutions.
In medicine, this is principally due to privacy and security con-
cerns. If, however, proper data-sharing protocols can be put
in place, big data analytics may provide a significant boost to
data-driven outcome models owing not only to larger datasets
but also to the ability to more readily perform independent
validation.
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