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Radiotherapy is crucial and substantially contributes to multimodal cancer treatment. 
The combination of conventional fractionation radiotherapy (CFRT) and systemic therapy 
has been established as the standard treatment for many cancer types. With advances in 
linear accelerators and image-guided techniques, high-dose fractionation radiotherapy 
(HFRT) is increasingly introduced in cancer centers. Clinicians are currently integrating 
HFRT into multimodality treatment. The shift from CFRT to HFRT reveals different effects 
on the tumor microenvironment and responses, particularly the immune response. 
Furthermore, the combination of HFRT and drugs yields different results in different types 
of tumors or using different treatment schemes. We have reviewed clinical trials and 
preclinical evidence on the combination of HFRT with drugs, such as chemotherapy, 
targeted therapy, and immune therapy. Notably, HFRT apparently enhances tumor cell 
killing and antigen presentation, thus providing opportunities and challenges in treating 
cancer.

Keywords: stereotactic ablative body radiation therapy, high-dose fractionation radiotherapy, chemotherapy, 
target therapy, immunotherapy

iNTRODUCTiON

With advances in modern image-guided techniques and the availability of high-end linear accelera-
tors and particle therapy, radiation oncologists can administer considerably high radiation doses 
per fraction to tumors, with rapid dose fall-off from the target (namely the tumor) and acceptable 
normal tissue toxicity. High-dose fractionation radiotherapy (HFRT) for intracranial tumors is 
called stereotactic radiosurgery (SRS), and that for extracranial tumors is called stereotactic ablative 
body radiotherapy (SABR) or stereotactic body radiotherapy (SBRT).

Some clinical conditions, such as early-stage non-small cell lung cancer (NSCLC), prostate and 
pancreatic cancer, and oligometastases, are potential targets for HFRT. The biological effective dose 
(BED) (1, 2) can be calculated using the conventional linear-quadratic (LQ) model, which fits well in 
conventional fractionation radiotherapy (CFRT) (fraction size, approximately 2 Gy). The hot spots 
within the irradiated field become hotter while converting the physical radiation dose to BED, called 
the “double trouble” effect. In brief, it introduces errors in physical dose measurement because of 
inhomogenous tissue composition, and the error is amplified with differences in doses per fraction 
during CFRT. Furthermore, the BED differs for different α/β ratios because of tissue heterogeneity.  
A higher fractionation dose of radiotherapy (RT) (typically, >8  Gy per fraction) results in an 
unequally distribution of BED, known as the “triple trouble” (3). Factors, such as reoxygenation, 
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vascular endothelial cell death, and antitumor immunity, in HFRT 
further complicate the situation (4). Therefore, dose calculation 
and estimation constitute the initial challenges, in HFRT.

Clinically, cytotoxic drugs, targeted agents, or immune modu-
lators have been combined with CFRT to improve local control 
and survival. This strategy can be reasonably used with HFRT in 
clinical trials; however, different considerations may be necessary. 
Herein, we review the evidence on preclinical and clinical trials 
that have combined HFRT with drugs.

CHeMOTHeRAPY AND HiGH-DOSe 
FRACTiONATiON RADiOTHeRAPY

Previous studies (5–10) have reported that using concurrent 
chemotherapy as a radiosensitizer improves local control and 
prolongs the overall survival of patients with head and neck squa-
mous cell carcinoma, uterine cervical cancer, malignant glioma, 
locally advanced NSCLC gastric cancer, and locally advanced 
rectal cancer in CFRT. However, the outcomes of administering 
radiosensitizing chemotherapy with HFRT remain controversial. 
Ohri et al. (11) analyzed clonogenic survival data from 26 studies 
to estimate the biologically equivalent doses in 2-Gy fractions 
(EQD2) (12) for HFRT with or without radiosensitizing chemo-
therapy in glioma, head and neck cancer, pancreatic cancer, and 
NSCLC cell lines using a generalized LQ model. The EQD2 is 
the dose equivalent to the radiation dose given in 2-Gy fractions. 
They concluded that combined with HFRT, radiosensitizing 
chemotherapy increased the EQD2 by 28–82%, depending on 
the disease site, and that combined with CFRT, it increased the 
EQD2 by 34–169%. No significant differences existed between 
the HFRT and CFRT groups (p = 0.3). However, for some dis-
eases, such as pancreatic cancer, the EQD2 increased by 82 and 
34% for HFRT and CFRT, respectively (p < 0.001). Thus, HFRT 
is apparently more effective than CFRT in chemoradiotherapy for 
pancreatic cancers. By contrast, head and neck cancer is frequently 
treated using fractionation therapy, and the 50% EQD2 increase 
obtained using CFRT is preferable to the 28% increase obtained 
using HFRT. This observation supports the position of chemo-
radiotherapy using CFRT as the standard treatment for locally 
advanced head and neck cancer. However, in a hyperfractionated 
and accelerated head and neck cancer clinical trial not involving 
HFRT (fraction dose <1.8), chemotherapy increased the BED by 
only approximately 10 Gy10, which is equivalent to the addition 
of 12 Gy in 2 Gy daily or 1.2 Gy twice daily (13). According to 
the calculation by Kasibhatla et al. (13) and correction by Fowler 
(14), the chemotherapeutic effect was 3.6 fractions of 2-Gy added 
to CFRT. This again highlights the importance of the dose per 
fraction and cautions the extension from the experience of com-
bining chemotherapy with CFRT to HFRT.

Some clinical trials examining the potential of chemotherapy 
combined with HFRT have recently concluded or are still under 
way. For example, the first-ever SABR radiochemotherapy phase 
I trial was recently completed and identified a safe dose of car-
boplatin–gemcitabine chemotherapy 1 day preceding SABR for 
both local and regional or distant gynecologic cancer, resulting in 
a 79% partial response and 21% disease stability (15). Additional 

well-designed translational clinical trials evaluating the optimal 
timing and sequence are warranted; however, this trial provided 
substantial data on treating women with recurrent or persistent 
gynecologic cancer by using chemotherapy combined with 
HFRT. Moreover, the trial yielded encouraging results that can 
serve as a basis for future trials on concurrent chemotherapy and 
HFRT for other disease sites. Several trials have treated locally 
advanced pancreatic cancer with chemotherapy and HFRT and 
have reported it to be tolerable and promising. Three clinical trials 
have used 25 Gy in five fractions with neoadjuvant or adjuvant 
chemotherapy containing gemcitabine and reported grade 3 tox-
icity of <5.3% and median survival of 12.2–18.8 months (16, 17).

ePiDeRMAL GROwTH FACTOR 
ReCePTOR-TARGeTeD THeRAPY  
AND HiGH-DOSe FRACTiONATiON 
RADiOTHeRAPY

The advent of mechanism-based therapy promoted the develop-
ment of targeted therapy for cancer treatment. Many molecular-
targeted drugs have been developed to treat hematological and 
solid tumors that have specific driver molecular aberrations. Some 
clinical trials have reported clinical results superior to traditional 
cytotoxic chemotherapy results. For example, ZD1839 (gefitinib) 
as an epidermal growth factor receptor (EGFR) tyrosine kinase 
inhibitor was superior to the first-line carboplatin–paclitaxel 
regimen in East Asian patients with lung adenocarcinoma who 
were non-smokers or former light smokers (hazard ratio for 
progression or death, 0.74) and more favorable for patients with 
EGFR gene mutation subgroup (hazard ratio for progression 
or death, 0.48) (18). The objective response rate was 71.2 and 
1.1% for patients with and without EGFR mutation, respectively. 
Erlotinib alone was also superior to the standard chemotherapy 
in patients with specific mutations (19).

Some molecular pathways targeted by molecular targeting 
drugs can compromise the pathway that leads to radioresistance. 
For example, EGFR inhibitors, such as gefitinib, erlotinib, and 
cetuximab, can prevent the radiation-induced autophosphoryla-
tion of EGFR proteins and downstream substrates, such as the 
DNA-PK enzyme involved in DNA damage repair. Therefore, 
combined modality treatment, such as chemoradiotherapy, is a 
rational means of improving local control and survival. HFRT 
combined with the anti-EGFR blocking antibody, C225, has 
been shown to have synergistic or additive effects in  vitro by 
inhibiting the antiapoptotic proteins Bcl-xl and Bacl-2, as well 
as the phosphorylated form of Akt protein, transforming growth 
factor α, vascular endothelial growth factor (VEGF), and basic 
fibroblast growth factor (20–22). The in  vivo efficacy of C225 
was also illustrated in a preclinical animal model, proving the 
potential of EGFR inhibitor combined with HFRT. For example, 
the combination of gefitinib and HFRT (10  Gy  ×  4 fractions) 
resulted in long-term survival of 10% of tumor-bearing mice 
(21). Notably, the synergistic effect depends on driver mutation, 
which in this case is EGFR mutation (22). Furthermore, several 
clinical trials have suggested that EGFR inhibitor combined with 
CFRT is well tolerated and effective in several solid tumors, such 
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as those of head and neck cancer (23, 24), NSCLC (25), rectal 
cancer (26), and esophageal squamous cell carcinoma (27). These 
are positive drivers for trials to determine the efficacy of targeted 
therapy combined with HFRT.

Phase II clinical trials have reported the safety and efficacy of 
concurrent cetuximab and HFRT for locoregional pre-irradiated 
or head and neck cancers in elderly patients (28, 29). However, 
additional randomized studies on targeted molecule therapy 
combined with HFRT are warranted to further confirm the 
benefits of this regimen at different disease sites or with different 
combination sequences.

veGF-TARGeTeD THeRAPY AND HiGH-
DOSe FRACTiONATiON RADiOTHeRAPY

Vascular endothelial growth factor is a proangiogenic agent that 
directly stimulates the vascular endothelial cells and initiates 
neovasculature (30). It is also an immune factor that could 
impair the function and maturation of dendritic cells, which 
could be reversed by a VEGF blockade (31, 32). In contrast to 
other targeted therapies, anti-VEGF therapy does not target 
an oncogene-driven mutation. Bevacizumab prolongs median 
survival by 4.7 months for metastatic colorectal cancer (33). Two 
phase III studies (AVAglio and RTOG 0825) have administered 
bevacizumab combined with a standard treatment (surgery fol-
lowed by CFRT and oral temozolomide) for newly diagnosed 
glioblastoma (GBM) and reported progression-free survival; 
however, overall survival was similar between treatment and 
placebo arms (34, 35). Furthermore, in a phase II GLARIUS 
trial of patients with newly diagnosed O6-methylguanine-DNA 
methyltransferase non-methylated GBM on whom temozolo-
mide had limited efficacy, CFRT with concurrent and adjuvant 
bevacizumab plus irinotecan instead of temozolomide increased 
6-month progression-free survival by 36.7% (79.3–42.6%); 
similar to the aforementioned trials, overall survival was  
similar (36).

High-dose fractionation radiotherapy combined with 
anti-VEGF therapy demonstrates a synergistic effect, which is 
related to many possible mechanisms. First, anti-VEGF therapy 
increases the pO2 level to compensate for the radioresistance of 
hypoxic tumors (37). Although RT frequently reduces tumor 
vessel density and tumor blood flow, the oxygen concentration 
can be increased by reducing interstitial fluid pressure and 
killing oxygenated cells (38). Second, anti-VEGF agents could 
prevent VEGF-induced angiogenesis after HFRT (39). Third, 
the VEGF also protects the endothelial cells from radiation; 
therefore, HFRT (8 × 3 Gy) combined with anti-VEGF therapy 
exerts a synergistic effect on endothelial cell killing (40). Fourth, 
the optimal-dose of an anti-VEGF agent not only increases 
immune cell (DC and CD8+ cells) infiltration and anticancer 
immune response (41) but also normalizes the vascular network 
to enhance the efficacy of HFRT. A vascular “normalization 
window” has been reported to appear approximately 2–5 days 
after the administration of an anti-VEGF agent, depending on 
the tumor type and disease site. This “window” is associated with 
the increase of pericyte coverage and angiopoietin-1 (Ang1) 

expression and thinning of basement membranes, resulting in 
enhanced tumor oxygenation. This can also be the window for 
administering HFRT or cytotoxic agents (42, 43). However, the 
side effects of this approach have not been comprehensively 
evaluated. Bevacizumab combined with chemotherapy for 
advanced NSCLC increases side effects, including lethal pulmo-
nary hemorrhage (44). The incidence of severe bleeding events 
was 3% in a phase IV trial (45). A phase I trial of concurrent 
CFRT and bevacizumab for stage III NSCLC was terminated 
because of additional radiation pneumonitis (46). When CFRT, 
capecitabine, and bevacizumab are combined for inoperable 
pancreatic adenocarcinoma, tumor involvement of duodenal 
mucosa causes ulceration and bleeding (47). Two clinical phase 
II trials of chemoradiotherapy plus bevacizumab were termi-
nated early because of severe toxicities of the tracheoesophageal 
fistulae (48). This emphasizes the importance of carefully 
designing clinical trials for combining HFRT with anti-VEGF 
therapy.

PHOSPHATiDYLSeRiNe TARGeTiNG 
THeRAPY AND HiGH-DOSe 
FRACTiONATiON RADiOTHeRAPY

Microvascular endothelial apoptosis is pivotal in controlling a 
tumor with a fractionation size larger than 10 Gy (49). Studies 
have reported that the acid sphingomyelinase (ASMase) can 
translocate to cell membranes and convert sphingomyelin into 
ceramide. Ceramide activates apoptotic protein BAX to release 
the mitochondrial cytochrome c, which triggers the intrinsic 
apoptotic pathway to mediate the cytotoxic effect of high-dose 
radiation on endothelial cells (50, 51).

The vascular endothelium of GBM and many solid tumors, 
but not of normal tissues, expresses phosphatidylserine (PS). 
RT could further increase the exposure of PS in the tumor ves-
sel endothelium. HFRT plus anti-PS antibodies (bavituximab) 
further damaged the tumor vasculature in a murine glioma 
model, resulting in increased tumor control (52). HFRT induces 
the binding of an anti-PS antibody to PS on the cell surface and, 
subsequently, leads to antibody-dependent killing of endothelial 
cells. The long-term survival for tumor-bearing mice after com-
bination therapy was resistant to the rechallenge of F98 glioma 
cells. This suggests the potential for clinical trials of bavituximab 
combined with HFRT for patients with GBM (52). In addition, 
radiation-enhanced PS exposure further enhances the efficacy of 
glioma therapy by activating a soluble tissue factor to trigger the 
extrinsic coagulation cascade, thus causing selective thrombosis 
of GBM vasculature (53). These findings indicate that HFRT has 
a synergistic potential when combined with vascular targeting 
therapy.

A phase I clinical trial of bavituximab plus paclitaxel for 
metastatic breast cancer was well tolerated and yielded promis-
ing results (54). Pandya et  al. (55) reported trials conducted 
using gemcitabine with and without bavituximab for metastatic 
pancreatic adenocarcinoma. Gemcitabine combined with bavi-
tuximab did not improve the survival or overall response rate 
(56). Additional trials on bavituximab plus CFRT are underway.
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HYPeRBARiC OXYGeNATiON THeRAPY 
AND HiGH-DOSe FRACTiONATiON 
RADiOTHeRAPY

Most solid tumors have tortuous and dilated microvessels with 
loose pericyte coverage and increased interstitial fluid pressure, 
resulting in heterogeneous hypoxic areas within the tumor. Tumor 
hypoxia is related to radiation resistance and poor prognosis (57). 
The hypofractionation associated with HFRT can exert more 
therapeutic effects by decreasing the possibility of tumor repopu-
lation, but could also be compromised by the increase of tumor 
hypoxia (58). Toma-Dasu et al. used in silico tumor models with 
heterogeneous oxygenation and reported that hypoxia reduces 
tumor control probability after single-fraction RT, particularly in 
larger tumors. Local reoxygenation by four or five fractionations 
could partially reverse the effect of hypoxia (59), supporting the 
clinical trials of HFRT that favored single-fraction RT.

Hyperbaric oxygenation (HBO) directly relieves the tumor 
hypoxia in patients with head and neck cancer and GBM (60, 
61). Overgaard systemically reviewed 32 randomized clinical tri-
als on hypoxic modifiers, such as normobaric oxygen or carbogen 
breathing, HBO, and hypoxic radiosensitizers, and observed that 
these modifiers were all effective in locoregional control of head 
and neck squamous cell carcinoma. These hypoxic modifiers 
benefit not only CFRT but also high-dose HFRT considering 
locoregional control and disease-free survival (62). Despite the 
practical difficulty and inconvenience of concurrent combination 
of HBO with HFRT, several trials have reported positive results of 
administering CFRT immediately after HBO (63). For example, 
HBO combined with CFRT for patients with malignant glioma 
yielded a higher response rate and improved the median survival 
from 12 to 24 months. All the patients in the HBO group received 
irradiation within 15 min following HBO (64). HBO combined 
with CFRT for uterine cervical cancer also improved local control 
and survival (65).

In addition, HBO therapy is safe and effective against 
radiation-related tissue damage or necrosis such as mandibular 
osteoradionecrosis as well as radiation proctitis and cystitis 
(66). The prophylactic use of HBO within 1  week following 
single-fraction RT for brain metastases reduced the incidence of 
radiation necrosis or white matter injury from 20 to 10% (67). 
Kohshi et al. reported that the administration of gamma HFRT 
immediately following HBO therapy has survival benefits for 
patients with recurrent glioma (64). The dual benefits of HFRT 
combined with HBO therapy provide a promising direction for 
further investigation.

iMMUNe THeRAPY AND HiGH-DOSe 
FRACTiONATiON RADiOTHeRAPY

The development of cancer immunity is a cycle with stepwise 
events that require (1) releasing tumor-associated specific anti-
gens, (2) presenting cancer antigens, (3) priming and activating 
antigen-presenting cells (APCs) and T cells, (4) recruiting cyto-
toxic T cells to tumors, (5) infiltrating T cells into tumors, (6) 
recognizing cancer cells, and (7) killing cancer cells, thus releasing 

tumor antigens that feed back to the first step of this cycle (68). 
A vaccine for cancer has been anticipated to have effects similar 
to those against infectious diseases (e.g., bacterial or virus infec-
tion). However, it alone involves only the first three steps of the 
aforementioned cycle and yields limited clinical results because 
it is difficult to generate potent cytotoxic T cell responses against 
cancer cells, to correct the immunosuppressive microenviron-
ment, and to prevent the immunoediting effect of cancer cells.

The efficacy of RT was found to depend not only on radiobio-
logical factors but also on the immunological competence of the 
host (69); therefore, RT was immediately recognized as a poten-
tial immune boosting agent for developing anticancer immunity. 
Milas et  al. (70) reported that local irradiation enhanced the 
efficacy of the antitumor immune response of Corynebacterium 
granulosum and Cryptosporidium parvum bacteria in a murine 
fibrosarcoma tumor model. Many preclinical and clinical trials 
have examined the potential of RT combined with immuno-
therapy in various cancer models. RT, particularly HFRT, plays 
several roles in tumor immunity. Radiation not only kills tumor 
cells to release antigens and induces stromal cells and vascular 
endothelial cells to produce immune-associated factors but also 
eliminates APCs and T cells (71). However, in contrast to the 
systemic effects of cytotoxic chemotherapy, radiation-induced 
killing of immune cells is localized to the tumor region (71). 
Radiation can also promote protein degradation and increase 
the cell surface expression of major histocompatibility complex-I 
with a dose-dependent presentation of endogenous peptides (72). 
A study showed that the activity of transporter-associated antigen 
presentation lasted longer with 25 Gy than with lower doses (73). 
Compared with five fractions (5  ×  3  Gy), HFRT (in this case, 
1 × 15 Gy) further increased the APCs carrying tumor antigens in 
tumor-draining lymph nodes where the tumor antigen-reactive 
and TNF-γ-secreting T cells were also increased. Those antitumor 
T cells had an increased ability to migrate to and infiltrate the 
tumors on day 14 (74). These promising preclinical studies have 
prompted trials on combining immunotherapy with RT; however, 
the results of such clinical trials have not been as promising as 
preclinical studies despite tolerance and safety being acceptable. 
This is mainly because radiation, in addition to being a promis-
ing immunological adjuvant, is a complex modifier of the tumor 
microenvironment. Irradiation not only induces prevailing anti-
tumor immunity but also activates immuneosuppressive path-
ways (75). The balance shift between radiation-induced immune 
activation and suppression depends not only on the disease sites 
but also on the dose per fraction applied and the total dose (76).

iMMUNe CHeCKPOiNT BLOCKADe  
AND HiGH-DOSe FRACTiONATiON 
RADiOTHeRAPY

Cancer immunotherapy was considered a revolution for patients 
with cancer. Research focused on developing therapeutic vac-
cines using T cells in various approaches, including those involv-
ing whole tumor cells expressing cytokines and DNA vaccines, 
or antigen-pulsed dendritic cell therapy. Despite researchers 
expressing enthusiasm in the 1990s, most of them failed to show 
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objective clinical responses, and the enthusiasm waned by the 
late 1990s (77). One major reason for the failure of earlier cancer 
immunotherapy trials was possibly unawareness about the other 
side of T cell activation, the inhibitory program mediated by 
immune checkpoints, such as cytotoxic T lymphocytes-associated 
protein 4 (CTLA-4) or programed death-1 (PD-1) protein. This 
shifted the strategies for cancer immunotherapy from activat-
ing T cells to unleashing them (78). By targeting the inhibitory 
pathways in T cells to reverse the suppressed antitumor T cell 
response, the immune checkpoint blockade therapy approach 
yields many favorable clinical results, recently (78). Anti-CTLA-4 
antibodies (ipilimumab or tremelimumab) and anti-PD-1 anti-
bodies (Nivolumab or Pembrolizumab) are currently approved 
by the U.S. Food and Drug Administration (FDA) for immune 
checkpoint blockade therapy.

Clinical trials have proposed the clinical use of immune 
checkpoint inhibitors, and favorable responses by using immu-
notherapy have been elicited in metastatic melanoma (79), 
NSCLC (80, 81), renal cell carcinoma (80), bladder cancer (82), 
and head and neck cancer (83); however, responses are limited 
to patients with relatively immunogenic tumors or some degree 
of preexisting tumor-infiltrating T cells. Combination treatment 
is considered more appropriate for most patients with cancer. 
Combining immune checkpoint inhibitors with various modali-
ties, such as surgery, chemotherapy, targeted therapy, vaccine or 
immune therapy, or RT, was initiated in many preclinical models 
and clinical trials (78). The main rationale for this strategy is 
likely that one component of combination therapy can reduce 
the tumor burden or tumor-associated immunosuppression and 
subsequently enhance the induction of tumor immunity and 
the development of long-term immune memory. Among these 
combination strategies, RT has been long considered as the ideal 
partner for immune checkpoint inhibitors because radiation 
has several pro-immunogenic effects (76), such as the release of 
tumor antigens, activation of canonical immune pathways, and 
generation of immune active tumor microenvironments, which 
improve the response to immune checkpoint inhibitors (84). 
Notably, local tumor irradiation may produce tumor regression 
at a distant site, referred to as the abscopal effect. However, such 
observations are rare (85). With conventional fractionation, only 
10 patients exhibiting the abscopal effect have been reported, 
since 1973 (85); their primary sites have included melanoma, 
renal cell carcinoma, and hepatocellular carcinoma. With HFRT 
(8–26  Gy per fraction), the abscopal effect has been reported 
in five cases of renal cell carcinoma, one case of NSCLC, and 
two cases of melanoma, since 2006 (86–90). These occasional 
radiation-induced abscopal responses indicate that local tumor 
irradiation may function as an in situ tumor vaccine.

Demaria et al. (91) were the first to reveal that local irradia-
tion at a tumor resistant to the CTLA-4 blockade therapy could 
render it sensitive to anti-CTLA-4 antibody therapy and inhibit 
metastasis in a murine breast tumor model. They further dem-
onstrated that CTLA-4 blockade combined with fractionated 
(3 × 8 Gy), but not single-dose (1 × 20 Gy), RT develops abscopal 
responses (92). These responses of ipilimumab combined with RT 
have since been confirmed in several clinical reports in patients 
with melanoma unresponsive to the CTLA-4 inhibitor as single 

modality (88, 89, 93). These preclinical and clinical results not 
only demonstrate that RT potentially can function as an in situ 
tumor vaccine but also indicate the crucial role of RT treatment 
protocols. Several ongoing clinical trials are determining the 
benefits of RT combined with anti-CTLA-4 therapy (94).

The inhibition of the PD-1/PD-L1 pathway is the second block-
ade strategy proved by the FDA for immune checkpoint blockade 
therapy. Many preclinical models have shown that this approach 
promotes host CTL expansion and results in tumor regression 
(95–98). These preclinical results have also been successfully 
illustrated in several clinical reports (80, 99); however, similar to 
the CTLA blockade, the positive response is still limited to certain 
patients. A combination therapy has been considered for expand-
ing the responder proportion of PD-1 blockade therapy, and the 
combination with RT is being investigated in several laboratories 
(94). Zeng et al. (100) reported that anti-PD-1 therapy combined 
with stereotactic RT (1 × 10 Gy) significantly prolongs the survival 
of glioma tumor-bearing mice and generates long-term antitu-
mor memory. In another report, Dovedi et al. (101) demonstrated 
that low doses of CFRT (5 × 2 Gy) increased PD-1 expression in 
tumors for 7 days immediately after the RT exposure. Separately 
combining the αPD-L1 monoclonal antibody (mAb) and αPD-1 
mAb with RT cured 66 and 80% of mice, respectively, whereas 
immune therapy alone did not improve survival (101). This 
curative effect was associated with the development of CD8+ 
T cell responses, which protects surviving mice against tumor 
rechallenge. Moreover, Deng et al. (75) demonstrated that HFRT 
locally controls tumors through direct cell killing and boosts 
tumor-specific immunity to suppress the growth of both local 
and distant tumors. However, this radiation-induced antitumor 
immunity is insufficient for destroying tumors, and the tumor 
frequently regrew because of PD-L1 upregulation by tumor and 
myeloid cells and PD-1 downregulation by CD8+ T cells. This 
study indicates that irradiation not only generates an in  situ 
antitumor vaccine but also inhibits the T cell function as an effect 
on the alteration of the PD-L1/PD-1 axis in the tumor microen-
vironment. This study provides a rational design for increasing 
the antitumor immunity of HFRT through PD-L1 blockade or 
regulator T cell (Treg) depletion (102).

CONCLUSiON

In the past 20  years, technological advances have considerably 
changed the delivery of radiation and enabled radiation oncolo-
gists to safely deliver higher radiation doses to tumors. This 
change not only increases the cytotoxic power of radiation but 
also provides new avenues for improving cancer therapy. This 
new opportunity is largely attributed to the change related to 
the tumor microenvironment following HFRT. Compared with 
CFRT, tumor microenvironmental factors, such as tumor hypoxia, 
T-cell immune response, tumor vasculature, and cytokines, are all 
different following HFRT. The situation is more complex when 
HFRT is combined with chemotherapy, targeted therapy, or an 
immune checkpoint blockade. It is promising that HFRT as neo-
adjuvant therapy can initially kill tumor cells, enhance antigen 
presentation, and promote T-cell immune response, thereby 
optimizing the immune checkpoint blockade treatment. The new 
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option for HFRT provides an opportunity for and a challenge in 
treating cancers (76).
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