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Double strand breaks (DSBs) induced by radiotherapy are highly cytotoxic lesions, lead-
ing to chromosomal aberrations and cell death. Ataxia-telangiectasia-mutated (ATM)-
dependent DNA-damage response, non-homologous end joining, and homologous 
recombination pathways coordinately contribute to repairing DSBs in higher eukaryotes. 
It is known that the expression of DSB repair genes is increased in tumors, which is one 
of the main reasons for radioresistance. The inhibition of DSB repair pathways may be 
useful to increase tumor cell radiosensitivity and may target stem cell-like cancer cells, 
known to be the most radioresistant tumor components. Commonly overexpressed in 
neoplastic cells, cytokines confer radioresistance by promoting proliferation, survival, 
invasion, and angiogenesis. Unfortunately, tumor irradiation increases the expression of 
various cytokines displaying these effects, including transforming growth factor-beta and 
interleukin-6. Recently, the capabilities of these cytokines to support DNA repair path-
ways and the ATM-dependent DNA response have been demonstrated. Thrombopoietin, 
essential for megakaryopoiesis and very important for hematopoietic stem cell (HSC) 
homeostasis, has also been found to promote DNA repair in a highly selective manner. 
These findings reveal a novel mechanism underlying cytokine-related radioresistance, 
which may be clinically relevant. Therapies targeting specific cytokines may be used to 
improve radiosensitivity. Specific inhibitors may be chosen in consideration of different 
tumor microenvironments. Thrombopoietin may be useful in fending off irradiation-in-
duced loss of HSCs.
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inTRODUCTiOn

Approximately half of cancer patients receive radiation as part of the treatment (1). Radiation 
sensitivity is influenced by neoplastic cell proliferation or quiescence status, resistance to apoptosis, 
levels of free-radical scavengers, and the ability to repair highly cytotoxic DNA double strand breaks 
(DSBs) caused by radiation therapy (RT) (2–4). DSBs are the main contributors to RT-induced 
cell killing through the formation of chromosomal aberrations that lead to cell death. Improperly 
repaired DSBs increase genomic instability, chromosomal translocation, and cancer risk (1). Thus, 
the ability to repair DSBs in cancer cells confers radioresistance, while RT reaching normal cells 
induces, among other side effects, the development of secondary malignancies. Biological approaches 
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TABLe 1 | Radioprotective effects induced by TGF-β, iL-6, and TPO.

Proliferation Survival DSB repair ATM-DDR nHeJ HR

TGF-βa + + + + + NA
IL-6b + + + + NA NA
TPOc − − + NA + −

aTGF-β, radioprotective effects of TGF-β on cancer cells.
bIL-6, radioprotective effects of IL-6 on cancer cells.
cTPO, radioprotective effect of TPO on hematopoietic stem cells.
ATM-DDR, ATM-dependent DNA-damage response; NHEJ, non-homologous end 
joining DNA repair; HR, homologous recombination DNA repair; NA, not assessed.
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exploiting differences in cellular responses to RT between tumor 
and normal cells are desirable to specifically radiosensitize tumor 
cells and protect normal cells.

A role of cytokines in promoting tumorigenesis is recognized 
as an essential component in all tumors (5). Cytokines promote 
proliferation, survival, invasion, and angiogenesis, which confer 
tumor cell radioresistance (6). Although RT induces DNA dam-
age, it also upregulates the expression of various interleukins 
(IL), including IL-1, IL-6, IL-8, transforming growth factor-beta 
(TGF-β), and tumor necrosis factor (TNF) (6), which, through 
the activity of the transcription factor nuclear factor κB (NF- κB), 
further increases the expression of IL-6 and IL-8 (7). Early stud-
ies in mice demonstrated the radioprotective effect of IL-6 (8). 
High levels of serum IL-6 produced by neoplastic plasma cells 
and bone marrow stromal cells in multiple myeloma are associ-
ated with poor prognosis (9, 10). Lung tumors express IL-6 and 
the transcription factor Stat3 that mediates IL-6-dependent 
proliferation and survival effects (11). In these tumors and in 
squamous esophageal carcinoma, Stat3 overexpression confers 
radioresistance (11–13). Overexpression of TGF-β is associated 
with aggressive tumor growth in head and neck cancer and breast 
and prostate cancer (14, 15). We observed TGF-β expression in all 
non-small-cell (NSC) lung tumors tested (16). TGF-β inhibitors 
increase radiosensitivity in breast cancer and glioblastoma in 
animal experimental models (17, 18). TPO regulates megakary-
opoieis and supports hematopoietic stem cell (HSC) quiescence 
and expansion post-transplantation (19). Importantly, mutations 
resulting in constitutive activation of the TPO receptor are 
involved in myeloproliferative neoplasms (19). The effects of 
TGF-β, IL-6, and TPO on DSB repair (summarized in Table 1) 
will be the focus of this mini-review.

In mammalian cells, non-homologous end joining (NHEJ) and 
homologous recombination (HR) pathways repair RT-induced 
DSBs. They differ in the requirement of a homologous DNA 
template and in the fidelity of the repair. The HR pathway utilizes 
DNA sequences of the undamaged chromatid as a template 
(20,  21). Thus, it is an accurate form of repair that functions 
in the late S and G2 phase of the cell cycle when an identical 
sister chromatid is available. The NHEJ pathway promotes direct 
ligation of the DSBs in all phases of the cell cycle. This is an 
error-prone mechanism that may result in insertions, deletions, 
or substitutions at the break sites and translocations, when DSBs 
from different chromosomes are joined.

Different subtypes of these pathways and the ataxia-telangi-
ectasia-mutated (ATM)-dependent DNA-damage response to 

DSBs have been thoroughly reviewed elsewhere (20–25). Here, 
pathways utilized by eukaryotic cells in response to RT will be 
only briefly summarized.

nHeJ PATHwAY

The NHEJ pathway is considered the major repair pathway for 
DSBs in human cells (26) and is divided into three stages: (1) 
end detection and tethering, (2) processing, and (3) ligation (22). 
In the first step, the heterodimeric protein Ku70/Ku80 binds 
to DSB ends, encircles the DNA duplex, and recruits the DNA 
protein kinase catalytic subunit (PKcs), a member of the phos-
phoinositide 3 (PI3)-kinase-like family, which contacts the DNA 
termini. The binding of PKcs promotes the tethering of the two 
ends allowing two DNA PKcs molecules to interact across DSBs 
in a “synaptic complex.” This promotes the phosphorylation in 
“trans” across the DSB and the autophosphorylation of PKcs (20) 
which induce conformational changes and improve the access of 
processing proteins and their functions (22). In the second phase, 
non-ligatable ends are processed to remove blocking end groups 
and damaged DNA, or to fill in gaps, thus, this is an error-prone 
process. Different enzymes are required; the most important is the 
NHEJ-specific nuclease Artemis, whose activity is regulated by 
PKcs and ATM kinase-mediated phosphorylation (22, 26). Other 
enzymes, also involved in base excision and nucleotide excision 
DNA repair pathways, participate in processing, indicating that 
cells have evolved to a coordinated cascade of events to be pro-
tected by DNA damage. These include the phosphatase polynu-
cleotide kinase and exonucleases Exo1 and WRN (21, 22). WRN is 
mutated in Werner syndrome, characterized by premature aging 
and genomic instability (27). The nucleotide gaps are repaired by 
two members of the X family polymerases, pol λ and pol μ.

Finally, ligation of DNA ends is carried out by ligase IV, bound 
to the scaffolding X-ray cross-complementing protein (XRCC)4, 
which stabilizes the ligase and stimulates its activity (20–22).

The XRCC4-like factor (XLF) is required to promote liga-
tion of blunt ends and mismatched non-cohesive ends, and 
to re-adenylate the ligase, a necessary step for ligation (22). 
Mutations inactivating XLF or ligase IV are associated with 
growth retardation, radiation sensitivity, and immunodeficiency 
(28, 29). Noteworthy, the NHEJ pathway is critical in the repair 
of physiological DSBs created during immunoglobulin V(D)
J recombination and class switch recombination. Thus, patients 
lacking normal NHEJ are sensitive to radiation and immunode-
ficiency (30).

HR PATHwAYS

Homologous recombination pathways require undamaged 
homologous DNA to repair DSBs. In general, HR can also be 
divided into three stages: presynapsis, synapsis, and postsynapsis 
(21). During presynapsis, an extensive and complex 5′ to 3′ 
resection of broken DNA ends occurs to generate 3′ ended single 
strand DNA.

The heterotrimeric complex MRN formed by Mre11, NBS 
1, and Rad 50 cooperates with the C-terminal binding protein 
interacting protein (CtIp) to remove about 100 nt (23). MRN is 
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also an initial DSB sensor and unwinds DNA ends (25, 31). Breast 
cancer-associated protein (BRCA)1 is recruited at this site and 
regulates this step activating end resection and promoting the 
activity of CtIp (1).

In the second stage, the heterotrimeric replication protein 
A (RPA), also involved in the nucleotide excision repair path-
way (21), binds to single strand tails preventing internal base 
pairing (23). Then, RPA is replaced by Rad 51 recombinase in 
conjunction with BRCA2 and a group of proteins known as Rad 
51 paralogs required for RPA replacement (1) (Rad 51B, C, and 
D, XRCC2, and XRCC3), which yield the Rad51 nucleoprotein 
filament (1, 21, 23). This filament invades the double strand DNA 
molecule to search sequence homology and forms a structure 
termed displacement loop (D-loop). Immunofluorescence stain-
ing detects Rad51 nucleoproteins as distinct subnuclear foci (23). 
Following Rad51 removal from the 3′ end to reveal the 3′-OH 
group, necessary for priming, DNA synthesis starts elongating 
the invading strand and forming a cross-shaped structure: the 
Holliday junction (1, 21, 23). HR repair can proceed differently 
from this point (1). In the synthesis-dependent strand-annealing 
(SDSA) repair, after DNA synthesis, performed by polymerase 
δ, the new DNA strand is displaced and re-ligated with the 
original DNA, thus, SDSA repair is not associated with crosso-
ver. Alternatively, in the double strand break repair (DSBR), two 
independent strand invasions from both DSB ends are followed 
by simultaneous DNA synthesis (performed by polymerase η), 
and generate a double Holliday junction (1, 23). Specific enzymes 
cleave this junction, and depending on which pair of strands is 
cut the DSBR pathway can lead to a crossover or non-crossover 
outcome (1, 21, 23).

ATM-DePenDenT DnA-DAMAGe 
ReSPOnSe

In response to DNA damage, including RT, eukaryotic cells acti-
vate cell cycle checkpoints: they arrest the cell cycle allowing DNA 
repair or triggering apoptosis if repair is impossible (25). Kinase-
dependent signaling networks regulate checkpoint activation. 
In parallel to promoting cell cycle arrest, checkpoint signaling 
mediates the recruitment of DNA repair pathways (25). ATM 
kinase, containing a PI3 kinase-like sequence, is encoded by the 
ATM gene, mutated in patients affected by ataxia-telangiectasia 
(24, 32), whose cells exhibit decreased survival and increased 
radiation sensitivity (24). ATM signaling is induced by DSBs and 
also by chromatin perturbations that do not directly cause DSBs 
(33). ATM exists as an inactive multimer that dissociates into 
active monomers upon a conformational change associated with 
autophosphorylation and acetylation by the acetyl transferase Tip 
60, which binds the above-mentioned MRN complex (25). MRN 
recruits ATM at the DSB sites crucially enhancing its activity (31, 
34). The minor histone H2A variant contributes to the suppres-
sion of genomic instability preventing the separation of cleaved 
DNA strands (35). ATM phosphorylates H2AX histones sur-
rounding DSBs and a multitude of substrates, including the MRN 
complex (25). Substrates of ATM also include the checkpoint 
kinase (CHK)2, CHK1, and p53 (25, 36). Activation of CHK1 
and CHK2 contributes to cell cycle arrest at the G1/S and G2/M 

phases of the cell cycle (25). CHK2 also promotes p53-dependent 
and -independent apoptosis pathways (37). Thus, ATM activity 
regulates cell cycle arrest (CHK1, CHK2, p53), apoptosis (p53 
and CHK2), and DNA repair (MRN complex and H2AX). H2AX 
phosphorylation on serine 139 (γH2AX) can be visualized by 
immunofluorescence as discrete spots or foci or by Western blot 
analysis. Detection of γH2AX is widely used as an indicator of the 
incidence of DSBs (38).

TGF-β, iL-6, AnD TPO DiFFeRenTLY 
inFLUenCe RADiOReSiSTAnCe AnD 
DnA RePAiR

Transforming growth factor-beta is a pleiotropic cytokine that 
regulates proliferation, angiogenesis, and immune responses 
(39). In normal epithelial cells, it negatively regulates cell cycle 
progression by activating cyclin-dependent kinase inhibitors, 
such as p15 and p21 (40). By contrast, it promotes cancer pro-
gression and metastasis by a variety of mechanisms, including 
induction of angiogenesis, cell motility and invasion, and repres-
sion of the immune system (39). In vitro studies, performed in 
2006 showed that the ATM-dependent DNA-damage response 
to irradiation was impaired in TGFβ-deficient murine mammary 
cells (41). Subsequently, in human breast cancer cell lines, it was 
shown that inhibition of TGF-β signaling using the TGF-β type 
I receptor kinase inhibitor Ly 364947 decreased the clonogenic 
cell growth prior to irradiation, and blocked irradiation-induced 
γH2AX foci formation and p53 phosphorylation (18). Moreover, 
an anti-TGF-β antibody decreased the number of irradiation-
induced γH2AX foci and the growth of neoplastic cells injected 
in immunocompromised mice (18). Similar results were 
obtained by different laboratories using TGF-β type I receptor 
kinase inhibitors and glioblastoma murine and human cell lines, 
and in murine experimental models (17, 42). In addition, an 
inhibitor was shown to decrease growth and apoptosis of glio-
blastoma cancer stem cell-like cells (CSCLC), as well as tumor 
invasion and angiogenesis (42). In murine prostate cancer, it was 
confirmed that irradiation increased TGF-β expression while 
its inhibition by a silencing vector increased the level of nuclear 
phospho-ATM (Figure  1) and the number of nuclear γH2AX 
foci (43). Recently, in human epidermoid carcinoma cells and 
in embryonic kidney cells, it was demonstrated that TGF-β 
pre-treatment not only protected the cell lines from irradiation-
induced apoptosis and decreased the amount of nuclear γ-H2AX 
foci but also increased the expression of ligase IV and promoted 
the nuclear retention of Ku70/Ku80, ligase IV, and XRCC4 (44). 
SMAD proteins are intracellular mediators of TGF-β signaling. 
TGF-β stimulation leads to phosphorylation of SMAD2 and 
SMAD3, which form complexes with SMAD4 and regulate the 
transcription of target genes in the nucleus (39). RNA silencing 
of SMAD2/3 proteins confirmed that ligase IV levels depended 
on canonical SMAD-dependent signaling. Importantly, ligase 
IV RNA silencing decreased TGF-β-induced protection against 
irradiation, underlining the important role of NHEJ repair (44). 
These data indicate that TGF-β increases radioresistance by mul-
tiple mechanisms, including effects on DNA repair, and suggest 
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FiGURe 1 | ATM-dependent DnA-damage response: interactions 
between ATM and cytokines. TGF-β increases the level of phospho-ATM 
(43), IL-6 increases the expression of both ATM and phospho-ATM (45), and 
TNF induces ATM activation, required to stimulate NF-κB transcriptional 
activity (46).
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that specific inhibitors administered before RT might improve 
radiosensitivity.

Interleukin-6 is a multifunctional cytokine involved in inflam-
matory processes; it stimulates acute phase protein synthesis, 
hematopoiesis, survival, and cell growth (12). It can cross the 
blood–brain barrier and the resulting synthesis of prostaglandin 
E2 in the hypothalamus changes the body temperature set point 
(12). Stat3 is the critical regulator of IL-6-dependent cell growth, 
differentiation, and survival signals. It promotes the transcrip-
tion of pro-survival regulatory genes: c-myc, B-cell lymphoma 
(Bcl)-extra large (Bcl-XL), and myeloid cell leukemia 1 (Mcl-1) 
anti-apoptotic genes, and binds p53 inhibiting its function 
(12, 13). Transfection of dominant-negative Stat3 abolishes the 
pro-survival effect of IL-6 (47). IL-6 is involved in proliferation, 
survival, and differentiation of almost all tumors studied, and is 
overexpressed in multiple myeloma, oral squamous carcinoma, 
and in breast, ovarian, prostate, endometrial, colorectal, renal, 
and lung cancers (12).

Previous studies showed that the administration of anti-IL6 
antibody in mice enhanced radiation-induced mortality (8). 
Other authors confirmed that irradiation enhanced IL-6 expres-
sion and showed that the increased growth and angiogenesis of 
murine hormone resistant versus hormone sensitive prostate 
cancer cells was attributable to higher IL-6 production (48). It 
has recently been demonstrated using human NSC lung cancer 
cell lines that following irradiation CD133+ CSCL-like cells 
proliferated and survived better than CD133− cells. Silencing 

of IL-6 reduced proliferation and survival in both groups 
of cells. IL-6 silencing in CD133+ cells resulted in a higher 
number of DSBs compared with CD133+ non-silenced cells 
3 h after irradiation, indicating a difference in DNA repair. By 
contrast, no difference was observed between IL-6 silenced and 
non-silenced CD133− cells. The expression level of ATM, phos-
phorylated ATM, CHK2, and phosphorylated p53 was lower in 
IL-6 silenced CD133+ cells than in non-silenced CD133+ cells, 
whereas no difference was found between CD133− silenced and 
non-silenced cells. IL-6 upregulated the transcription of ATM 
(Figure  1) and, as expected, the expression of anti-apoptotic 
genes, such as Bcl-2 and Mcl-1 (45). These data indicate that 
IL-6 specifically affects the DNA-damage response in CSCL 
cells and suggest the hypothesis of other effects on DNA repair 
pathways. The evidence that IL-6 induces c-myc (49) lends 
support to this hypothesis. Radioresistance of nasopharyngeal 
carcinoma cells is dependent on c-myc-mediated overexpres-
sion of CHK1 and CHK2 genes, which display c-myc binding 
sites on their promoters (48). Moreover, c-myc transcriptional 
activity promotes NHEJ repair (50, 51), and its silencing in irra-
diated embryonal rhabdomyosarcoma cells increases the num-
ber of γH2AX foci and decreases the expression of DNA PKcs, 
Ku/70, and RAD51 (51). IL-6-targeted biological therapies are 
available. The human–mouse chimeric monoclonal antibody 
CNTO 328 has shown promising results in phase II clinical 
trials concerning patients with ovarian and renal cancers (12). 
Patients with multicentric Castleman disease treated with this 
antibody as a single agent showed high rates of clinical response 
(52). In addition, clinical trials are ongoing in ovarian cancer 
patients utilizing the humanized anti-IL-6 receptor monoclonal 
antibody Tocilizumab in combination with chemotherapy (53).

Myelosuppression and loss of HSCs are important side effects 
of RT. TPO, essential for megakaryopoiesis, increases prolifera-
tion, survival, quiescence, and expansion post-transplantation of 
HSCs (19). TPO receptor-deficient mice exhibit 10–20% of the 
normal HSC number. TPO has been shown to exhibit important 
and selective DNA repair promoting activity (54). HSCs from 
TPO receptor-deficient mice were more radiosensitive and 
exhibited decreased DSB repair than cells from wild-type mice. 
Removal of TPO but not of stem cell factor or Fms-related 
tyrosine kinase 3 ligand from the medium impaired DSB repair 
in normal HSC, underlining TPO specificity. Importantly, TPO 
increased PKcs phosphorylation and promoted NHEJ repair. The 
number of irradiation-induced Rad51 foci was not modified, 
suggesting that TPO had no effect on HR repair. HSCs from 
TPO-receptor-deficient mice showed genomic instability after 
irradiation, whereas TPO treatment of normal HSC before irra-
diation protected from genomic instability and improved HSC 
reconstitution capacity in secondary transplants. Surprisingly, 
TPO did not modify the cell cycle or survival of irradiated  
HSCs (54).

Other cytokines support tumor radioresistance, however, 
whether they promote DNA repair is unknown. These cytokines 
produced by neoplastic cells and in response to RT include IL-1, 
IL-8, and TNF (6). The role of IL-1 in enhancing radioresist-
ance was known more than 20  years ago (55). IL-1 activates 
NF-κB, which mediates the expression of more than 200 genes 
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promoting survival proliferation, invasion, and radioresistance 
(6). Interestingly, IL-1 may promote DNA repair, since it induces 
TGF-β expression (56, 57).

Interleukin-8, a pro-inflammatory chemokine enhances pro-
liferation and survival of endothelial cells, leading to neoangio-
genesis (58). High levels of IL-8 correlate with a poor prognosis in 
hepatocarcinoma, colon, and nasopharyngeal cancer (58, 59). In 
prostate cancer cells and in nasopharyngeal carcinoma, high IL-8 
expression confers radioresistance (59, 60), mediated, in naso-
pharyngeal cancer, by PI3 kinase and Stat3-dependent signaling 
pathways. Importantly, a Stat3 inhibitor inhibited radiosensitivity 
(59, 61).

Tumor necrosis factor, a pro-inflammatory cytokine with 
potent antitumor effects binds to two structurally related but 
functionally distinct receptors, TNF receptors 1 and 2. Binding 
to these receptors initiates a complex array of signaling pathways 
(62, 63), including one that induce activation of NF-κB, leading to 
cell survival, while the other, through regulation of Fas-associated 
protein with death domain, can lead to apoptosis (62). Therefore, 
TNF-α affects radioresistance in a complex manner, cell type 
dependent, mainly influencing cell survival (62, 63). For instance, 
in human neuroblastoma cells TNF-α expression induced by RT 
resulted in sustained NF-κB activation, survival advantage, and 
radioprotection (64). The ATM kinase activity can promote NF-κB 
activation following various genotoxic stimuli, including irradia-
tion (46, 65). In the human A549 lung epithelial cell line, TNF 
induced simultaneously DSBs due to free-radical formation and 
NF-κB activation (66). Interestingly, NF-κB activation depended 
on the activation of ATM, which was an unexpected nuclear 
damage response signal, activated by TNF (46, 65) (Figure  1). 
NF-κB inhibitors may represent novel radiosensitizing strategies 

targeting both TNF pro-survival signals and NF-κB-mediated 
IL-6 and IL-8 production induced by TNF (7, 62).

COnCLUSiOn

The recently demonstrated activity of cytokines on DNA repair 
pathways may be clinically relevant, suggesting that therapies tar-
geting cytokines could be employed to improve the results of RT 
in very different contexts. TGF-β and IL-6 confer radioresistance 
using multiple mechanisms that may be desirable to counteract 
with specific inhibitors before RT administration. It should be 
taken into account that TGF-β effects on normal versus neoplas-
tic cells are different, and sometimes opposite, whereas IL-6 has 
similar effects on normal and neoplastic cells.

Moreover, the different biological behavior of different tumors 
in terms of different cytokine overexpression should also be con-
sidered to obtain specific therapies.

TPO-induced DNA repair activity in irradiated HSCs appears 
impressively selective, thus, a short treatment to avoid side effects 
(67) may be useful to protect HSCs before irradiation in solid 
tumors.
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