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Cancer cells are addicted to numerous non-oncogenic traits that enable them to thrive. 
Proteotoxic stress is one such non-oncogenic trait that is experienced by all tumor cells 
owing to increased genomic abnormalities and the resulting synthesis and accumulation 
of non-stoichiometric amounts of cellular proteins. This imbalance in the amounts of 
proteins ultimately culminates in proteotoxic stress. p97, or valosin-containing protein 
(VCP), is an ATPase whose function is essential to restore protein homeostasis in the 
cells. Working in concert with the ubiquitin proteasome system, p97 promotes the 
retrotranslocation from cellular organelles and/or degradation of misfolded proteins. 
Consequently, p97 inhibition has emerged as a novel therapeutic target in cancer cells, 
especially those that have a highly secretory phenotype. This review summarizes our 
current understanding of the function of p97 in maintaining protein homeostasis and its 
inhibition with small molecule inhibitors as an emerging strategy to target cancer cells.
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inTRODUCTiOn

Cell division control protein 48 (CDC48), or p97, is a member of the type II AAA+ protein fam-
ily of ATPases that participates in a diverse array of cellular activities (1–3). AAA+ proteins are 
evolutionary conserved class of proteins found in archaea, bacteria, viruses, and all eukaryotes. 
They typically assemble into hexameric complexes that utilize the energy of ATP-hydrolysis to 
facilitate macromolecular remodeling (4). Consequently, AAA+ proteins are involved in numerous 
processes including protein folding, DNA recombination, repair or replication, metal chelation, and 
proteasome-associated activities (2). p97 is an abundantly expressed cellular protein involved in 
the disassembly of protein complexes particularly, in proteasomal protein degradation, chromatin 
remodeling, autophagosome maturation, immune signaling, endoplasmic reticulum (ER) mem-
brane fusion, and assembly of Golgi membranes (5). This review highlights the role of p97 in protein 
homeostasis and describes the consequences of its chemical or genetic inhibition in cancer cells.

p97 comprises two AAA domains called D1 and D2, as well as an N-terminal domain that is 
involved in substrate and/or adaptor molecule recognition (6–8). The C-terminal tail of p97 is fairly 
unstructured and usually terminates with a hydrophobic residue, a tyrosine, and variable amino 
acid residues. The C-terminus tail also binds numerous adaptors, thus increasing the repertoire 
of p97 interacting proteins (7). p97 assembles into a homohexameric, barrel-like structure, in 
which the D1 and D2 domains are stacked in a head-to-tail manner. The axial channel result-
ing from the hexameric organization of p97 is used to translocate proteins and/or nucleic acid 
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Eeyaresta�n I (18) >30 - 3 3.7 0.4 3
NMS-873 (19) 0.03 0.01 - - - -
ML240 (20) 0.11 0.03 3 0.9 0.1 3
ML241 (20) 0.11 0.03 3 3.5 0.4 3
Compound 18 (20) 0.05 0.03 3 1.8 0.2 3
Compound 29 (20) 0.045 0.006 3 2.6 0.3 3
CB-5083 (21) 0.011 0.004 18 - - -

FiGURe 1 | (A) Domain structure, ribbon diagram of p97 hexameric structure (11), and functions of p97 are summarized. (B) Select inhibitors of p97 ATPase. 
Chemical structures for Eeyarestatin I, DBeQ, NMS-873, ML240, ML241, compound 18, compound 29, and CB-5083. (C) Comparison of IC50 values for shown 
compounds for p97 in biochemical and cell-based assays as reported in Ref. (18–21).
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substrates and aid in their turnover or remodeling (9–11). The 
cryo-EM structure of p97 reveals the upward displacement of 
the N-terminal domain upon ATPγS binding to D1 and D2 
domains. These structural changes are essential for 97 activity 
and are blocked by the p97 inhibitor UPCDC3024 (Figure  1) 
(11). The D1 domain is important for mediating the assembly 
of p97 hexamers and has very low ATPase activity (4, 12). The 
D2 domain contributes to the major share of ATPase activity in 
p97 (13). However, a functional D1 domain and cooperativity 

between both D1 and D2 domains is necessary for optimal p97 
function and cell growth (13–15). The linker region between the 
D1 and D2 domains has also been reported to be important for 
ATPase activity and asymmetric assembly of p97 (16). p97 inter-
acts with its ubiquitinated substrates through a diverse array of 
ubiquitin adapters that contain the ubiquitin-binding domain 
(UBD), or p97-binding (UBX), or UBX-like (UBX-L) domain.  
It also employs numerous cofactors that aid in its cellular func-
tions (17) (Table 1).
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TABLe 1 | A partial list p97 interacting proteins and their associated 
functions.

p97 interactors Function

p47 Golgi and ER biogenesis (22)
ERAD (17, 23)

gp78 ERAD (17)
Otu1 Substrate deubiquitination (17)
Ufd1p-Nlp4 ERAD (24), inhibition of golgi membrane fusion (25), and 

NF-κB2 activation (26)
UBXD1 Protein trafficking (27)
HDAC6 Clearance of polyubiquitinated protein aggregates (28, 29)
VIMP ER shaping (30) and ERAD (31)
UBXN10 Ciliogenesis (32)
SVIP Inhibition of ERAD (33) and autophagy (34)
HSP90 Regulation of HSP90 chaperone function (28)
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p97 AnD iTS ROLe in CeLLULAR 
ADAPTATiOnS TO PROTeOTOXiC 
STReSS

Tumors are “addicted” to oncogenic mutations such as gene 
amplification, loss of tumor suppressor function, or gain- 
of-function mutations. However, it has become increasingly 
clear that several non-oncogenic traits or “stress phenotypes” 
enable them to thrive in the hostile tumor microenvironment 
(35). Examples of the stress phenotype include replicative/DNA 
damage stress, proteotoxic stress, oxidative stress, and metabolic 
stress (36). Due to altered genomic copy numbers and the 
resultant synthesis of non-stoichiometric amounts of cellular 
proteins, tumors are experience heightened proteotoxic stress. 
The proteotoxic stress phenotype of tumors, in turn, makes them 
highly dependent on heat shock protein 90 (HSP90) chaperone 
function to promote protein folding and maturation (35, 37, 38). 
The following section highlights key aspects of p97-dependent 
cellular adaptions to proteotoxic stress. Other functions of p97, 
such as its chromatin-associated functions, etc., are beyond the 
scope of this review and are covered in many excellent publica-
tions (39, 40).

HSP90-Dependent Chaperoning  
of Misfolded Proteins
p97 is a key player in the clearance of misfolded proteins in con-
cert with the HSPs and the stress-inducible transcription factor, 
heat shock factor 1 (HSF1) (41). HSF1-induced HSPs (HSP90  
and its co-chaperones (HSP70, HSP40, and HSP27) participate in 
the refolding and maturation of proteins. Misfolded proteins that 
cannot be refolded are polyubiquitinated and degraded by the 
ubiquitin proteasome system (41–43). p97 exists in a “repressive” 
complex with HSP90, histone deacetylase 6 (HDAC6), and HSF1. 
Accumulation of misfolded proteins in the cell and the ensuing 
proteotoxic stress disrupt the repressive complex. This, in turn, 
results in the activation of HSF1 by a process that involves its 
phosphorylation, trimerization, and nuclear translocation (28). 
Nuclear HSF1 activates the transcription of HSPs that promote 
protein refolding. The HDAC6 released from the complex binds 
to misfolded, polyubiquitinated proteins and facilitates their 

shuttling into peri-nuclear structures called aggresomes. p97 
has been demonstrated to be involved in the HDAC6-dependent 
fusion of aggresomes with an autophagolysosomes – a vesicular 
body that promotes the clearance of ubiquitinated proteins and/
or damaged organelles (2, 44, 45). By virtue of its segregase 
activity, p97 dissociates HDAC6-polyubiquitin complexes and 
determines the extent of HDAC6-dependent shuttling (and 
accumulation) or clearance of polyubiquitinated proteins by 
proteasomes or autophagosomes (29, 46). p97 is also required for 
the reformation of the HSP90-HDAC6-HSF1 complex, which 
occurs only when HDAC6 is not bound to polyubiquitinated 
proteins (47). The dissociation of HDAC6 from the repressive 
complex could potentially affect the acetylation status of HSP90, 
which negatively regulates HSP9 chaperone function (48, 49). 
The impact p97 inhibitors on HSP90 chaperone function has, 
however, not been studied.

Unfolded Protein Response and  
eR-associated Degradation
Nearly thirty percent of mammalian proteins pass through the 
ER where they are folded, glycosylated, and assembled before 
they reach their final destination within or outside the cell (50).  
A series of glycosylation/deglucosylation steps as well as the 
unique oxidative environment in the ER promote the proper 
folding of membrane-resident and/or secretory proteins (51). 
Perturbations in ER function due to intrinsic and extrinsic sig-
nals, such as hypoxia, nutrient deprivation, deregulation of Ca 
homeostasis, enhanced rates of protein synthesis, etc., lead to the 
accumulation of misfolded proteins in the ER (52). These pertur-
bations result in ER stress – a stress phenotype that is prevalent in 
both normal and malignant secretory cells (53, 54).

Unfolded protein response (UPR) is a cellular adaption that 
ensues following induction of ER stress. UPR activates three 
important signaling pathways: the inositol-requiring enzyme 
1α (IRE-1α), PRKR-like ER kinase (PERK) kinases, and as the 
activating transcription factor 6 (ATF6) (reviewed in detail 
elsewhere) to restore proteostasis (55). Activation of UPR 
induces the phosphorylation of the transmembrane kinase IRE-
1α, which catalyzes the splicing of X-box-binding protein (1) 
(XBP1) which, in turn, induces the transcription of HSP40 family 
members ERdj4 and the ER degradation enhancer, mannosidase 
alpha-like 1 (EDEM1), a protein required for ERAD (discussed 
below) (56). Activation of PERK phosphorylation induces the 
phosphorylation of eukaryotic transcription factor 2α (eIF2α), 
which halts overall protein translation but induces the transla-
tion of activating transcription 4 (ATF4) and other selected 
mRNAs. ATF4 also induces the pro-apoptotic transcription 
factor CCAAT/enhancer-binding protein (C/EBP) homologous 
protein (CHOP), which upregulates numerous apoptotic targets 
genes including BIM, death receptor 5 (DR5), and ER oxidase 1α 
(ERO1α) (57, 58). ATF6α is also a transmembrane ER protein, 
which is proteolytically processed in response to ER stress (59). 
ATF6α enters the nucleus to activate the transcription of chaper-
ones glucose regulated proteins 78 and 94 (GRP78 and GRP94) 
as well as XBP1. Overwhelming amounts of misfolded proteins 
or prolonged ER stress activate the PERK pathway to upregulate 
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CHOP as well as ATF4 transcription factors. These events pro-
mote ERO1α and protein disulfide isomerase-dependent produc-
tion of reactive oxygen species (ROS) through protein disulfide 
oxidation, leading to oxidative stress and apoptosis (60).

Endoplasmic reticulum-associated degradation (ERAD) is a 
process by which misfolded proteins that cannot be refolded in 
the ER are retrotranslocated to the cytosol and degraded by the 
proteasomes (61–64). p97 uses its energy of ATP-hydrolysis to 
structurally remodel and extract ERAD substrates through the 
ER membrane into the cytosol. p97 works in association with a 
complex of ER membrane protein channels (also called dislocons) 
including Sec61 and Sel1L and adaptors, ubiquitin fusion degra-
dation 1 (Ufd1)-nuclear pore localization 4 (Npl4) (24, 65, 66). 
Owing to the fact that misfolded proteins are “tagged” with mono 
or polyubiquitin before they can be degraded by the proteasome, 
another important component of the ERAD machinery is the 
ubiquitin ligase complex (65). Both luminal and membrane-
associated misfolded ERAD substrates are ubiquitinated by E3 
ubiquitin ligases (see below) (66, 67). The process of substrate 
dislocation and proteasomal degradation is tightly coupled in 
order to prevent the toxic aggregation of hydrophobic misfolded 
proteins in the cytosol. Non-glycosylated proteins that cannot be 
folded in the ER are also subjected to proteasomal degradation 
by ERAD through mechanisms that utilize GRP78 and SEL1L 
(68, 69). The last step in ERAD is the deubiquitination of ERAD 
substrates before they can begin their translocation into the 
proteasomes. p97 is, therefore, also found to be associated with 
several deubiquitinating enzymes (DUBs), including ataxin3, 
TOD1, Otu1, and VCIP135 (70).

Ubiquitination and p97
p97 interacts either directly (e.g., Gp78 and HRD1) or through 
adaptors (e.g., UBXD7/Ubx5) to E3 ubiquitin ligases such as cul-
lin RING ligases (CRL) to facilitate the ubiquitination of numer-
ous ERAD substrates (67, 71, 72). CRLs comprise multi-protein 
complexes that include the cullin scaffold, a RING-domain 
protein, and a cullin-specific adaptor that recruits both ERAD 
and non-ERAD substrates for ubiquitination. CRLs make up 
more than 240 different ligases that enable p97 to ubiquitinate 
numerous substrates including hypoxia-inducible factor 1 
(HIF1) α, RNA polymerase II large subunit (Rpb1), and Aurora 
B (72, 73). Additionally, p97 is involved in the polyubiquitin 
chain assembly of its substrates in concert with the E4 ubiquitin 
ligase, Ufd2 (74).

Ribosome-Associated Degradation
mRNA with no stop codons also called non-stop mRNA or those 
with a polybasic tract, such as polylysine, which occurs during the 
translation of a poly(A) tail of a non-stop mRNA, are subjected 
to ribosome stalling and degradation of the nascent peptide 
(75). Accumulation of such aberrant peptides could potentially 
lead to reduced translation-competent ribosomes or produce 
aggregation-prone polypeptides. Two independent studies 
identified p97 as a component of the complex that is involved 
in the ubiquitination and proteasomal degradation of aberrant 
tRNA-linked nascent peptides from the ribosomes (76, 77). 
Additional components of this complex include the E3 ubiquitin 

ligase Listerin (Ltn1), translation-associated element (Tae2), and 
the ribosome quality control 1 (Rqc1) (76, 77).

Mitochondria-Associated Degradation
The process of extracting misfolded peptides from mitochondrial 
outer membranes to facilitate their proteasomal disposal (MAD) 
also involves p97 (78). MAD employs the p97 cofactors, Ufd1-
Npl4, for the translocation of damaged mitochondrial proteins. 
p97 also participates in the elimination damaged mitochondria 
by mitophagy, a process that is dependent on the E3 ubiquitin 
ligase Parkin and autophagolysosomal function (79). Recent 
studies in yeast have identified that Ufd3 or Doa1 and Npl4 both 
serve as substrate recruitment cofactors for p97. Doa1 is a mem-
ber of the WD40 family of proteins that functions specifically in 
the degradation of mitochondrial substrates. Deletion of Doa1 
does not affect the degradation of non-mitochondrial substrates 
nor does it sensitize cells to ER stress-inducing agents. The 
absence of Doa1, however, inhibits growth of cells in response to 
increased oxidative stress (80). An analogous role of the human 
homolog of Doa1, phospholipase A2 activating protein, in MAD 
or mitophagy has not been reported.

p97 inHiBiTORS: FROM HiT TO LeAD

It is clear from the above description that p97 is involved in the 
clearance of misfolded proteins by affecting numerous protein 
homeostatic mechanisms. Other than the processes mentioned 
above, p97 is involved in resolution of stress granules (SGs), 
endosomal sorting, and chromatin remodeling, among other 
functions. SGs are cytoplasmic aggregates formed due to impaired 
translation initiation of mRNAs in complex with ribosomal subu-
nits (77, 81, 82). Owing to its pivotal role in HSP90 chaperone 
function, ERAD, MAD, RAD, and autophagy, it is conceivable 
that p97 inhibition would induce the accumulation of misfolded 
proteins or toxic protein aggregates in the cell. Consequently, 
p97 inhibitors selectively target cancer cells because of their 
heightened sensitivity to agents that disturb protein homeostasis. 
Eeyrestatins (EerI and II) were the earliest identified p97 inhibi-
tors that inhibited ERAD, albeit with low potency (83, 84). Several 
chemically distinct classes of p97 inhibitors have been identified 
since then (85–88). The compounds, described below, have led to 
the identification of a molecule (CB-5083) with drug-like proper-
ties, which is currently being tested in the clinic (21).

Given that the ATPase activity of p97 is essential for its 
segregase activity, high-throughput assays designed to measure 
the ATPase activity of recombinant p97 were utilized to screen 
compound libraries to identify p97 inhibitors (89). N2,N4-
dibenzylquinazoline-2,4-diamine (DBeQ) was identified as a 
reversible, ATP-competitive p97 inhibitor that showed IC50 value 
of <10 μM in the ATPase activity assay (89). The inhibitory activ-
ity of DBeQ was further confirmed in cellular screens by moni-
toring the degradation of a p97-dependent substrate UbG67V-GFP. 
DBeQ was also 50-fold less potent in inhibiting other unrelated 
ATPase activities, such as those of N-ethylmaleimide-sensitive 
factor (NSF) and the ATP-dependent chymotryptic activity of the 
26S proteasome. Mechanistically, DBeQ upregulated CHOP and 
resulted in cell death suggesting that DBeQ-dependent inhibition 
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of p97 resulted in a lethal ER stress response. DBeQ also induced 
autophagy, as evidenced by the enhanced lipidation of LC3 
(microtubule associated protein light chain) or LC3-B (89, 90).

To develop more potent p97 inhibitors, two promising hits, 
DBeQ and N-benzyl-2-(2-fluorophenyl) quinazolin-4-amine, 
from the high-throughput screen were optimized through 
structure–activity relationship (SAR) studies (20). These studies 
resulted in the identification of two compounds ML240 and 
ML241 bearing different substitutions at the N2 position on 
distinct quinazoline core scaffolds (Figure 1) (20). Both ML240 
and ML241 were ATP-competitive p97 inhibitors and possessed 
similar in vitro ATPase activity, with ML240 being modestly more 
potent than ML241 in the stabilizing UbG67V-GFP. ML241 showed 
greater induction accumulation of polyubiquitinated proteins 
compared to ML240. However, ML240 induced more apoptosis 
and efficient poly(ADP-ribose) polymerase cleavage compared 
ML241. These findings suggest that there are mechanistic dif-
ferences in the modes of action of ML240 and ML241. Among 
the two compounds, only ML240 induced the accumulation of 
LC3-B (a marker of early autophagosome formation or impaired 
autophagic maturation) and thus behaved similar to DBeQ (20, 
90). ML240 also outperformed ML241 in its antiproliferative 
effects as assessed in the NCI-60 cancer cell line panel.

NMS-873, unlike the other p97 inhibitors described above, 
is an allosteric p97 inhibitor that induces the accumulation of 
polyubiquitinated proteins, leading to ER stress and inhibition 
of autophagosome maturation (19). NMS-873 is thought to dis-
rupt the ATPase activity of p97 by binding to the linker domain 
between the D1 and D2 ATPase domains of p97, leading to the 
stabilization of D2-ADP bound p97. Consequently, NMS-873 
showed reduced sensitivity to limited trypsin digestion, which 
is associated to its higher stability and potency (19). Both the 
ATP-competitive (DBeQ, ML240, and ML241) inhibitors as well 
as the allosteric inhibitor NMS-873 have differential effects on the 
D1 and D2 ATPase activity of p97. In vitro ATPase activity assays 
revealed that NMS-873 and DBeQ inhibit ATPase activity from 
both D1 and D2 domains. ML240 and ML241, however, seem 
to selectively inhibit the D2 domain of p97 (15). The inhibitory 
activity of ML240 and ML241 is also dramatically decreased by 
the presence of the p97 cofactor p47 (49- to 37-fold) compared to 
DBeQ and NMS-873 (2- to 6-fold) (15, 91). In contrast, cofactors 
p37 and Npl4-Ufd1 did not change the potency of ML240 and 
ML241 (92). These findings suggest that it is possible to develop 
p97 inhibitors that exhibit complex-specific inhibitory activities, 
which could be used to inhibit specific functions of p97.

While the compounds described, so far, in this review have 
excellent ATPase-inhibitory activities, they lack “drug-like” 
properties, thus making them unsuitable for in  vivo studies. 
Utilizing DBeQ, ML240, and ML241 and cogeners such as 
Compound 18 and Compound 29 as the starting point, CB-5083 
(1-[4-(benzylamino)-5H,7H,8H-pyrano[4,3-d]pyrimidin-2-yl]-
2-methyl-1H-indole-4-carboxamide) was developed as a D2 
domain selective, first-in-class p97 inhibitor with an IC50 of 11 nM 
(21). An in-depth analysis of the pathways affected by CB-5083 
revealed that it affected the expression of mediators of the UPR 
(93). Significantly altered genes in response to CB-5083 treatment 

include CHOP, DR5, HSPA5, HERPUD1, SEL1L, SYVN1, and 
EDEM1. CB-5083 showed promising antitumor responses in 
colorectal, lung cancer, and plasmacytoma tumor xenografts as 
well as patient-derived xenograft models of colorectal cancer 
(93). The study also determined that resistance to CB-5083 
was dictated by both mRNA and protein levels of p97 as well as 
possibly other cell-specific factors such as expression of EDEM1 
and autocrine motility factor (AMFR). Additionally, activation 
of the mitogen-activated protein kinase (MAPK) pathway and 
phosphorylation of extracellular signal-regulated kinases 1 and 
2 (ERK1/2) correlated with the activity of CB-5083. Owing to 
its promising pre-clinical activity, CB-5083 is being tested in 
the clinic against relapsed/refractory multiple myeloma and 
advanced solid tumors (NCT02243917 and NCT02223598).

POTenTiAL PiTFALLS AnD ADvAnTAGeS 
OF p97 inHiBiTiOn

Activation of the IRE1α-XBP1 pathway in response to misfolded 
proteins in the ER induces ER chaperones that promote efficient 
protein refolding and promotes ERAD. However, XBP1 and 
PERK activation has also been reported to activate an epithe-
lial–mesenchymal transition (EMT) phenotype in cancer cells 
(94–96). XBP1-induced EMT is associated with the upregulation 
of transcription factor Snail in breast cancer (96). Similar findings 
have also been reported in colorectal carcinoma (CRC) where 
the IRE1α-XBP1 pathway promotes proliferation and invasion of 
CRC cells (95). Consistent with these findings, siRNA-knockdown 
of p97 or treatment with Eeyarestatin I was reported to induce an 
EMT-like phenotype in lung adenocarcinoma cells (97). These 
studies indicate that p97 inhibition in cancer cells need to be 
considered with caution.

While studies have shown that the induction of ER stress in 
cancers promotes EMT and invasion, this can be considered as 
their vulnerability. This is because ER stress activation in can-
cers can potentially sensitize them to agents that accentuate ER 
stress (94). p97 inhibitors (EerI and DBeQ) have been reported 
to induce synergistic cell death in combination with the protea-
some inhibitor bortezomib in mantle cell lymphoma and multiple 
myeloma (84, 98). Genetic knockdown of p97 inhibits cancer cell 
viability and synergizes with a wide variety of agents that induce 
DNA damage, growth inhibition, and cellular stress in  vitro 
(19). Interestingly, no evidence of EMT-like phenotype has been 
reported for CB-5083 in in vivo models. Future studies to disrupt 
specific adaptor/cofactor-p97 associations will likely lead to the 
identification of novel p97 inhibitors with enhanced specificity 
and/or superior anticancer activity.
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