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Autophagy is a self-degradation pathway, in which cytoplasmic material is sequestered 
in double-membrane vesicles and delivered to the lysosome for degradation. Under 
basal conditions, autophagy plays a homeostatic function. However, in response to var-
ious stresses, the pathway can be further induced to mediate cytoprotection. Defective 
autophagy has been linked to a number of human pathologies, including neoplastic 
transformation, even though autophagy can also sustain the growth of tumor cells in 
certain contexts. In recent years, a considerable correlation has emerged between 
autophagy induction and stress-related cell-cycle responses, as well as unexpected 
roles for autophagy factors and selective autophagic degradation in the process of 
cell division. These advances have obvious implications for our understanding of the 
intricate relationship between autophagy and cancer. In this review, we will discuss our 
current knowledge of the reciprocal regulation connecting the autophagy pathway and 
cell-cycle progression. Furthermore, key findings involving nonautophagic functions for 
autophagy-related factors in cell-cycle regulation will be addressed.
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iNTRODUCTiON

Macroautophagy (herein referred to as autophagy) is a highly 
conserved catabolic pathway that mediates the sequestration 
and delivery of cytoplasmic material to the lysosome for degra-
dation. This is achieved by the formation and expansion of an 
isolation membrane (or phagophore) that fuses to engulf cyto-
plasmic constituents in a double-membrane autophagic vacuole 
(the autophagosome). The autophagosome finally undergoes 
fusion with lysosomes whereby the enclosed cargo is degraded 
and subsequently released and recycled to support cellular 
metabolism. In physiological conditions, autophagy proceeds at 
a basal level to ensure the turnover of superfluous or damaged 
components, including organelles and long-lived proteins, to 
maintain cellular homeostasis. Moreover, the autophagic flux 
can be upregulated in response to a wide range of stresses, such 
as nutrient deprivation, reactive oxygen species, DNA dam-
age, protein aggregates, damaged organelles, or intracellular 
pathogens, whereby it functions as an adaptive cytoprotective 
response (1, 2).

The molecular pathway that orchestrates the initiation and 
execution of autophagy has been comprehensively reviewed 
elsewhere (3–5). In short, the initiation phase of autophagy is 
governed by two main complexes: the unc-51-like autophagy-
activating kinase (ULK) complex and the class III phosphati-
dylinositol 3-kinase (PtdIns3K) complex (Figure  1A). The 
PtdIns3K complex produces phosphatidylinositol 3-phosphate 
(PtdIns3P) for recruitment of additional autophagy factors to 
the phagophore and is partially comprised of the key autophagy 
regulators vacuolar protein sorting 34 (Vps34), Beclin 1, 
vacuolar protein sorting 15 (Vps15), and activating molecule 
in Beclin 1-regulated autophagy (AMBRA1). Downstream of 
these complexes are two ubiquitin-like conjugation systems 
that mediate vesicle expansion [the autophagy-related gene 
8 (Atg8) and autophagy-related gene 12 (Atg12) systems]. 
Both systems require the E1-like protein autophagy-related 
gene 7 (Atg7) for activation of the ubiquitin-like proteins 
Atg8 [light chain 3 (LC3) in mammals] and Atg12. In the 
Atg8 system, Atg8/LC3 undergoes proteolytic processing and 
covalent attachment to the lipid phosphatidylethanolamine 
(in mammalian cells, the precursor form is termed LC3-I and 
the lipidated form LC3-II), by which it becomes associated 
with the phagophore membrane. Consequently, autophagy 
can be detected biochemically (by assessing the generation of 
LC3-II) or microscopically (by observing the formation of LC3 
puncta, representative of LC3 redistribution to the develop-
ing autophagosomes). Apart from these systems, the pathway 
includes the transmembrane protein autophagy-related gene 
9 (Atg9), as well as factors involved in autophagosome–lyso-
some fusion [e.g., lysosomal-associated membrane protein 2 
(LAMP2)], vacuolar permeases mediating the efflux of amino 
acids from the lysosome, and lysosomal enzymes required for 
cargo degradation (3–7). Furthermore, while originally con-
sidered a largely unspecific process, recent years have revealed 
the existence of selective autophagy pathways, in which specific 
cargoes can be targeted to the emerging autophagosomes for 
engulfment and degradation. Cargoes destined for selective 

autophagy are often ubiquitinated and recognized by autophagy 
receptors [i.e., p62/sequestosome 1, neighbor of BRCA1 gene 
(NBR1), nuclear dot protein 52 kDa (NDP52), optineurin, or 
C-Cbl] that contain ubiquitin-binding domains as well as LC3-
interacting region (LIR) motifs for recruitment to the inner 
phagophore membrane (8, 9) (Figure 1A).

Autophagy induction is controlled upstream by energy-
sensing proteins, a key regulator being the mammalian target of 
rapamycin (mTOR), which provides the major inhibitory signal 
that shuts off autophagy in the presence of abundant nutrients. A 
key inhibitor of mTOR AMP-activated protein kinase (AMPK) 
is activated upon energy stress that increases the AMP/ATP 
ratio. Once activated, AMPK downregulates ATP-consuming 
(anabolic) pathways and upregulates ATP-generating (catabolic) 
pathways, such as autophagy, to maintain cellular energy homeo-
stasis. Besides inhibiting the catalytic activity of mTOR, AMPK 
also directly stimulates autophagy by phosphorylating upstream 
autophagy factors [e.g., unc-51-like autophagy-activating kinase 
1 (ULK1) and Beclin 1] (1, 3, 4) (Figure 1A).

In recent years, the notion that autophagy may represent a 
bona fide tumor suppressor pathway has obtained increasing 
support. Autophagy-deficient animal models are often prone to 
tumor formation (10–16) and autophagy deficiency is associ-
ated with increased DNA damage and chromosomal instability 
(CIN) (17). Thus, autophagy is thought to constitute a barrier 
against malignant transformation by preserving intracellular 
homeostasis, even though the exact mechanism of autophagy-
mediated oncosuppression is not well-understood. Autophagy 
can conversely sustain the survival and proliferation of neoplastic 
cells exposed to intracellular and environmental stresses, such as 
hypoxia and chemotherapy, and thereby supports tumor growth 
and progression. Hence, depending on the context, autophagy 
can act either as a tumor-suppressive or a tumor-promoting 
pathway (2, 18, 19).

As many signaling pathways exhibit opposing effects on 
autophagy and cell-cycle progression (20), these are often con-
sidered mutually exclusive processes. Accumulating evidence 
suggests that this opposing regulation may be coordinated 
and that an interplay between the two processes exists. This is 
exemplified by the scaffold protein AMBRA1, a pro-autophagic 
protein that is also able to negatively regulate the oncogene 
c-Myc (10). AMBRA1 interacts with the catalytic subunit of the 
protein phosphatase 2 A (PP2A) and facilitates PP2A-mediated 
dephosphorylation and subsequent proteasomal degradation 
of c-Myc, thus resulting in inhibition of proliferation and in 
tumor suppression (10). Both the role of AMBRA1 in promot-
ing c-Myc degradation, as well as in AMBRA1-dependent 
autophagy, is controlled upstream by mTOR (10, 21), which 
argues for a coordinated regulation of autophagy and cell-cycle 
progression.

In the present review, we will focus on various aspects of the 
reciprocal regulation connecting autophagy and the cell cycle. 
Cell-cycle progression is governed by cyclin-dependent kinases 
(CDKs). CDK activity is coordinated by binding of their essential 
regulatory subunits, cyclins, which are synthesized and degraded 
at specified times during the cell cycle to coordinate timely CDK 
activation and drive cell-cycle progression (Figure  1B). The 
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FigURe 1 | (A) The autophagy pathway. Autophagy induction is controlled upstream by energy sensors, mammalian target of rapamycin (mTOR), and AMP-
activated protein kinase (AMPK). mTOR shuts off autophagy in the presence of abundant nutrients, while AMPK is activated upon energy stress. AMPK induces 
autophagy by inhibiting mTOR and stimulating upstream autophagy factors of the unc-51-like autophagy-activating kinase (ULK) and class III phosphatidylinositol 
3-kinase (PtdIns3K) complexes. Vesicle expansion requires the autophagy-related gene 8 (Atg8)/light chain 3 (LC3) and autophagy-related gene 12 (Atg12) 
ubiquitin-like conjugation systems. Autophagy receptors (e.g., p62) can mediate selective recruitment of cargo to the inner vesicle membrane. Following vesicle 
closure, the autophagosome fuses with the lysosome whereby the engulfed material is degraded. (B) The cell cycle. The cell cycle can be divided into G0, G1, S, 
G2 (interphase), and M-phase (mitosis and cytokinesis). Mitosis can be subdivided into prophase (DNA condensation is initiated), prometaphase (the mitotic spindle 
starts to form and the nuclear envelope has been dissolved), metaphase (the chromosomes are aligned at the metaphase plate), anaphase (separation of the 
sisterchromatids) and telophase (DNA decondenses, the nuclear envelope reforms, the contractile ring starts forming) and is followed by cytokinesis (physical 
separation of the daughter cells). Cell-cycle progression is governed by cyclin-dependent kinase (CDK) holoenzymes. CDK activity can be inhibited by cyclin-
dependent kinase inhibitors. For G1/S transition cyclin-CDKs phosphorylate retinoblastoma protein (Rb), which releases E2 factor (E2F) transcription factors from 
inhibitory binding, leading them to induce transcription of targets for G1/S transition.
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decision to enter or exit the cell cycle depends on the nutrient and 
mitogen availability and is also affected by stress-stimuli that may 
block the cell cycle transiently or irreversibly. Once committed 
to cell-cycle progression, the cell undergoes a series of regulated 
events (i.e., cell growth, DNA replication, and quality control 
checkpoints) culminating in the highly orchestrated process of 
cell division. Dysregulation of proteins controlling the frequency 
and fidelity of proliferation is inextricably linked to neoplastic 
transformation (22–24).

Herein, we will address the activation of autophagy dur-
ing normal and abnormal cell-cycle progression as well as the 
coordinated induction of autophagy and cell-cycle responses 
following exposure to various stresses. Finally, the involvement 
of autophagy and autophagy-related proteins in the regulation of 
cell division will be discussed.

AUTOPHAgY STATUS DURiNg  
CeLL-CYCLe PROgReSSiON

Only few studies have focused on a putative correlation between 
autophagy flux and cell-cycle progression. The cell cycle can 
be divided into five major phases: G0, G1, S, G2, and M-phase 
(Figure  1B). G0, G1, S, and G2 are collectively referred to as 
interphase, while M-phase is comprised of mitosis and cytoki-
nesis, the processes by which the duplicated genome and other 
cellular constituents are distributed to the two daughter cells 
and the subsequent separation of these. Mitosis is traditionally 
subdivided into five phases: prophase (DNA condensation is 
initiated), prometaphase (the mitotic spindle starts to form and 
the nuclear envelope is dissolved), metaphase (the chromosomes 
are aligned at the metaphase plate), anaphase (separation of 
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the sister chromatids to separate chromosomes) and telophase 
(DNA decondenses, the nuclear envelope is reformed and the 
contractile ring at the intercellular bridge between the two nuclei 
starts forming). This is followed by cytokinesis, in which the two 
daughter cells are physically separated (25) (Figure 1B).

Autophagy and interphase
The question of differential regulation of autophagy during 
cell-cycle progression was initially addressed by Tasdemir et al., 
prompted by their observation that autophagy-inducing treat-
ment of unsynchronized cell populations only induced green 
fluorescence protein (GFP)–LC3 aggregation in approximately 
50% of cells (26). To understand if autophagy preferentially occurs 
in certain cell-cycle phases, immunocytochemical approaches 
were employed to monitor cytoplasmic GFP–LC3 aggregation 
in connection with cell-cycle progression (26). Using a panel 
of autophagy activators, including the BH3 mimetic ABT737, 
lithium, rapamycin, tunicamycin, or starvation, autophagy induc-
tion was observed to preferentially occur in the G1 and S phases 
of the cell cycle (26). More recently, Kaminskyy et al. developed 
another strategy to monitor autophagosome accumulation by 
extracting membrane-unbound LC3-I from cells, followed by 
flow cytometric detection of the remaining autophagosomal 
membrane-associated fraction of LC3-II. This was combined 
with propidium iodide staining for detection of cell-cycle status 
(27). By using this approach, basal autophagy was detected in G1, 
S, and G2/M phases. Furthermore, autophagy induction by star-
vation or rapamycin treatment resulted in LC3-II accumulation 
in all stages (27), suggesting the absence of cell-cycle-dependent 
autophagy regulation. The contradictory findings may be the 
result of the variant experimental approaches. Thus, further 
studies are required to determine if autophagy activation is 
preferentially linked to specific cell-cycle phases.

Autophagy and Mitosis
As the above studies do not allow discrimination between G2 
and M phase, this leaves the question of autophagy status during 
mitosis. Two elegant studies have reported a striking decrease in 
autophagic activity during mitosis (28, 29). By means of electron 
microscopy and stereology to quantify the presence of autophagic 
vacuoles in mitotic cells, Eskelinen et al. found a strong reduction 
in autophagosomal content in both (pro)metaphase and anaphase 
cells (28). Furuya et  al. expanded on these findings revealing 
that mitotic autophagy inhibition depends on cyclin-dependent 
kinase 1 (CDK1)-mediated phosphorylation of Vps34 on Thr159 
during mitosis (29). This phosphorylation event negatively regu-
lates the interaction between Vps34 and Beclin 1, thereby inhib-
iting PtdIns3K activity, PtdIns3P production, and autophagy 
induction (29). Of note, during mitosis, cells undergo extensive 
structural rearrangements and the inhibition of autophagy has 
been speculated to function as a protective mechanism to prevent 
unintended loss of organelles and chromosomes. Indeed, break 
down of the nuclear envelope during mitosis leaves the con-
densed chromosomes potentially vulnerable to the cytoplasmic 
autophagy machinery. Accordingly, Eskelinen et  al. observed 
that re-appearance of autophagosomes occurred in telophase/G1 
after formation of the new nuclear envelopes (28). Furthermore, 

autophagosomal engulfment of mitotic chromosomes was 
reported in mitotic cells undergoing programmed cell death 
(30), suggesting that autophagy inhibition may, indeed, protect 
the condensed genome from accidental autophagic engulfment. 
Moreover, during cell division, mitochondria and the Golgi appa-
ratus become fragmented to facilitate their distribution between 
the two daughter cells (31, 32). While elongated mitochondria are 
spared from autophagic degradation (33, 34), the smaller size of 
fragmented mitochondria facilitates their uptake by autophago-
somes (35, 36). Mitotic fragmentation of mitochondria is medi-
ated by CDK1-dependent phosphorylation and activation of the 
dynamin-like protein (Drp1), involved in mitochondrial fission 
(37). Interestingly, cells arrested in mitosis by abrogated Cyclin B1 
degradation, exhibit a gradual decline in mitochondrial mass due 
to ongoing mitophagic degradation (38). Prevention of mitophagy 
by depletion of Drp1 or key autophagy proteins delayed cell death 
by mitotic arrest; thus, mitophagy may facilitate mitotic cell death 
during prolonged mitotic block (38). The resistance to mitotic cell 
death acquired upon Drp1 knock-down supports the speculated 
vulnerability of fragmented mitotic mitochondria to autophagic 
degradation. Ongoing mitophagy during mitotic arrest may 
simply represent leaky degradation from incompletely blocked 
autophagy, which is functionally relevant during prolonged 
mitotic arrest but likely negligible during normal mitotic progres-
sion. However, this mechanism may also participate in pushing 
cells with mitotic abnormalities toward cell death.

In accordance with the reported ongoing mitophagy in 
arrested mitotic cells (38), LC3 puncta have been observed in 
mitotic cells, although at a significantly decreased level compared 
to interphase cells (28, 29, 39, 40). While these may also represent 
inefficient autophagy inhibition, Loukil et al. observed LC3, p62, 
and lysosomal markers colocalizing with Cyclin A2 foci during 
mitosis and found that autophagy partially contributes to medi-
ating mitotic Cyclin A2 degradation (40). Thus, an intriguing 
although highly controversial theory is the existence of distinct 
sites of active autophagy during cell division. Treatment with 
autophagy inducers or lysosomal inhibitors has been shown to 
result in accumulation of LC3 puncta in mitotic cells, which was 
suggested as an indication of active autophagy flux in mitosis 
(39, 41). The short duration of mitosis, however, poses technical 
challenges in employing these treatments, as it is difficult to rule 
out autophagosome accumulation from interphase. Live-cell 
imaging using GFP–LC3 cell lines or preferably cell lines carrying 
endogenously tagged autophagy proteins may help in determin-
ining the degree of autophagy inhibition as well as the potential 
presence of active autophagic compartments in mitosis.

iNTeRPLAY BeTweeN AUTOPHAgY AND 
CeLL-CYCLe ARReST

In response to unfavorable or stressful conditions, cells are able 
to arrest the cell cycle transiently or irreversibly. This ability helps 
regulate proliferation during development and differentiation, 
and prevents the expansion of potentially harmful cell popula-
tions (23, 42). Autophagy, like cell cycle arrest, is induced in 
response to a variety of stress conditions, where it plays a pivotal 
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role in preserving cellular viability (2). While the correlative 
induction of autophagy and cell-cycle arrest has been extensively 
documented, the molecular mechanisms linking them together 
are still debated and largely unknown.

Autophagy Regulation by Cyclin-
Dependent Kinase inhibitors (CDKis) and 
Retinoblastoma Protein (Rb)/e2 Factor 
(e2F) Activity
Cell-cycle arrest often relies on the action of various cell-cycle 
inhibitors. An important class of those are CDKIs that inhibit 
CDK activity by direct interaction with CDKs or cyclin-CDK 
holoenzymes (43) (Figure  1B). CDKIs can be categorized into 
two main families: the inhibitors of CDK4 (INK4) family consist-
ing of p15INK4B, p16INK4A, p18INK4C, and p19INK4D; and the Cip/Kip 
family composed of p21Cip1, p27Kip1, and p57Kip2 (23, 42). In spite 
of their similar modes of action, CDKIs are speculated to have 
functionally distinct roles and appear to be activated by different 
stimuli (42). Thus, while p21 is most strongly linked to stress and 
DNA damage signaling, downstream of p53-mediated pathways, 
p27 is more often associated with cell-cycle arrest in response to 
low nutrient and mitogen conditions (42). CDKIs were originally 
strictly linked to proliferation control, but they are now demon-
strated to have a wide range of alternative functions in processes 
including transcription, apoptosis, migration (42), as well as 
autophagy induction (44–46). Cell-cycle arrest can also occur by 
repression of E2F transcription factors that mediate transcrip-
tional induction of a plethora of targets, including cyclins and 
replication regulators required for G1/S transition and cell-cycle 
progression (47, 48) (Figure  1B). E2F activity is controlled by 
binding of the Rb protein or other Rb family members (49). Upon 
mitogenic stimuli, Rb is gradually phosphorylated by cyclin-CDK 
complexes whereby E2F is released to induce transcription of its 
target genes, pushing cells to pass the G1/S boundary (47, 49). 
CDKIs, through their ability to inhibit CDKs, are also important 
indirect promoters of Rb/E2F interactions (48) (Figure 1B).

A number of CDKIs, including p16, p21, and p27 have been 
reported to induce autophagy (44–46), suggesting the existence 
of coordinated stress responses linking autophagy induction and 
cell-cycle arrest. Liang et al. showed that in response to starvation, 
p27 is activated by the liver kinase B1 (LKB1)–AMPK nutrient-
sensing pathway through phosphorylation of Thr198, thus 
resulting in p27 stabilization (46). Interestingly, p27 was required 
for efficient starvation-induced autophagy in murine embryonic 
fibroblast and protected from cell death resulting from meta-
bolic stress (46), indicating a critical role for p27 in autophagy 
activation under starvation conditions. The increased stability of 
p-p27Thr198 implies a function for the LKB1–AMPK pathway in 
mediating p27-dependent cell-cycle arrest. Accordingly, a non-
phosphorylatable p27T198A mutant was less efficient than wild type 
p27 or a phospho-mimicking p27T198D mutant at inhibiting colony 
formation (46). This is in line with previous reports arguing for 
a central role for p27 in starvation-induced cell-cycle arrest (50, 
51). p27 is upregulated in response to serum starvation (50) and its 
depletion allows serum-starved cells to evade cell-cycle arrest and 
continue proliferation (50, 51). Thus, p27 may be a key effector of 

the cellular response to metabolic stress, functioning downstream 
of the LKB1–AMPK axis to mediate both cell-cycle arrest and 
autophagy induction. Accordingly, p27 is degraded by caspases 
during growth-factor deprivation-induced apoptosis (52).

The mechanism by which p27 mediates autophagy induction 
and the relevance of its CDK inhibitory function in this context 
is, however, not clear. Nonetheless, it has been reported that the 
cyclin-binding region of p27 is required for autophagy induction 
(46, 53) and that depletion of CDK2 and CDK4 partially repro-
duces p27-induced effects on autophagy and apoptosis (46). In 
this context, indirect activation of Rb by p27 could be a contribut-
ing factor, as this has been reported for p16 (45). Overexpression 
of p16 is able to induce autophagy in an Rb-dependent manner 
through promoting Rb/E2F interaction (45), which suggests 
negative regulation of autophagy by E2Fs. This supports a model 
in which p16-mediated CDK inhibition facilitates Rb/E2F inter-
action and consequent E2F inhibition, resulting in activation of 
autophagy through an unspecified mechanism. However, while 
autophagy induction by p16 appears to largely depend on Rb/
E2F regulation, p27-induced autophagy was only mildly affected 
by Rb status (45), suggesting varying mechanisms of autophagy 
activation between CDKIs. Intriguingly, in budding yeast, the 
CDK Pho85 is able to both induce or inhibit autophagy, depend-
ing on its associated cyclin partner (54).

The literature linking Rb/E2F and autophagy is complex, as 
positive regulation of autophagy by E2Fs has also been reported. 
Using an inducible E2F activation system, Polager et  al. dem-
onstrated that several autophagy genes such as LC3, ULK1, 
and DRAM were direct targets of E2F transcription factors 
(55). Moreover, E2Fs were shown to bind the promoter region 
of Beclin 1 (56), even though the functional significance of this 
binding remains to be demonstrated. E2F downstream targets 
such as smARF or the hypoxia-inducible B-cell lymphoma 2 
(Bcl-2) family member BCL2 interacting protein 3 (BNIP3) 
have also been shown to induce autophagy (44, 57, 58). BNIP3 
was demonstrated to be required for efficient hypoxia-induced 
autophagy activation (58) and E2F1 to be required for efficient 
DNA-damage-induced autophagy (55). This evidence indicates a 
potential role for E2Fs in mediating autophagy during acute stress 
responses, rather than during normal cell-cycle progression. 
E2F-mediated autophagy induction may therefore depend on the 
context and stimuli. Furthermore, as the E2F family comprises 
eight family members that can both transactivate and repress 
gene expression (47), E2F contribution to autophagy regulation 
likely depends on the involved E2F factor.

Autophagy and p53
The most well-documented connection between autophagy and 
stress-induced cell-cycle responses is likely the link between p53 
and autophagy regulation. p53 is one of the most extensively char-
acterized tumor suppressor proteins and a central coordinator of 
the cellular response to acute stress (59, 60). Under basal condi-
tions, p53 levels are strictly controlled by mouse double minute 
2 homolog (Mdm2)-mediated ubiquitination and proteasomal 
degradation, while in response to a wide range of stresses (e.g., 
DNA damage, oncogene expression or nutrient deprivation), p53 
undergoes rapid post-translational modifications that allow for 
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its stabilization and activation (59) (Figure 2). Upon activation, 
p53 orchestrates the induction of appropriate cellular responses, 
be it apoptosis, cell-cycle arrest, DNA repair, metabolic adapta-
tion, or autophagy, with the purpose of limiting the expansion 
of damaged and potentially harmful cells (59, 60) (Figure  2). 
The shared involvement of p53 and autophagy in stress-related 
processes, as well as their relevance for neoplastic transformation 
has motivated great efforts to understand the role of autophagy 
ablation in the context of p53-deficient and -proficient animal 
models of human cancers, reviewed in Ref. (61). In this article, 
we will focus our attention on the molecular mechanisms linking 
p53 to autophagy regulation.

Autophagy Modulation by Nuclear p53
A number of reports have demonstrated autophagy induction 
by p53 (18, 62, 63). The ability of p53 to stimulate autophagy 
appears to rely on its function as a stress-induced transcription 

factor, as p53 can transactivate a wide range of autophagy-related 
genes (18, 62, 63) (Figure 2). Activation of some of these genes 
converges on activation of AMPK and inhibition of mTOR. 
These include genes encoding the AMPKβ1 and β2 subunits 
(64), the AMPK activators Sestrin 1 and Sestrin 2 (65, 66), as 
well as negative regulators of mTORC1, tuberous sclerosis 2 
(TSC2), phosphatase and tensin homolog (PTEN), and DNA 
damage-inducible transcript 4 (Ddit4) (64, 67, 68). Accordingly, 
Feng et al. reported that p53-induced autophagy following DNA 
damage relied on AMPK-mediated inhibition of mTOR (69). 
Other p53 responsive genes include ULK1 and unc-51-like 
autophagy-activating kinase 2 (ULK2) (70), genes encoding 
various BH3-only proteins and death-associated protein kinase 
1 (DAPK1), all of which stimulate autophagy by favoring the 
displacement of Beclin 1 from inhibitory interactions with Bcl-2 
and Bcl-XL (71–74), as well as the gene coding for DRAM (75), 
a highly conserved lysosomal protein, which was also suggested 
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to be required for p53-dependent autophagy induction in 
response to DNA damage (75). Furthermore, Kenzelmann Broz 
et al. utilized a high-throughput approach to uncover novel p53 
transcriptional targets in response to DNA damage (67). This 
approach identified extensive transactivation of the autophagy 
network, encompassing both upstream autophagy regulators, 
members of the autophagy core machinery, and lysosomal pro-
teins by all three p53 family members; p53, p63, and p73 (67). 
Interestingly, one of the identified targets, Atg7 (67), has been 
reported to bind the promoter of p21, collaborating with p53 for 
efficient p21 upregulation in a nonautophagy-dependent manner 
(76) (Figure 2). Thus, p53-dependent upregulation of Atg7 may 
function as an effector mechanism boosting the p53 response 
through p21 production. Similarly, AMPK can activate p53 
upon glucose deprivation by phosphorylation of Ser15, which 
is required for AMPK-mediated cell-cycle arrest in this context 
(77) (Figure 2). Surprisingly, Beclin 1 can also contribute to p53 
stabilization by promoting the stabilization of deubiquitinating 
enzymes ubiquitin-specific peptidase 10/13 (USP10/13) (78), 
which counteract the Mdm2-mediated degradation of p53 (78, 
79), as well as degradation of Beclin 1 itself (78) (Figure 2). Thus, 
autophagy and p53 pathways may potentiate and sustain each 
other in establishing efficient stress-related cell-cycle programs.

Interestingly, activated p53 is also able to decrease autophagy, as 
the p53-responsive gene F-box/LRR-repeat protein 20 (FBXL20) 
is able to mediate the degradation of Vps34 following DNA 
damage, resulting in autophagy inhibition (80). In which context 
p53 activation results in autophagy stimulation and inhibition, 
respectively, is not understood. Furthermore, the effect of p53-
induced autophagy is not clear, but in several contexts autophagy 
surprisingly appears to function as an effector of p53-mediated 
cell death rather than as a survival mechanism (67, 70, 75).

Autophagy Inhibition by Cytosolic p53
Contrasting the proautophagic transcriptional activity of nuclear 
p53, the cytoplasmic pool of p53 has been demonstrated to sup-
press autophagy (81). Knockout, depletion, or pharmacological 
inhibition of p53 in human, mouse as well as nematode cells, 
can induce autophagy in a manner appearing to depend on the 
AMPK/mTOR pathway (81). Correspondingly, p53 restricted to 
the cytosol but not nucleus-restricted p53 inhibited autophagy, a 
regulation that also persisted in enucleated cells (81). Accordingly, 
suppression of autophagy by p53 correlated with its nuclear-to-
cytosolic distribution in a panel of cancer-associated p53 mutants 
(82). Surprisingly, several distinct proautophagic stimuli, includ-
ing nutrient deprivation and mTOR inhibition by rapamycin were 
found to induce Mdm2-dependent proteasomal degradation of 
p53. Inhibition of proteasomal activity, Mdm2 depletion, or phar-
macological inhibition of Mdm2 reduced autophagy induction 
in response to these stimuli (81), suggesting the requirement of 
p53 degradation for efficient autophagy activation. The molecular 
mechanism underlying this p53-mediated autophagy suppres-
sion is not understood, but has been suggested to involve nega-
tive regulation of the upstream autophagy factor RB1 inducible 
coiled-coil 1/FAK family kinase-interacting protein of 200 kDa 
(RB1CC1/FIP200) through a physical interaction with p53 (83). 
How the contradictory regimes of cytoplasmic versus nuclear 

p53-mediated autophagy regulation can be reconciled remains 
to be determined.

Autophagy and Senescence
While several lines of evidence suggest coordinated induction of 
autophagy and cell-cycle arrest pathways, another issue remains 
the involvement of autophagy in the execution of cell-cycle exit 
programs, in particular, senescence. The terms quiescence and 
senescence are often used interchangeably to describe cell-cycle 
arrest, although they refer to distinct cell states (84). Quiescence 
represents a reversible cell-cycle arrest often caused by lack of 
nutrients and/or mitogens and growth factors, while senescence is 
an irreversible state of cell-cycle arrest that is more often induced 
in abnormal (potentially cancerous), DNA-damaged, or aging 
cells as a stress response (84–86). While it is clear that autophagy 
and senescence are often parallel processes, the question of their 
interdependence is a subject of much debate. It is beyond the 
scope of the present review to comprehensively recapitulate the 
literature involving this topic, and for more on this subject, we 
refer to Ref. (84, 87, 88). In this article, we will focus our attention 
on key findings and recent publications that offer mechanistic 
insight to the relationship between autophagy and senescence.

Autophagy and Senescence Transition
In recent years, a number of studies have argued for a more direct 
link between autophagy and senescence that goes beyond their 
correlative induction, by showing that inhibition of autophagy 
delays senescence transition (89–93). Young et al. employed mod-
els of oncogene-induced and DNA damage-induced senescence 
to study autophagy activation during senescence transition (93). 
In the applied model of oncogene-induced senescence (OIS), an 
initial “mitotic phase” of proliferative burst occurs around day 1. 
This is followed by a “transition phase,” preceding the “senescence 
phase,” which is achieved after 5–6 days. Autophagy was induced 
specifically in the senescence transition phase in a manner that 
correlated with inhibition of mTOR activity. Importantly, Young 
et al. observed that depletion of the autophagy proteins autophagy-
related gene 5 (Atg5) or Atg7 resulted in delayed senescence 
transition (93), thus indicating that autophagy contributes to the 
establishment of senescence. Similar results were obtained in a 
system of therapy-induced senescence, in which pharmacological 
or genetic inhibition of autophagy delayed senescence acquisi-
tion in response to treatment with the chemotherapeutic drugs 
adriamycin or camptothecin (90). In accordance with these 
findings, a recent study expands on a putative mechanism of 
autophagy-mediated senescence transition, as Dou et al. found 
that autophagy facilitates OIS by degrading the nuclear lamina 
constituent, Lamin B1, and associated heterochromatin domains 
called lamin-associated domains (LADs) (89). Degradation was a 
result of nuclear blebbing of Lamin B1 regions and a direct inter-
action between Lamin B1 and LC3, and preferentially occurred in 
response to oncogenic transformation, oxidative stress, and DNA 
damage, but not starvation (89), indicating that the degradation 
event is specific to a subset of stresses. Senescence was delayed 
upon expression of Lamin B1 mutants unable to bind LC3 and 
undergo autophagic degradation (89). Thus, autophagic Lamin 
B1 degradation may be of key importance during senescence 
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transition. Interestingly, senescent cells have previously been 
shown to exhibit a gradual decline in histone mass that was 
dependent on lysosomal activity (94). Whether the degradation 
of Lamin B1-associated chromatin is of relevance for senescence 
transition is an interesting point for further investigation. 
Furthermore, autophagy was found to mediate the selective 
degradation of Δ133p53α (95), a p53 isoform suppressing the 
action of full-length p53 (96, 97), for induction of replicative 
senescence but not OIS (95, 97). Interestingly, overexpression 
of autophagy proteins is, in some cases, sufficient to stimulate 
coordinated induction of autophagy and premature senescence 
(93, 98). Nonetheless, as autophagy inhibition, in most cases, 
delays rather than fully abrogates senescence, it has been argued 
that autophagy is not required for senescence transition, but may 
function in potentiating and accelerating the response (87).

It should also be noted that active mTOR is demonstrated 
to have a key role in favoring senescence over quiescence and 
may even be a requirement for senescence transition and/or 
maintenance in many contexts (99–104). In fact, the main char-
acteristics of senescent cells include hyperactive features such 
as cellular hypertrophy and the senescence-associated secretion 
phenotype, which require high metabolic activity (84, 104), and 
have been speculated to be in part the result of uncoupling pro-
liferation and mTOR activity (85, 105). It should therefore follow 
that an intrinsic feature of senescent cells would be decreased 
autophagic activity, as has indeed been demonstrated in some 
reports (106). However, Narita et al. intriguingly described the 
formation of a compartment termed the mTOR-autophagy 
spatial coupling compartment (TASCC) upon OIS, in which 
mTOR and lysosomes are enriched in the vicinity of the rough 
endoplasmic reticulum–Golgi apparatus (107). The TASCC was 
speculated to shield mTOR from the upstream autophagy factors 
it usually inhibits (4, 107), allowing for concurrence of protein 
synthesis and degradation, while strategically situating mTOR 
and lysosomes in a favorable context for mTOR activation on the 
lysosomal surface (107, 108). In addition, an increasing number 
of reports have identified pathways and molecules that regulate 
autophagy independently of mTOR status, as reviewed in Ref. 
(109). Thus, mTOR activation and autophagy induction are likely 
not mutually exclusive processes in all contexts.

Decreased Autophagy can Favor Senescence
At variance with the above studies, it has also been reported that 
inhibition of autophagy promotes senescence (87, 110, 111). 
Autophagy was reported to counteract senescence by mediating 
the selective degradation of the transcription factor GATA binding 
protein 4 (GATA4), which is linked to acquisition of a senescent 
phenotype in response to DNA damage (112). GATA4 degrada-
tion depends on GATA4 recognition by the autophagy receptor 
p62. Following DNA damage, the p62/GATA4 interaction is 
reduced, leading to GATA4 stabilization and activation (112). 
Interestingly, GATA4 activation depends on the DNA damage 
response regulators, ataxia telangiectasia mutated (ATM), and 
ataxia telangiectasia and Rad3-related protein (ATR), but not on 
the traditional senescence effector molecules, p53, and p16 (112). 
GATA4 may therefore function in DNA damage-induced senes-
cence rather than being a universal senescence-effector molecule.

In addition, a study by Wang et  al. adds complexity to the 
role of autophagy during OIS, as it was reported that genetic 
ablation of autophagy was permissive rather than restrictive for 
senescence acquisition during oncogenic RAS-induced senes-
cence (113). In this system, overexpression of Atg5 but not of 
an autophagy-deficient Atg5 point mutant promoted senescence 
by-pass, while depletion of Atg5 or Atg3 was permissive for 
senescence acquisition (113). Induction of OIS was regulated by 
apoptosis-stimulating of p53 protein 2 (ASPP2) that promoted 
senescence and inhibited oncogene-induced autophagy through 
direct disruption of the Atg16–Atg5–Atg12 complex (113), the 
assembly of which is required for autophagosome formation 
(114). This suggests a role for ASPP2 in modulating autophagy 
levels to control the cellular response to oncogene activation. 
Whether ASPP2 functions in senescence regulation in response 
to other stimuli remains to be determined. Of note, the ability of 
autophagy to inhibit OIS appeared not to involve protection from 
reactive oxygen species or abrogation of p53-activation (113). 
Understanding the mechanism by which autophagy counteracts 
senescence in this system may hold the key to combine the con-
tradictory findings on the impact of autophagy on OIS.

Autophagy may also counteract senescence in the context of 
aging-related senescence and stem-cell maintenance. A study 
focusing on the regenerative capacity of muscle stem cells using 
physiologically aged mice, demonstrated that quiescent muscle 
stem cells preserve their integrity over time through active main-
tenance of organelle and protein homeostasis by continuous basal 
autophagy (110). The physiological decline of autophagy in old 
satellite cells or its genetic impairment in young cells, resulted in 
accumulation of toxic cellular waste and entry into senescence 
(110). Similarly, Kang et al. reported that depletion of essential 
autophagy components resulted in senescence due to build-up 
of toxic material in primary human fibroblasts (111). The lat-
ter studies represent a markedly different experimental system 
than stress-induced senescence, as they are devoid of external 
stimuli. Thus, while long-term autophagy inhibition may cause 
senescence due to accumulation of toxic constituents, autophagy 
may also function in acute responses to facilitate cellular remod-
eling in senescence transition in response to conditions such as 
oncogenic stress or DNA damage.

CeLL DiviSiON AND AUTOPHAgY

Apart from the complex interplay between autophagy and 
cell-cycle arrest pathways, several studies have reported more 
specialized regulatory functions for autophagy or autophagy-
related factors in the cell division process. Correct segregation 
of the duplicated genome during cell division is a prerequisite for 
preventing CIN and aneuploidy, well-described contributors to 
cellular transformation (115, 116). Involvement of autophagy fac-
tors in regulating the progression or fidelity of cell division may 
thus be an additional component to consider when discussing 
the intricate relationship between autophagy and tumorigenesis.

Autophagy and Cytokinesis
In accordance with studies reporting decreased autophagy during 
mitosis (28, 29), autophagy proteins have primarily been linked 
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to the final phase of cell division, cytokinesis. Cytokinesis is the 
process in which the two daughter cells are physically separated 
following chromosome segregation. This is achieved by the 
formation of a contractile actomyosin ring that constricts the 
cytoplasm between the segregated reforming nuclei, thereby gen-
erating a narrow intercellular bridge. In the center of the bridge is 
a dense proteinaceous structure termed the midbody ring (MR), 
which is thought to function as a targeting platform for cleavage 
factors. Cytokinesis is completed by plasma membrane fission at 
the intercellular bridge in a process called abscission (117).

A number of studies have reported cytokinesis failure follow-
ing knock-down of members of the Vps34 complex including 
Vps34, Beclin 1, Vps15, Bax-interacting factor 1 (BIF-1), and UV 
irradiation resistance-associated gene (UVRAG) (118–120). The 
role of the Vps34 complex in cytokinesis regulation is distinct 
from its function in autophagy induction as it depends on Vps34-
mediated production of PtdIns3P at the MR, which functions as a 
recruitment signal for the FYVE domain-containing cytokinesis 
regulator FYVE-CENT (120, 121). Accordingly, PI3Kinase inhi-
bition by 3-methyladenine, but not inhibition of autophagy by the 
lysosome inhibitor bafilomycin A1 or Atg14 depletion, results in 
abscission failure (120).

The initiation of cytokinesis and mitotic exit is signaled by the 
anaphase-promoting complex/cyclosome (APC/C) that promotes 
proteasomal degradation of mitotic regulators including cyclin B; 
this, in turn, results in CDK1 inactivation and dephosphoryla-
tion of its substrates by counteracting phosphatases (122). Vps34 
may be one of such CDK1 substrates that are re-activated during 
the late stages of mitosis after initially being inhibited (29), to 
participate in the regulation of mitotic exit, although the timing 
of Vps34 re-activation is not known. Cytokinesis failure can 
result in the generation of tetraploid cells with supernumerary 
centrosomes (123). Such tetraploid cells display CIN due to chro-
mosome segregation defects in subsequent cell divisions and are 
suggested to exhibit increased tumorigenic potential (123–125). 
Interestingly, the Vps34 complex members Beclin 1, BIF-1, and 
UVRAG are amongst the autophagy-related proteins with the 
most well-substantiated tumor suppressor properties (11–14, 
16). A detailed dissection of how the individual roles of the 
Vps34 complex in regulating cytokinesis and autophagy as well 
as growth factor receptor degradation (126) each contribute to 
the tumor suppressor function of these proteins, is an important 
issue for further investigation.

At variance with the studies discussed above, Belaid et  al. 
reported abscission failure upon depletion of Atg5 and in cells 
derived from lysosomal vacuolar-type H+-ATPase a3-null mice 
(127), indicating a function for autophagy in cytokinesis. The 
cytokinesis defects observed in these systems were attributed to 
defective turn-over of active RhoA (127), a member of the Rho 
GTPase family that orchestrates cytokinesis through its ability 
to regulate the actomyosin contractile network at the cleavage 
zone (128). Depletion of Atg5 resulted in RhoA enrichment at 
the intercellular bridge leading to approximately three times 
broader RhoA activity zones. Consequently, Atg5-depleted cells 
progressing through mitosis exhibited loose and unstable cleav-
age furrows and increased generation of multinucleated cells 
(127). RhoA activity depends on GDP–GTP exchange factors 

(GEFs) including Ect2, which localizes at the mitotic midbody 
zone to mediate local RhoA activation and cleavage furrow 
formation (128, 129). Furthermore, an alternative function for 
cyclin A2 in potentiating RhoA GTP loading by its GEFs has 
also been described (130). While the majority of cyclin A2 is 
degraded by the proteasome in prometaphase (131–133), a small 
fraction of cyclin A2 was shown to persist in foci later in mitosis 
and appeared to be subjected to autophagic degradation (40). It 
is therefore possible that autophagy may have a composite func-
tion in controlling appropriate RhoA protein levels and activity 
at the cytokinesis midzone, by mediating RhoA and Cyclin A2 
degradation in late mitosis.

The apparent discrepancies between the reported Vps34 
and autophagy-mediated cytokinesis regulation may be most 
efficiently addressed by expanding these studies to a wider panel 
of cell systems and autophagy-related proteins. Understanding 
the contribution of these pathways to cytokinesis completion 
also in  vivo is vital for evaluating the potential relevance of 
these mechanisms in the context of autophagy-related tumor 
suppression.

In addition, an autophagy-independent function for unc-
51-like autophagy-activating kinase 3 (ULK3) as an abscission 
regulator has been reported (134). Abscission is mediated by the 
endosomal sorting complexes required for transport (ESCRT) 
machinery, which mediates membrane remodeling in a number 
of processes including cytokinesis, viral budding, and autophagy 
(135). The timing of abscission is regulated by the abscission 
checkpoint, which delays abscission in response to a number 
of mitotic abnormalities (136). Interestingly, ULK3 was shown 
to function in the abscission checkpoint to delay abscission by 
phosphorylating and binding ESCRT-III subunits in response to 
lagging chromosomes, nuclear pore defects, and tension forces at 
the midbody (134). Thus, ULK3 appears to function as an integral 
part of the abscission checkpoint machinery.

Autophagy and Cell Division Cleanup
In accordance with the more traditional function for autophagy 
in cellular maintenance, autophagy may also have a role in return-
ing the cell to its interphase state by clearing leftover structures 
from normal and abnormal cell divisions.

Removal of the MR
Following cytokinesis, the MR is inherited asymmetrically by 
one of the two daughter cells, and is hereafter often referred to 
as a MR derivative (MRd). MRds can be eliminated by extrusion 
to the extracellular space (137–139) or by p62/NBR1-mediated 
selective autophagy (140–142). The NBR1-dependent pathway 
relies on the interaction between NBR1 and the midbody protein 
centrosomal protein 55 (CEP55) (141), while the mechanism of 
p62-mediated MRd degradation and the varying requirement 
for the two autophagy receptors is not understood. Intriguingly, 
the MRd extrusion pathway may also involve CEP55 recogni-
tion (138). Which elimination pathway predominates varies 
between cell lines (138), but how MRds are allocated for extru-
sion or retention and subsequent autophagic degradation is not 
known. Midbody extrusion likely leads to disposal of both the 
cytoplasmic and membraneous midbody components, which is 
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not necessarily the case for autophagic degradation; thus, there 
could be a functional difference between the two midbody 
disposal pathways. Accumulation of MRds preferentially occurs 
in stem cells and cancer cells and was suggested to contribute 
to an undifferentiated phenotype (138, 141). Cells accumulating 
MRds show decreased autophagic activity and an ability to evade 
MRd encapsulation and autophagic degradation (141), suggest-
ing a link between autophagy status and MRd accumulation. 
Nonetheless, MRds remain poorly described structures. How they 
influence cellular differentiation and their potential tumorigenic 
relevance is an interesting open question.

Removal of Micronuclei
If a cell fails to incorporate all chromosomes and chromosome 
fragments in the reforming nuclei during cell division, micronuclei 
can be generated (143). Two studies have observed micronuclei 
associated with LC3 and LAMP2-stained structures (144, 145), 
and also colocalizing with charged multivesicular body protein 
4B (CHMP4B) (145), a member of the ESCRT machinery. Rello-
Varona et al. treated U2OS cells with various cell-cycle inhibitors 
to increase formation of micronuclei, 2–5% of which colocalized 
with LC3 and p62, and partially with the lysosome marker 
LAMP2 (144). Importantly, LC3 colocalization was abrogated 
upon depletion of Atg5 and Atg7, and electron microscopy fur-
ther confirmed the presence of micronuclei sequestered within 
double-membrane vesicles (autophagosomes). LC3-positive 
micronuclei contained less dense chromatin and discontinuous 
Lamin B1-stained nuclear envelopes (144), suggesting ongoing 
digestion. How the autophagy machinery is recruited to micronu-
clei is, however, not known. Furthermore, as only a small fraction 
of micronuclei appears to be targeted by autophagy, it remains 
to be investigated to what extent autophagy contributes to their 
elimination in comparison to other mechanisms of micronuclei 
removal, such as extrusion (143).

Of note, the formation of extranuclear chromatin entities does 
not strictly occur as a result of abnormal mitosis (143). Indeed, 
Ivanov et al. observed the formation of what was referred to as 
cytoplasmic chromatin fragments (CCFs) in senescent cells (94). 
CCFs, in contrast to micronuclei generated from malfunctioning 
mitosis, were negative for the nuclear lamin A/C and positive for 
the DNA damage marker γ-Histone 2AX and were generated 
by nuclear blebbing. CCFs were suggested to be identical to the 
Lamin B1-associated LADs that were later identified in senescent 
cells by Dou et al. (89), and intriguingly, both are degraded by 
autophagy (89, 94). These studies suggest a more general role for 
autophagy in disposing of extranuclear chromatin.

Autophagy in Mitotic Arrest and Mitotic 
Life/Death Decisions
Upon starvation, eukaryotic cells usually arrest in G1 (22). 
Nonetheless, it has been reported that nitrogen starved budding 
yeast, lacking essential autophagy genes arrest at the G2/M tran-
sition or in mitosis (146, 147). Matsui et  al. reported that also 
nitrogen-starved wild type yeast exhibits a transient G2/M arrest 
(147). Recovery and progression from this arrest for subsequent 
G1 block requires autophagy-dependent supplementation of 

selected amino acids required for cell growth (147). Following 
replenishment with a nitrogen source, the previously arrested 
autophagy-deficient cells showed abnormal mitosis associated 
with a higher incidence of aneuploidy (147). This suggests a role 
for autophagy in maintaining genome stability by securing arrest 
in G1 during starvation, at least in budding yeast. Surprisingly, 
budding yeast may also require autophagy for completing cytoki-
nesis and mitotic exit during nitrogen starvation (146, 147), even 
though the importance of amino acid supplementation in this 
context and the relevance of this phenotype in relation to the 
described mammalian autophagy-related cytokinesis regulation 
is not fully understood.

In mammalian cells, autophagy may have an important role 
in determining cell survival during mitotic arrest and mitotic 
catastrophe. Mitotic catastrophe is a complex oncosuppressive 
mechanism that is thought to sense mitotic failure and respond by 
driving cells toward an irreversible fate, be it apoptosis, necrosis, 
or senescence (148). Autophagy has been shown to facilitate cell 
survival during mitotic catastrophe (149, 150). Interestingly, 
during DNA damage-activated mitotic arrest, the previously 
identified mitosis-related CDK1-mediated phosphorylation 
of Vps34 on Thr159 (118) promotes Vps34 ubiquitination and 
proteasomal degradation (80). Degradation is mediated by the 
p53-responsive gene FBXL20 and the associated Skp1-Cullin-1 
complex, and leads to inhibition of autophagy and receptor 
endocytosis (80). Thus, mitotic Vps34 phosphorylation in the 
context of p53 activation appears to promote Vps34 degradation 
(80). Such a mechanism may prevent survival of defective mitotic 
cells in a dual fashion, by potentially impeding both cytokinesis 
completion (118) as well as autophagy-dependent cell survival 
during mitotic arrest.

An alternative function for the autophagy-related protein 
Atg5 in mitotic catastrophe has also been demonstrated (150). 
Atg5 was found to be both necessary and sufficient for induction 
of mitotic catastrophe resulting from sublethal concentrations of 
DNA-damaging drugs (150). Following these insults, Atg5 trans-
locates to the nucleus, where it physically interacts with survivin 
and causes the displacement of elements of the chromosomal 
passenger complex during mitosis, thus resulting in chromo-
some misalignment and segregation defects, representative of 
mitotic catastrophe (150). Atg5-mediated mitotic catastrophe 
does not depend on Atg5–Atg12 conjugation and is unaffected 
by pharmacological inhibition of autophagy (150); thus, Atg5-
mediated mitotic catastrophe occurs independently of its role 
in autophagy regulation. While the applied drug concentrations 
only resulted in modest cell death, pharmacological inhibition 
of the autophagy pathway shifted the response to early caspase-
dependent cell death (150), suggesting that in response to DNA 
damage, cytoplasmic Atg5 and nuclear Atg5 have distinct roles 
in autophagy induction and mitotic catastrophe, respectively.

Autophagy may under some conditions also participate in 
promoting mitotic cell death. Doménech et  al. reported that, 
during mitotic arrest caused by abrogation of cyclin B1 degrada-
tion, autophagy promotes cell death through ongoing mitophagy 
(38). The gradual decline in the mitochondrial mass and oxida-
tive respiration, however, resulted in a metabolic switch through 
activation of AMPK and subsequent induction of glycolysis 
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in a 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase3-
(PFKFB3)-dependent manner. Inhibition of glycolysis in breast 
cancer cells resulted in accelerated death of mitotic cells caused 
by microtubule poisons (38). This system represents a nonstress-
induced mitotic arrest and is likely devoid of p53 activation. Thus, 
while autophagy induction occurred both during prolonged 
mitotic arrest (38) as well as in response to DNA damage-induced 
mitotic catastrophe (150), the resulting effect on cell survival 
may depend on the nature and severity of the stimulus leading 
to mitotic block. Of note, exploring how metabolic pathways 
influence life and death decisions of mitotically arrested cells is 
of particular interest in the context of cancer treatments, such as 
DNA-damaging agents or microtubule poisons, which affect the 
progression and fidelity of mitosis.

Nutrient Sensing and Cell Division: 
involvement of AMPK in Mitosis 
Regulation
Surprisingly, in recent years, an unexpected mitotic role for the 
nutrient sensing and autophagy-inducing factor, AMPK, has 
been discovered. AMPK depletion results in mitotic abnormali-
ties, including spindle misorientation and cytokinesis failure in 
Drosophila Melanogaster S2 cells and human cell lines (151–153). 
Furthermore, Drosophila AMPK-null embryos display severe 
abnormalities in cell polarity and mitosis (154). AMPK activation, 
evaluated by AMPK Thr172 phosphorylation (p-AMPKThr172), 
correlates with induction of mitosis (151, 153), during which 
p-AMPKThr172 is enriched specifically at centrosomes and at the 
cleavage furrow (153, 155). Furthermore, an elegant chemical 
genetics screen designed to identify novel substrates of AMPKα2 
provided additional emphasis to a mitotic function for AMPK as 
it revealed 28 previously unidentified putative AMPK substrates 
enriched for proteins involved in chromosomal segregation, 
mitosis, cytokinesis, and cytoskeletal reorganization (151). These 
evidence indicate a role for AMPK in regulating mitosis through 
phosphorylation of mitosis-specific substrates. Nonetheless, 
there appears to be a considerable overlap between the pathways 
governing AMPK induction and responses during mitosis and 
during nutrient stress.

Several reports have implicated myosin regulatory light chain 
(MRLC) as a key target of AMPK-mediated mitosis regulation 
(151, 153, 154). AMPK facilitates the phosphorylation of MRLC 
at Serine 19 (151, 154), a phosphorylation event known to stimu-
late the Mg2+-ATPase activity of myosin II leading to actin-based 
regulation of mitosis, cell migration, and cell polarity (156–159). 
Accordingly, AMPK depletion decreases the level of p-MRLCSer19 
at spindle poles and reduces overall mitotic p-MRLCSer19 levels. 
MRLC has been suggested to be a direct target of AMPK in 
Drosophila (154), but mammalian cells may employ alterna-
tive strategies for AMPK-mediated p-MRLCSer19 regulation. 
Protein phosphatase 1 regulatory subunit 12C (PPP1R12C) and 
p21-activated protein kinase (PAK2), both regulators of MRLC 
phosphorylation status (160–163), were identified as direct tar-
gets of AMPK (151). AMPK phosphorylation of these substrates 
indirectly induces MRLC Ser19 phosphorylation (151). Of note, 

the AMPK substrate and upstream autophagy regulator ULK1 has 
also been implicated in the regulation of MRLC phosphorylation 
(164). Thus, AMPK-induced MRLC phosphorylation may also 
involve autophagy factors. While Banko et al. identified a number 
of well-known mitotic regulators as putative AMPK substrates 
(151), MRLC regulation appears to be a major contributing fac-
tor, as depletion of MRLC partially reproduces AMPK depletion 
phenotypes (153). Moreover, the expression of a phosphomimetic 
mutant of MRLC is able to rescue AMPK-null-related cell polar-
ity and mitosis defects in Drosophila (154). Whether AMPK regu-
lates other substrates during mitosis remains to be determined.

Perhaps, the most intriguing questions in this context remains 
whether AMPK activation during mitosis is coordinated with 
its nutrient sensing ability, and if not, which mitosis-specific 
signals facilitate AMPK activation. Starvation or stress-induced 
AMPK activation involves allosteric activation by AMP and 
phosphorylation by upstream kinases on Thr172 in the activation 
loop of the catalytic α subunit (165). In mammals, the primary 
kinases performing this task are LKB1 (166–168) and calcium/
calmodulin-dependent protein kinase kinase (CAMKK) (169, 
170). LKB1 deficiency reproduces the mitotic abnormalities of 
AMPK deficiency (152, 153, 171), although CAMKK can also 
promote mitotic AMPK activation in LKB1-deficient systems 
(153). Thus, mitotic AMPK activation appears to rely on mecha-
nisms resembling those governing starvation-induced AMPK 
activation. Interestingly, phosphorylation of PPP1R12C, PAK2, 
and MRLC also occurs in response to energy deprivation (151, 
154, 164), indicating that regulation of these factors may be a 
general response to AMPK-activating stimuli rather than mitosis-
specific. Intriguingly, myosin II activation, as indicated by MRLC 
phosphorylation, is reported to participate in autophagy induc-
tion by modulating Atg9 trafficking during starvation (164). 
Whether autophagy is induced in response to mitotic AMPK 
activation remains to be investigated.

It is entirely possible that AMPK regulation of mitosis repre-
sents a novel function that is unaffected by the cellular energy 
status, potentially involving selective AMPK activation at specific 
subcellular localizations during cell division. However, it has also 
been speculated that AMPK could alternatively promote the 
completion of already initiated cell cycles in response to energy 
deprivation to secure proper cell-cycle arrest in the ensuing 
G1 phase (165). This theory would imply a role for AMPK in 
initiating responses similar to those reported in yeast, in which 
autophagy supplies amino acids required for mitotic completion 
during starvation (147). Thus, intriguing questions for further 
investigation include understanding the exact mechanism gov-
erning mitotic AMPK activation and the requirement for AMPK 
(and possibly autophagy) for mitotic progression in response to 
diverse nutrient conditions.

CONCLUDiNg ReMARKS

Autophagy, being traditionally viewed as a bulk process, was 
initially rarely linked to strictly structured processes, such as 
cell-cycle progression. Recent advances in the field, however, 
clearly suggest a strong correlation between autophagy activation 
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and the induction and possibly execution of cell-cycle arrest 
programs, as well as autophagy (factor) regulation of the cell divi-
sion process. Cell-cycle stress responses and resulting senescence 
acquisition constitute important anticancer barriers. Therefore, 
the relevance of autophagy in executing these responses and the 
role of autophagy in determining cellular life and death decisions 
in these contexts are of discernible interest. The role of autophagy 
and autophagy-related factors in regulating the fidelity of cell 
division is also potentially of substantial relevance, as findings 
on this topic suggest that the genomic instability observed upon 
ablation of autophagy (or specific autophagy components) 
may be partially attributed to dysregulation of this process. 
Furthermore, as an increasing number of autophagy proteins are 
being demonstrated to mediate alternative nonautophagic func-
tions (i.e., PtdIns3K components, Atg5, Atg7, AMPK, AMBRA1, 
ULK1), we may need to more frequently consider autophagy fac-
tors individually. Of note, most evidence linking autophagy and 
cell-cycle regulation has been obtained in yeast and mammalian 
cell culture systems and remains to be tested in  vivo. Thus, an 
important topic for future investigation includes evaluating the 
contribution of cell-cycle arrest programs and mitosis regulation 
to tumor progression or prevention in autophagy-manipulated 
animal models. While considering cell-cycle (dys)regulation 
as a factor surely adds to the complexity, it may also open up 

new avenues for improving our understanding of the intricate 
relationship between autophagy and tumorigenesis.
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