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Endoplasmic reticulum (ER) to mitochondria communication has emerged in recent 
years as a signaling hub regulating cellular physiology with a relevant contribution to 
diseases including cancer and neurodegeneration. This functional integration is exerted 
through discrete interorganelle structures known as mitochondria-associated mem-
branes (MAMs). At these domains, ER/mitochondria physically associate to dynamically 
adjust metabolic demands and the response to stress stimuli. Here, we provide a 
focused overview of how the ER shapes the function of the mitochondria, giving a 
special emphasis to the significance of local signaling of the unfolded protein response 
at MAMs. The implications to cell fate control and the progression of cancer are also 
discussed.

Keywords: mitochondria-associated membranes, unfolded protein response, endoplasmic reticulum stress, 
mitochondria, cancer

Cellular organelles are no longer conceived as isolated entities with defined and unique functions, 
but as dynamic signaling nodes, where a single organelle may engage and influence the functioning 
of several cellular compartments and processes. Interorganelle interactions are facilitated by special-
ized structures that tie them together structurally and functionally. Mitochondria-associated mem-
branes (MAMs) are subdomains that bring the endoplasmic reticulum (ER) and mitochondria into 
close proximity, enabling a complex cross talk (1). This physical association shapes mitochondrial 
morphology and dynamics (2), in addition to participate in the response to various stress stimuli, 
modulating metabolism, redox control, and apoptosis.

The ER is the primary site where transmembrane and secretory proteins are folded; in addition 
to operate as the main intracellular calcium reservoir and a site of lipid biosynthesis. Abnormal 
accumulation of misfolded proteins within the ER lumen may result in the loss of proteostasis, a 
condition referred to as ER stress (3, 4). ER stress is triggered by physiological demands including 
high secretory activity, in addition to pathological conditions that may perturb protein folding 
and maturation, calcium homeostasis, redox balance, among other events. Under ER stress the 
unfolded protein response (UPR) is engaged, operating as a dynamic signaling network that enforces 
adaptive programs to restore proteostasis by reducing the load of unfolded proteins through the 
upregulation of genes involved in almost every aspect of the secretory pathway (5). However, if 
ER homeostasis cannot be restored, the UPR switches its signaling toward a proapoptotic mode to 
eliminate irreversibly damaged cells. Thus, the UPR is a central adjustor to control cell fate under 
ER stress, contributing to diverse pathological conditions including cancer, neurodegeneration, 
and diabetes, among others (6).
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FigURe 1 | The unfolded protein response (UPR). Three main signaling branches form the UPR. Under resting conditions, BiP protein binds to and inhibits the 
triggering of the UPR. Under endoplasmic reticulum (ER) stress, BiP dissociates from the UPR transducers to chaperone misfolded proteins in the lumen of the ER. 
This disassemble promotes the activation of the three branches of the UPR. On the one hand, PKR-like ER kinase (PERK) oligomerizes and phosphorylates 
eIF2alpha. This phosphorylation provokes a repression of global translation and facilitates the expression of specific transcripts. Among them, activating transcription 
factor 4 (ATF4) drives the transcription program of the PERK branch that activates genes involved in folding, oxidative responses, autophagy, amino acid 
metabolism, and apoptosis via CHOP. Upon activation, IRE1 oligomerizes and processes the mRNA encoding for X-box binding protein 1 (XBP1), a transcription 
factor that activates cellular programs involved in ERAD, ER translation, ER chaperones, and lipid synthesis. Finally under stress, activating factor 6 (ATF6) 
translocates to the Golgi where it is processed by SP1 and SP2 generating a transcription factor that activates UPR target genes involved in ERAD and folding.
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THe UPR

The UPR is initiated by at least three distinct ER-localized stress 
sensors: inositol-requiring enzyme 1 (IRE1α), PKR-like ER kinase 
(PERK), and activating factor 6 (ATF6). IRE1α is a functional 
kinase, and RNase represents the most conserved branch of the 
UPR. Upon activation, IRE1α catalyzes the unconventional splic-
ing of X-box binding protein 1 (XBP1) removing a 26-nucleotide 
intron. This processing event changes the open reading frame of 
the mRNA, resulting in the translation of a potent transcriptional 
activator termed XBP1s (for the spliced form). XBP1s upregulates 
several genes involved in the UPR’s adaptive phase, having a cru-
cial role in the maintenance of the function of highly secretory 
cells (7). IRE1α also degrades several mRNA and microRNAs, 
an activity known as regulated IRE1-dependent decay or RIDD 
(8), impacting diverse processes including inflammation, stress 
mitigation, and apoptosis. Activation of PERK leads to the 
phosphorylation of the eukaryotic translation initiation factor 
eIF2α, resulting in global protein synthesis arrest reducing ER 
load (5). Under these conditions, activating transcription factor 

4 (ATF4) is differentially translated, upregulating genes involved 
in protein folding, amino acid metabolism, autophagy, and redox 
homeostasis. Upon sustained ER stress, ATF4 also contributes to 
apoptosis through the induction of C/EBP homologous protein 
CHOP and by enhancing oxidative stress and protein synthesis 
(4). Finally, ATF6 is retained at the ER under basal conditions but 
shuttles to the Golgi apparatus under ER stress, where it is cleaved 
by SP1 and SP2 proteases. This event leads to the release of ATF6 
N-terminal fragment, a potent transcription factor that—together 
with XBP1—regulates the expression of several genes involved in 
reestablishing ER homeostasis (Figure 1). Overall, depending on 
the duration and intensity of the stress, the UPR engages different 
cellular outputs to sustain cell survival or trigger apoptosis. For 
this balance, the communication between the ER and mitochon-
dria is emerging as an important contributor to cell death under 
stress, in addition to providing metabolic advantages during 
early adaptive responses. In this article, we focus in addressing 
the specific activities of the UPR at MAMs and the implications 
to mitochondrial physiology. The possible impact to pathological 
conditions such as cancer is also discussed.
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THe UPR AnD MAMs

MAMs are specialized ER membranes in close proximity to the 
mitochondria outer membrane, that facilitate the communica-
tion between these two organelles (9). In the last decade, this 
subdomain has emerged as a signaling platform, playing critical 
functions in lipid biosynthesis, ER to mitochondria calcium 
transfer, bioenergetics, autophagy, and cell death (10, 11).

The composition and abundance of mammalian MAMs is 
highly dynamic, shaped by metabolic demands and cellular 
insults. For example, the tethering between these two organelles is 
enhanced under ER stress, together with a redistribution toward 
the perinuclear area (12). Interestingly, the dynamic assembly of 
MAMs occurs during the early phase of the UPR, which is classi-
cally considered to be prosurvival, and correlates with increased 
mitochondrial calcium uptake and enhanced respiration (12). 
In mouse models of diabetes—where ER stress is chronically 
active and MAMs are augmented—experimental manipulation 
of MAMs’ formation restores glucose homeostasis (13). Along 
these lines, different pathologies of the central nervous system 
with a strong ER stress component (14) also develop alterations 
in MAMs either at the morphological or biochemical level (15). 
Thus, under acute or chronic ER stress, there is an abnormal cross 
talk between the ER and mitochondria that may drive pathologi-
cal events impacting metabolic function, redox balance, and cell 
death control.

Proteins present in MAMs can be classified as spacers (i.e., 
increase distance between ER and mitochondria), tethers (i.e., 
increase contact site formation), or functional components 
that are not directly related to morphological features. One of 
the most characterized proteins involved in MAM formation 
is mitofusin-2 (MFN2), a player first discovered for its role in 
mitochondria fusion and fission (16). MFN2 is involved in ER–
mitochondria interactions despite the fact that its actual function 
as a tether or spacer is still debated (17–20). MFN2 also modu-
lates ER homeostasis, since cells deficient for this protein develop 
spontaneous ER stress as demonstrated in cell culture and in vivo 
studies (21–23). The UPR can be engaged when protein folding 
is compromised due to alterations in ER chaperones. In MAMs 
there is a relevant set of chaperones and oxidoreductases with 
functions associated to ER stress (Figure  2). One of the most 
studied MAM-located chaperones is the sigma one receptor 
(S1R), a protein implicated in neuroprotection, carcinogenesis, 
and neuroplasticity (24). Interestingly, S1R acts directly on the 
three UPR transducers. For example, one study proposed that 
S1R inhibits PERK and ATF6 signaling (Figure 2A), but it can 
stabilize the RNAse activity of IRE1 at MAMs (25). Moreover 
S1R expression is induced under ER stress (26), enhancing 
the activity of IP3 receptor (IP3R) (24, 25) (Figure  2B). These 
observations suggest a clear role for S1R at MAMs, impacting 
ER physiology, by controlling ER calcium homeostasis via IP3R, 
or through the modulation of the UPR signaling. In a similar 
way, the ER chaperone calnexin (CNX) regulates the activity of 
sarco/endoplasmic reticulum calcium-ATPase 2b (SERCA2b) 
(27), and it is enriched in MAMs by two possible mechanisms. 
When palmitolylated, CNX localizes to MAMs, a modification 
that is lost under early ER stress responses (28). Additionally, 

phosphofurin acidic cluster sorting protein 2 (PACS-2) is an 
integral MAM component that contributes to oxidative fold-
ing at the ER (29) and binds to and retains phosphorylated 
CNX at this membrane subdomain (30). Whether SERCA2b is 
also present in MAMs and directly interacts with CNX in this 
structure has not been directly addressed. Importantly, in addi-
tion to classical chaperones, different ER oxidoreductases and 
foldases are present at MAMs, including ERO1α and ERp44 (31) 
(Figure 2). Similar to S1R, ERO1α also enhances IP3R activity 
contributing to ER stress-mediated cell death and mitochondrial 
calcium overload (32, 33). In this direction, the ER foldase 
ERp44 is considered to be present at MAMs since it binds to IP3R  
(34, 35); however, no direct evidence for a function of ERp44 
in MAMs has been yet reported. Finally, Bax-inhibitor-1 (BI-1), 
an evolutionary conserved ER-localized protein with wide roles 
in apoptosis regulation (36), is also located at MAMs, regulat-
ing mitochondrial calcium uptake and apoptosis (37). BI-1 has 
been shown to repress the UPR and regulate autophagy under 
stress conditions, through the inhibition of the IRE1α signal-
ing pathway and the modulation of calcium signaling (38–40) 
(Figure 2). BI-1 has been linked to influence calcium signaling 
at MAMs; however, whether the regulatory role of this protein 
over autophagy and the UPR takes place at MAMs is unknown. 
Overall, the fact that different foldases, chaperones, and oxi-
doreductases are present at MAMs emphasizes the relevance of 
this signaling node to engage adaptive programs to sustain cell 
function under proteostatic stress.

UPR stress sensors may have important biological functions at 
MAMs, influencing mitochondrial physiology. Core components 
of the UPR such as PERK and IRE1α have been spotted at MAMs. 
Under ER stress conditions, IRE1α becomes enriched in MAMs, 
where it is stabilized, making cells more resistant to ER stress-
induced cell death. This stabilization may be mediated by the S1R 
chaperone (25). Moreover, indirect evidence in neuronal cell lines 
suggests that IRE1α may play a role in the regulation of ER to 
mitochondria calcium transfer under basal and ER stress condi-
tions, through the negative modulation of IP3R and its coupling 
with the mitochondrial calcium uniporter (41) (Figure 2).

PKR-like ER kinase is also enriched in MAMs, and PERK-
deficient cells have decreased number of ER–mitochondria contact 
sites and perturbed ER calcium signaling (42). PERK signalling is 
required for ROS production, sensitizing cells to apoptosis (42). 
However, it is not clear from this study whether the enhancement 
of ROS levels by PERK deficiency is the result of its known role 
in the antioxidant response through the transcriptional activity 
of ATF4 (43). In contrast, another study suggested that PERK has 
a protective role at MAMs (21). Surprisingly, MFN2 was shown 
to operate as an upstream regulator of PERK, preventing its 
activation through a physical interaction, controlling cell death 
and mitochondrial morphology (21) (Figure 2). Although it was 
suggested that PERK might influence MAMs’ abundance and 
function through the MFN2 axis, the role that MFN2 plays at 
this compartment is still debated: it may contribute to tethering 
(18, 20) or operate as a spacer (17, 19). Thus, increasing evidence 
suggest that the UPR may operate at the structural and functional 
intersection between the ER and mitochondria to regulate both 
adaptive and chronic ER stress responses.
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FigURe 2 | Mitochondria-associated membranes (MAMs) and the unfolded protein response (UPR). (A) Under resting conditions, sigma one receptor (S1R) 
prevents activating factor 6 (ATF6)/PKR-like endoplasmic reticulum (ER) kinase (PERK) activity. IRE1 negatively regulates IP3 receptor (IP3R) activity. This homeostatic 
equilibrium is needed to maintain cellular respiration, survival ATP generation, and protein folding. (B) Under ER homeostasis disturbances, UPR stress sensors are 
activated. S1R promotes IP3R activity and may stabilize IRE1 RNase function. ERO1 is also promoting IP3R activity, whereas ERp44 depending on the PH and redox 
state will inhibit the activity of IP3R type 1, whether this co-occurs in MAMs has still to be directly defined. Under ER stress, there is a convergence for the pro-
adaptative phase of the UPR and an ATP boost, due to enhanced calcium entry to the mitochondria via mitochondrial calcium uniporter (MCU). However, if the stress 
levels are not resolved, the UPR shifts its signalling toward a proapoptotic response.
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MAMs, UPR, AnD CAnCeR

Functional alterations to MAMs may impact cell function and 
viability resulting on disease conditions, such as cancer. Due to the 
broad impact of MAMs as a site of control of the UPR and mito-
chondrial function, it is predicted that MAMs may impact cancer 
progression by influencing tumor proteostasis and bioenergetics. 
The most studied output of MAMs in relation to cancer is the 
regulation of autophagy [reviewed in Ref. (44)] and the transfer 
of calcium from the ER to mitochondria (45). Mitochondrial 
calcium uptake not only alters the threshold to induce apoptosis 
(45) but also fine-tunes metabolism through the regulation of 
the tricarboxylic acid cycle and the electron transfer chain. It 
also enhances catabolic processes such as autophagy mediated 
by the AMP kinase (46, 47), a sensor essential for the growth of 
tumors. It is noteworthy that different oncogenes and tumor sup-
pressors may influence MAMs (48), with relevant implications 
to cell survival and malignant transformation. Alterations to ER 
calcium content have been reported during tumor progression 
(49), which may modify ER to mitochondria calcium transfer. 
Moreover, the deregulation of the BCL-2 family in cancer cells 
may also alter ER calcium content through its known role in fine-
tuning the activity of IP3R (50).

Mitochondrial energy production is critical to maintain the 
large energetic demands of certain types of cancer cells that 
rely on oxidative phosphorylation. This metabolic process is 
maintained by a tight regulation of calcium transfer from the 
ER to mitochondria (46). However, excessive mitochondrial 
calcium overload may result in cell death through the opening 
of the permeability transition pore (PTP) or by sensitizing 
mitochondria to canonical intrinsic apoptotic signals (45, 48). 
In addition, the UPR has been extensively related to cancer 
due to its relevance to promote cell adaptation to the hypoxia 
conditions observed in solid tumors (51, 52). Cell adaptation 
to hypoxia, together with limited oxygen availability, may 
facilitate the Warburg effect, whereby cancer cells rely on 
anaerobic glycolysis instead of oxidative phosphorylation. 
It is interesting to mention that one putative target of the 
RNAse domain of IRE1 is the mitochondrial pyruvate carrier, 
a limiting step for the import of pyruvate to mitochondria 
that regulates the Warburg effect (53). In fact, genetic and 
pharmacological evidence have revealed a functional impact 
of the UPR in most hallmarks of cancer (52). However, the 
significance of UPR signaling at MAMs has not yet been 
explored in the context of cancer progression. Thus, cancer 
cells may depend on the structural integrity of MAMs to 
maintain and balance energy demands, in addition to cope 
with proteostatic alterations associated with cellular transfor-
mation and aggressiveness of tumors. Since XBP1s’ levels are 
associated with poor prognosis in different tumors (54–56), 
the stabilization of IRE1 signaling in MAMs is expected to 
contribute to cancer progression (25), a hypothesis that 
remains to be tested.

COnCLUDing ReMARKS

Interorganelle communication is emerging as a homeostatic 
network determining the switch from adaptive programs to cell 
death under stress conditions, where specialized sentinels are 
localized at organelle membranes to induce the core apoptosis 
pathway (57). Mitochondria represent an ancestral integrator of 
stress signals, modulating metabolic demands on a constantly 
fluctuating environment (58). Although the literature is still poor 
in relating the activity of the UPR to mitochondrial function, a 
new model is emerging where proteostasis and metabolic control 
are tightly interconnected at the structural and functional levels 
(Figure  2A). This integration might be particularly relevant in 
pathological conditions such as diabetes and cancer, where the 
ER and mitochondria undergo high metabolic demands (3). The 
physical and functional relation between the ER and mitochondria 
has pleiotropic consequences to the cell by regulating autophagy, 
ROS production, metabolism, and protein synthesis. At the 
intersection of all these processes, calcium mobilization is consid-
ered a key player in the dynamic cross talk between the ER and 
mitochondria. Importantly, different core members of the UPR 
are highly mutated in cancer, suggesting a direct contribution to 
disease initiation (59). Several pharmacological agents are available 
to target the UPR with interesting protective effects in cancer (60, 
61). It remains to be determined whether these therapeutic agents 
influence mitochondrial function through MAMs. Overall, the rel-
evance of the intersection between ER and mitochondria is gaining 
increasing attention in recent years, and thus the specific activities 
of the UPR at MAMs needs to be systematically studied. Strategies 
to dissect and manipulate compartmentalized UPR responses may 
generate novel therapeutic insights, expanding the avenues in the 
area of drug discovery.
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