%A O’Cathail,Sean M. %A Pokrovska,Tzveta D. %A Maughan,Timothy S. %A Fisher,Kerry D. %A Seymour,Leonard W. %A Hawkins,Maria A. %D 2017 %J Frontiers in Oncology %C %F %G English %K oncolytic virus,adenovirus,Radiation,Radiotherapy,radiosensitiser %Q %R 10.3389/fonc.2017.00153 %W %L %M %P %7 %8 2017-July-24 %9 Review %+ Maria A. Hawkins,Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford,United Kingdom,m.hawkins@ucl.ac.uk %# %! Combining oncolytic adenovirus with radiation %* %< %T Combining Oncolytic Adenovirus with Radiation—A Paradigm for the Future of Radiosensitization %U https://www.frontiersin.org/articles/10.3389/fonc.2017.00153 %V 7 %0 JOURNAL ARTICLE %@ 2234-943X %X Oncolytic viruses and radiotherapy represent two diverse areas of cancer therapy, utilizing quite different treatment modalities and with non-overlapping cytotoxicity profiles. It is, therefore, an intriguing possibility to consider that oncolytic (“cancer-killing”) viruses may act as cancer-selective radiosensitizers, enhancing the therapeutic consequences of radiation treatment on tumors while exerting minimal effects on normal tissue. There is a solid mechanistic basis for this potential synergy, with many viruses having developed strategies to inhibit cellular DNA repair pathways in order to protect themselves, during genome replication, from unwanted interference by cell processes that are normally triggered by DNA damage. Exploiting these abilities to inhibit cellular DNA repair following damage by therapeutic irradiation may well augment the anticancer potency of the approach. In this review, we focus on oncolytic adenovirus, the most widely developed and best understood oncolytic virus, and explore its various mechanisms for modulating cellular DNA repair pathways. The most obvious effects of the various adenovirus serotypes are to interfere with activity of the MRE11-Rad50-Nbs1 complex, temporally one of the first sensors of double-stranded DNA damage, and inhibition of DNA ligase IV, a central repair enzyme for healing double-stranded breaks by non-homologous end joining (NHEJ). There have been several preclinical and clinical studies of this approach and we assess the current state of progress. In addition, oncolytic viruses provide the option to promote a localized proinflammatory response, both by mediating immunogenic death of cancer cells by oncosis and also by encoding and expressing proinflammatory biologics within the tumor microenvironment. Both of these approaches provide exciting potential to augment the known immunological consequences of radiotherapy, aiming to develop systems capable of creating a systemic anticancer immune response following localized tumor treatment.