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Objective: The development of breast cancer cells is linked to hypoxia. The hypoxia- 
induced factor HIF-1α influences metastasis through neovascularization. Hypoxia seems 
to decrease the responsiveness to hormonal treatment due to loss of estrogen recep-
tors (ERs). Obesity is discussed to increase hypoxia in adipocytes, which promotes a 
favorable environment for tumor cells in mammary fat tissue, whereas, tumor cells profit 
from good oxygen supply and are influenced by its deprivation as target regions within 
tumors show. This review gives an overview of the current state on research of hypoxia 
and breast cancer in human adipose tissue.

Methods: A systematic literature search was conducted on PubMed (2000–2016) by 
applying hypoxia and/or adipocytes and breast cancer as keywords. Review articles 
were excluded as well as languages other than English or German. There was no restric-
tion regarding the study design or type of breast cancer. A total of 35 papers were found. 
Eight studies were excluded due to missing at least two of the three keywords. One 
paper was removed due to Russian language, and one was dismissed due to lack of 
adherence. Seven papers were identified as reviews. After applying exclusion criteria, 18 
articles were eligible for inclusion.

Results: Two articles describe the impairment of mammary epithelial cell polarization 
through hypoxic preconditioning. A high amount of adipocytes enhances cancer 
progression due to the increased expression of HIF-1α which causes the loss of ER 
α protein as stated in four articles. Four articles analyzed that increased activation of 
HIF’s induces a series of transcriptions resulting in tumor angiogenesis. HIF inhibition, 
especially when combined with cytotoxic chemotherapy, holds strong potential for tumor 
suppression as stated in further four articles. In two articles there is evidence of a strong 
connection between hypoxia, oxidative stress and a poor prognosis for breast cancer 
via HIF regulated pathways. Acute hypoxia seems to normalize the microenvironment in 
breast cancer tissue and has proven to affect tumor growth positively as covered in two 
articles.

Conclusion: This review indicates that the development of breast cancer is influenced 
by hypoxia. A high amount of adipocytes enhances cancer progression due to the 
increased expression of HIF-1α.
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iNTRODUCTiON

Breast cancer is the most commonly diagnosed cancer in women 
(1). In 2012, over a million new cases were identified and figures 
are rising due to late diagnosis at already quite advanced cancer 
stages (World Cancer Research Fund International, 2012) (2). 
Breast cancer represents 25% of all cancer types in women and 
is the fifth most common cause of death. It is classified into three 
main groups (3). The hormone receptor (HR) positive group, 
which expresses estrogen receptor (ER) or progesterone receptor 
(PR); the epidermal growth factor receptor 2 (HER2) positive 
group and the triple-negative breast cancer (TNBC) group 
without expression of ER, PR, and HER2. 90% of breast cancer 
patients die in consequence of metastasis most commonly found 
in bone tissue (4).

Several prospective, epidemiological studies show that 
there is a direct relationship between obesity and cancer (5–9). 
Especially, the manifestation of breast cancer seems to be linked 
to obesity (10). Notably, female obese breast cancer patients 
show a less sufficient response to the same dosage of chemo-
therapy compared to female lean breast cancer patients (11). 
In premenopausal women, the risk for breast cancer is reduced 
with increasing body mass index (BMI). Thus, postmenopau-
sal women are at higher risk for breast cancer development if 
BMI is increased (10). There is a strong association between 
BMI and breast cancer in ER−/PR+ receptor positive breast 
cancer types as found in a dose–response meta-analysis (12). 
This could be due to an increase in sex-hormones triggered by 
an increase in estradiol production of adipose tissue, caused 
by a higher activity of aromatase enzymes (13). Adipose tissue 
is divided into brown adipose tissue (BAT) and white adipose 
tissue (WAT). BAT is only 50  g compared to kilograms of 
WAT, which is an endocrine organ producing a large number 
of adipokines and cytokines (14). In the presence of hyper-
trophy, the protein synthesis of white adipocytes is changed 
toward producing pro-inflammatory adipokines, such as 
tumor necrosis factor-alpha. On the contrary, adiponectin is 
an anti-inflammatory adipokine with cardio-protective and 
anti-tumor actions. Dysfunctional adipose tissue in obesity 
causes defective adipokines with increased levels of pro-
inflammatory factors (14). The currently available therapies 
for advanced breast cancer stages in obese women seem to 
achieve a rather poor clinical outcome. Conclusively, a long-
lasting reduced-calorie diet seems to lower the risk for breast 
cancer (15).

It remains difficult to identify single impact factors as 
dietary changes, energy balance, amount of physical activity, 
and obesity on cancer development and progression (16, 17).  
It also remains unclear if the higher amount of adipose tissue 
and the resulting tissue hypoxia in obesity contributes to the 
development of cancer. Especially, the elevated activation of HIF’s 
seems to increase metastasis and worsen the prognosis of patient 
survival (18). Intra-tumoral partial pressure of oxygen (PO2) is 
decreased by 20% compared to healthy tissue (19). PO2 values 
below 10 mmHg have shown to drive cancer growth, metastasis, 
and mortality. In cancer tissue, oxygen supply can be restrained 
due to the proliferation of vessels. Therefore, HIF’s, as the key 

factors of hypoxic cancer cells, seem to stimulate inflammation 
and angiogenesis (18).

The concurrence of adipose tissue hypoxia to cancer 
development is not fully explained, but tumors are most likely 
surrounded by adipose tissue (20–22). Hence, it is likely that 
such a malignant environment may promote tumor develop-
ment (22).

MeTHODS

A literature search was conducted according to preferred 
reporting items for review and meta-analysis protocols 
(PRISMA-2015) statement. Via PubMed (2000–2016) search 
and manual searches of reference lists, studies examining the 
relationship between hypoxia, adipocytes, and breast cancer 
were identified. The keywords for the search were (hypoxia and/
or adipocyte) and breast cancer. Articles had to be in English 
or German language. Review articles were excluded. There was 
no restriction regarding study design or certain breast cancer 
types. After this search, a total of 35 papers were identified. 
After title and abstract evaluation, eight studies were excluded 
due to lack of coherences with the topic. Out of four papers not 
offering open access, one paper was excluded due to Russian 
language, and another paper was also excluded due to lack of 
coherence. After assessing full-text articles for eligibility, seven 
papers were identified as reviews. Finally, 18 articles were 
eligible for inclusion in this review and selected for analysis. 
Figure  1 shows a flow diagram according to PRISMA-2015 
protocols displaying the process of literature identification, 
screening, eligibility, and inclusion.

ReSULTS

After the final evaluation of the 18 included articles, six on-topic 
categories were identified. Two studies identify the impact of 
hypoxic conditioning on malignant and non-malignant mam-
mary epithelial cells. Two studies examine the role of hypoxic 
adipocytes in the development of breast cancer cells. Five 
studies approach the activation of HIF’s occurring in hypoxic 
adipocytes, which promotes breast cancer cell growth. Two 
studies identify the distinct biochemical responses of the body 
responsible for HIF inhibition. Three studies investigate medical 
interventions for HIF inhibition and limitation of breast cancer 
cell growth. Two studies express alternatives to drug cure of 
breast cancer inhibiting breast cancer via HIF pathways. Table 1 
displays a study summary of HIF-related effects through differ-
ent physiological and biochemical pathways on breast cancer 
progression.

HYPOXiC PReCONDiTiONiNG

The most important element for tumor growth is the develop-
ment of tumor vasculature (41–43). This vasculature is highly 
disorganized and constantly changing due to blood vessel gain 
and loss. A consequence of this alteration is the fluctuation of 
oxygen- and glucose levels, which result in heterogeneous states 
of hypoxia, anaerobic, and aerobic glycolysis (42). If a cell happens 
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to be above its diffusion limit of oxygen, chronic hypoxia occurs 
(44). Transient hypoxia occurs due to local oxygen depletion 
(44). As a result of the fluctuant oxygenation within a tumor, 
it is possible that the hypoxia-induced glycolysis pre-conditions 
cancer cells for aerobic glycolysis (45). Increased glycolysis with 
and without the presence of oxygen is an important indicator 
for cancer and the connecting link between multidrug-resistant 
breast cancer cells and hypoxia (46–49). Milane et  al. (39) 
extracted proteins of TNBC and ovarian cancer cell lines pre-
exposed to either normoxic or hypoxic conditions. The TNBC 
cell line MDA-MB-231 experienced the most significant hypoxic 
transformation with an increase in all glycolytic proteins glucose 

FiGURe 1 | Flow diagram according to PRISMA-2015 protocols displaying process of literature identification, screening, eligibility, and inclusion. 1Language other 
than English or German; at least two of the three keywords missing. 2Fulltexts identified as reviews.

transporters (GLUT-1 and GLUT-3), hexokinase 1 and 2, phos-
phofructokinase (PFK), aldolase, glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), 
enolase, pyruvate kinase, and lactate dehydrogenase (LDH). 
That indicates that each cell line has a time-specific threshold for 
hypoxic transformation inducing glycolysis (39). This finding is 
based on malignant breast cancer cells, but little is known about 
the effects of hypoxia on non-malignant cells. Vaapil et al. (35) 
cultivated normal human primary breast epithelial cells and non-
malignant mammary epithelial MCF-10A cells under hypoxia 
and normoxia. The breast epithelial cells with high HIF-levels 
were found to be immature compared to the well-oxygenated 
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cells. Due to the fact that constant cell proliferation is followed by 
high HIF-levels in certain compartments of the tumor, cellular 
differentiation of non-malignant human mammary epithelial 
cells is restrained (35).

In human adipocyte cells, HIF-1α gene expression was increased 
and accompanied by a reduction of ER gene expression. With 
the loss of ERα protein, the tumor progresses and hormone 
therapy is less efficient (24). Seifert et al. also analyzed MCF7 cell 
lines cultivated under mild hypoxic conditions (5% of O2 for a 
duration of 6  h) (32). These cell lines were exposed to TCDD 
(2,3,7,8-tetrachlorodibenzo-para-dioxin), a pollutant causing a 
variety of biochemical and toxic effects, accumulating in adipose 
tissue. The prevalence of breast cancer cells was significantly 
higher due to the positive correlation with increased TCDD 
serum levels. TCDD reduces the hypoxia-induced stabilization 
and activation of HIF-1α (32).

Denzel et al. states that drug inhibition of the pro-angiogenic 
HIF-1α pathway only leads to temporary improvement and breast 
cancer resists treatment after a limited time frame (23). The effect 
of HIF on changes in human adipocytes inclines with extended 
exposure time (55, 56). They investigated cellular functions of 
adiponectin in breast cancer cells creating an adiponectin null 
mouse model of mammary cancer. The treatment of adiponectin 
leads to a reduction of human breast cancer cells due to adiponec-
tins’ cancer-protective functions. Vessel density is restrained 
through tumor vasculature because of adiponectin deficit. This 
limits the supply of oxygen and nutrients (23). Therefore, high 
adiponectin levels in women are associated with a lower risk of 
breast cancer and tumor metastasis (57, 58).

ACTivATiON OF HiF’s AND THe iMPACT 
ON BReAST CANCeR CeLL GROwTH

HIF-1α and HIF-2α are linked to breast cancer metastasis and 
poor patients’ survival (21, 59). The expression of HIF-1α and 

TABLe 1 | Study summary of HIF-related effects through different physiological and biochemical pathways on breast cancer progression.

HiF activity Physiological effects effects on cancer 
progression

Denzel et al. (23) ↓ Reduced pulmonary metastasis ↓
Yao-Borengasser et al. (24) ↓ Reduction of ER gene expression ↓
Xiang et al. (25) ↓ Inhibition of HSP90 ↓
Liapis et al. (26) ↓ Evofosfamide binds to hypoxic bone cell ↓
Samanta et al. (27) ↓ Paclitaxel or gemcitabine alternate HIF expression in triple-negative breast cancers (TNBCs) ↓
Hardman et al. (28) ↓ Dietary with omega three fatty acids ↓
Wang et al. (29) ↑ Increase of microvesicles ↑
Chaturvedi et al. (30) ↑ Increased signaling between BCCs and mesenchymal stem cells (MSCs) ↑
Gehmert et al. (31) ↑ Hypoxia and inflammation lead to migration of MSCs ↑
Seifert et al. (32) ↑ TCDD inhibits ERα signaling in MCF7 cells ↑
Luo et al. (33) ↑ Reprogramming of glucose metabolism ↑
Siclari et al. (34) ↑ Encoding adrenomedullin ↑
Vaapil et al. (35) ↑ Promoting metastasis ↑
Pahlman et al. (36) ↑ Failed lactation in mammary epithelium ↑
Krutilina et al. (37) ↑ Increase of micRNA ↑
Martinez-Outschoorn et al. (38) ↑ Endorsed autophagy ↑
Milane et al. (39) ↑ Increased glycolysis ↑
Jones et al. (40) ↑ Moderate-intensity exercise ↓

A high amount of adipocytes enhances cancer progression due to the 
increased expression of HIF-1α which causes the loss of ERα protein. Thus, 
a high amount of the peptide hormone adiponectin appears to be cancer 
protective.

Hypoxic preconditioning impairs polarization and organization of mammary 
epithelial cells and enhances cancer manifestation and progression.

THe ROLe OF HYPOXiC ADiPOCYTeS  
iN THe DeveLOPMeNT OF BReAST 
CANCeR CeLLS

Obesity is accompanied with the development of hypoxic fat tis-
sue and an increase of oxidative stress (50, 51). Conditioned by 
rising cell size, oxygen (O2) diffusion is decreased and vascular 
growth impaired in the hypoxic fat tissue (52). The mitochon-
drial production of excessive free fatty acids leads to increased 
procreation of reactive oxygen species (ROS), which causes 
oxidative stress (53, 54). As a consequence, the production of 
adipokines, cell signaling proteins secreted by adipose tissue, is 
defective and leads to angiogenesis and inflammation (50). This 
reaction chain creates a pro-malignancy setting in epithelial tis-
sue for the development of breast cancer cells. Gehmert et al. (31) 
isolated mesenchymal stem cells (MSCs) from subcutaneous fat 
tissue. Breast cancer cells were injected into mammary fat pad 
and it showed that MSCs migrated primarily toward an inflam-
matory milieu in tumor stroma and vasculature independent of 
biological processes causing inflammation. It is suggested that 
the migration of MSCs depends on cancer-secreted cytokines 
due to the lack of inflammatory response by the immune system 
(31). Furthermore, Yao-Borengasser et  al. (24) co-cultured the 
progressive breast cancer cell line MCF7 with human adipocytes. 
The MCF7 cell line is the most investigated cell line to analyze 
the cross talk of estrogen and ERα protein (estrogen receptor 
alpha protein) (32). They found a decreased level of ERα protein 
caused by deregulated adipocytes under hypoxic cell conditions. 
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HIF-2α occurs differently during separate phases of mammary 
gland development and function (36). Selective inhibition of 
HIF-1α expression in mammary epithelium leads to lactation 
failure and in breast cancer models to increased tumor growth 
(60–62). Pahlman et al. investigated the separate phases using 
different mouse models with MCF-7 breast cancer cells. They 
found that the regulation and expression of the two factors and 
its subunits is not merely dependent on the availability of oxygen 
(36). Under hypoxic condition, HIFs are stabilized. In a malig-
nant setting, the activation of HIF-induced transcriptions is 
implemented in extracellular proteolytic activity, invasion, and 
angiogenesis (36). Wang et al. cultivated TNBC cell lines that 
were exposed to hypoxia (29). These cells increased their pro-
duction of microvesicles due to HIF expression. Microvesicles 
contain proteins that stimulate the invasion and metastasis 
of breast cancer cells (63). Chaturvedi et al. found that tumor 
growth, which promotes signals between TBNC’s and MSCs is 
stimulated by HIF activity (30). HIF activates transcription genes, 
which encode proteins that play a role in proliferation of breast 
cancer cells. As stated by Luo et al., some of these proteins only 
interact with HIF-1α, but not with HIF-2α. The consequence is 
the reprogramming of the glucose metabolism of breast cancer 
cells which generates macromolecular blocks, such as amino 
acids and acetyl CoA, that release more breast cancer cells (33). 
Furthermore, Siclari et  al. (34) identify adrenomedullin as a 
52-amino acid peptide for which gene transcription is increased 
by the HIF-1α pathway. This peptide stimulates angiogenesis 
and proliferation. Many cancer types release adrenomedullin 
and its receptors which is indirectly connected to poor survival 
probability (64).

Taken together, increased activation of HIF’s induces a series of transcriptions 
resulting in tumor invasion and angiogenesis. Adrenomedullin is one of them 
which plays a major role.

HIF inhibition, especially when combined with cytotoxic chemotherapy, 
holds strong potential for tumor suppression as well as for the reduction of 
metastasis.

iNHiBiTiON OF HiF’s AND THe iMPACT 
ON BReAST CANCeR CeLL GROwTH

Tumor hypoxia contributes to a great degree to treatment failure 
and increased patients’ mortality for a broad range of malignan-
cies (65). Hypoxic regions within a solid tumor contain cancer 
cells that resist conventional chemotherapy or radiotherapy (66). 
This leads to cancer recurrence and metastasis (67). HIF’s activate 
two main transcription processes. First, the gene expression of 
vascular endothelial growth factors (VEGFs) which contributes 
to vascularization (68, 69) and, second, the expression of pro-
teins regulating the change from mainly oxidative to glycolytic 
metabolism (70). The identification of chemical HIF inhibitors 
and their mechanisms has been a relevant target in anti-cancer 
research (71). The difficulty in analyzing the development of HIF 
inhibitors is the lack of specificity. In the ER−/PR+ cancer group, 
there are already appropriate receptor-blocking inhibitors in use 
while we still lack comparable methods for TNBCs (72). This 
type of cancer is associated with increased mortality compared 
to other types. Inhibition of HIF’s and its target genes in conse-
quence could provide a feasible method for tumor suppression.

Xiang et al. showed that in human breast cancer cell cultures 
the drug Ganetesip inhibits, among others, the expression of 
the heat shock protein 90 (HSP90). The lack of HSP90 leads to 
a degeneration of HIF-1α (25). The distribution of HIF-1α was 
decreased by 35% in breast cancer cells and the expression of 
VEGFs was reduced as well. The inhibition of HSP90 resulted in 
a reduction of tumor weight and -growth (25). Another prodrug 
exhibiting hypoxia-selective cytotoxicity on breast cancer cells 
is Evofosfamide (TH-302). Liapis et al. show that by binding to 
hypoxic bone cells, the drug is able to destroy 50–90% of hypoxic 
cancer cells in bone tissue (26). The advantage of Evofosfamide 
therapy seems to be greatest when combined with cytotoxic 
chemotherapy. The combination of chemotherapy and HIF 
inhibiting drugs is also suggested by Samanta et al. This is based 
on the finding that paclitaxel as well as gemcitabine change the 
activity of HIF expression and transcription in human TNBC cell 
lines (27).

SeLF-ReGULATiNG MeCHANiSMS OF 
THe HUMAN BODY AND iTS iMPACT  
ON HiF eXPReSSiON

The human body offers several regulating mechanisms affecting 
HIF expression and in consequence tumor progression. One 
important regulating mechanism seems to be the distinct expres-
sion profiles of microRNAs that are associated with molecular 
subgroups and pathological characteristics in breast cancer 
(73). Krutilina et  al. (37) link the expression of microRNAs 
to a HIF-1α dependent hypoxic response. A growing number 
of microRNAs have been described as oncogenes and tumor 
suppressors. Within solid tumors, microRNAs have proven to 
be downregulated which causes a higher expression of HIF-1α. 
In consequence, the downregulation of microRNAs withholds 
a higher probability for metastasis (74–76). One of the most 
frequently deregulated microRNAs-encoding genes in human 
cancer is the polycistronic MIR17HG gene, which encodes six 
microRNAs including miR-18a. Increased expression of miR-18a 
in MDA-MB-231 breast cancer cell lines has shown to reduce 
primary tumor growth and lung metastasis and miR-18a inhibi-
tion promotes tumor growth and lung metastasis (37). Besides 
other self-regulating mechanisms of the human body, the regula-
tion of autophagy heavily affects the development and growth of 
breast cancer. Autophagy is a catabolic process responsible for 
the systematic degradation and recycling of cellular components 
(38). Yao-Borengasser et  al. show that hypoxia and oxidative 
stress promote autophagy and support a pro-malignancy setting 
in epithelial tissue for the development of breast cancer cells (24, 
77). Furthermore, as stated by Martinez-Outschoorn et al. (38) 
in some cases, autophagy promotes tumor progression while 
in other cases autophagy has shown to have tumor-suppressive 
effects. Increased HIF expression promotes autophagy and 
stromal caveolin-1 is degraded. Caveolin-1 appears to be tumor 
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suppressive and low levels carry a poor prognosis for tumor 
development for the patient (78–80).

ALTeRNATiveS TO DRUG CURe OF 
BReAST CANCeR iNHiBiTiNG BReAST 
CANCeR CeLL GROwTH

Physical activity is discussed as a supportive factor for breast 
cancer therapy and has proven to be quite effective (81, 82). Jones 
et  al. (40) investigated effects of moderate aerobic exercise on 
tumor characteristics, such as vascularization, angiogenesis, and 
metabolism. MDA-MB-231 breast cancer cell line implanted mice 
were randomly assigned to voluntary wheel running. Moderate 
aerobic exercise has shown to increase intra tumor vasculariza-
tion, which leads to normalization of tissue environment. This 
is one of the first studies to evaluate the impact of an exercise 
intervention on the microenvironment in cancer tissue (40). In 
contrast to other studies exercise-induced high concentration of 
HIF is associated with a normalization of cancer microenviron-
ment. This is thought to improve oxygenation and removal of 
by-products in the long run. In several other studies, regular 
moderate-intensity exercise is associated with a 30–50% reduc-
tion in the risk of mortality in cancer, a fact which supports this 
finding (83, 84). Physical exercise as well as dietary interventions 
has shown to affect tumor growth and progression. Hardman 

Acute hypoxia seems to normalize the microenvironment in breast cancer 
tissue and has proven to affect tumor growth and progression positively.

The human body offers a range of tumor affecting mechanisms that are 
not fully understood. Nevertheless, there seems to be a strong connection 
between hypoxia, oxidative stress, and a poor prognosis for breast cancer via 
HIF-regulated pathways.

et al. investigated the effect of an omega-3 fatty acids enriched 
diet on mice bearing MDA-MB-231 breast cancer cells. This 
dietary delays tumor growth and vascularization which could be 
ought to the reduction of oxygen radicals and HIF expression in 
consequence (28).

CONCLUSiON

There seems to be a strong linkage between adipose tissue 
hypoxia and the development, growth, and progression of 
breast cancer. HIF-1α and its target genes play a strong role 
in driving breast cancer cell proliferation. A high amount of 
adipocytes enhances cancer progression due to the increased 
expression of HIF-1α which causes the loss of ERα protein. 
Thus, a high amount of the peptide hormone adiponectin 
appears to be cancer protective. On the other hand, tissue 
hypoxia seems to provide a feasible pathway for the identifica-
tion of cancer cells and their degeneration. Physical activity 
shows to improve tissue hypoxia and to reduce adipose tissue 
and is very likely to improve prognosis as well as therapy 
outcome in breast cancer (85).
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