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Every patient and every disease is different. Each patient therefore requires a person-
alized treatment approach. For technical reasons, a personalized approach is feasible 
for treatment strategies such as surgery, but not for drug-based therapy or drug devel-
opment. The development of individual mechanistic models of the disease process in 
every patient offers the possibility of attaining truly personalized drug-based therapy and 
prevention. The concept of virtual clinical trials and the integrated use of in silico, in vitro, 
and in vivo models in preclinical development could lead to significant gains in efficiency 
and order of magnitude increases in the cost effectiveness of drug development and 
approval. We have developed mechanistic computational models of large-scale cellular 
signal transduction networks for prediction of drug effects and functional responses, 
based on patient-specific multi-level omics profiles. However, a major barrier to the use 
of such models in a clinical and developmental context is the reliability of predictions. 
Here we detail how the approach of using “models of models” has the potential to impact 
cancer treatment and drug development. We describe the iterative refinement process 
that leverages the flexibility of experimental systems to generate highly dimensional data, 
which can be used to train and validate computational model parameters and improve 
model predictions. In this way, highly optimized computational models with robust pre-
dictive capacity can be generated. Such models open up a number of opportunities for 
cancer drug treatment and development, from enhancing the design of experimental 
studies, reducing costs, and improving animal welfare, to increasing the translational 
value of results generated.

Keywords: preclinical models, computational model, mechanistic modeling, genetically engineered mouse 
models, transgenic mice, model optimization

MecHANistic MODeLs iN ONcOLOGY

Despite major breakthroughs in cancer research and therapy, the disease still remains one of the 
world’s major healthcare challenges. A challenge that is exacerbated in Europe due to an aging popu-
lation (1) and associated increase in cancer incidence (2). Ultimately, identification of successful 
therapies is hampered by the high level of complexity and genetic heterogeneity existing even within 
single tumor types, causing a large fraction of patients to remain refractory to treatment even with 
the most effective drugs we have available today (3–7).
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Whenever we deal with complex problems mistakes are 
unavoidable, often with catastrophic consequences. Computer 
models can be used to simulate complex situations prior to testing 
in reality, allowing us to make these inevitable mistakes in silico 
and helping us to successfully avoid their deleterious impacts.

Although used in many areas from the aviation industry to 
climate prediction, a computational modeling strategy is still not 
being applied within two areas that have a fundamental impact on 
our health, wellbeing, and even our survival: drug-based treatment 
and drug development. Both are areas in which we still proceed 
statistically, prescribing drugs that ultimately only help a very 
small fraction of the patients receiving them and that could have 
negative consequences. Adverse drug effects lead to nearly 200,000 
deaths per year in Europe (8), with enormous associated economic 
costs (9).

To overcome this problem, we have to be able to generate 
sufficiently accurate models of an individual patient—a virtual 
self—that allow us to observe the effects of different therapies. The 
basis is a generic computational model with the ability to predict 
effects and side effects of different drugs and their combinations, 
which is individualized based on a detailed characterization of a 
patient by molecular, sensor, and other techniques. In oncology, 
for example, we should ideally reflect the heterogeneity of the 
tumor by modeling individual tumor cells, including the stroma, 
to determine response. In addition, aspects of the liver should 
also be considered to determine the pharmacogenetics of the 
drug. Side effects can be evaluated by incorporating a selection 
of normal cell types and if we want to predict the effects and side 
effects of immunotherapies, we should also include elements of 
the immune system.

Currently, we are building large-scale mechanistic computa-
tional models of the signal transduction networks in cells (or cell 
collectives), based on the ever-expanding biological knowledge 
base, e.g., on signaling pathways in human cells. For this, we 
are using PyBioS, currently in its third iteration (PyBioS3), an 
integrated software platform for the design, modeling, and simu-
lation of cellular systems (10, 11). The current model integrates 
about 50 cancer-related signaling pathways and makes use of a 
large and growing information base on functional consequences 
of genetic variants and mechanistic drug action. See Ref. (12–16), 
for further details of the modeling system and it applications.

To provide personalized predictions, the models are typically 
individualized with next generation sequencing-derived omics 
data (e.g., genome and transcriptome) from a patient and in the 
case of cancer also from individual tumors. For drug response 
predictions, the drugs to be “screened” are regarded as molecular 
entities that typically affect molecular networks. This information 
is translated into systems of ordinary differential equations, which 
can be solved numerically to make predictions regarding the 
functional response of the system in response to perturbations, 
such as specific genetic variants and/or drugs and their combina-
tions. Adaptation of the model to biological observations and 
experimental data calls for optimization approaches. As the mod-
els become more complex, it is becoming increasingly important 
to use advanced parameter estimation strategies (17–20) to fit the 
model to the data. This can be done based on data generated on 
the types of preclinical models discussed in this issue.

Cancer is suited particularly well to this type of approach, as it 
is fundamentally a cellular disease. In tandem, high levels of fund-
ing for cancer research in the last decades has generated much of 
the knowledge required to establish generic computational mod-
els, such as information on the basic mechanisms of cancer and 
drug action, including molecular targets [e.g., (21–25)]. Diseased 
tissues can also be obtained as surgical or biopsy material. This 
means we can actually observe the changes—often dramatic—
occurring in the tumor genome and transcriptome, making it 
easier to understand the likely functional consequences. Last 
but not least, computing power is now at a level (26) that makes 
predictive modeling on a large scale a realistic prospect.

PreDictiNG UNcertAiNtY

The use of such computational models for personalizing medicine 
in the clinic does, however, still face a number of challenges. One 
of the main barriers to routine implementation of computational 
models in clinical scenarios is the accuracy of the prediction. Just 
how reliable can predictive computational models be?

The generic mechanistic model we have created integrates 
major molecular species, i.e., representations of genes, proteins, 
protein complexes, metabolites, etc., and biochemical/cellular 
processes, together making up an in silico representation of the 
cellular signaling network. Furthermore, it integrates modifica-
tions of the molecular species that are associated with cancer 
onset and development, such as mutated genes and proteins, 
reflecting gain-of-function or loss-of-function of oncogenes or 
tumor suppressor genes. Understanding how such a complex 
system functions as a whole is inferred from examination of its 
individual parts and their interactions [e.g., see Ref. (27, 28)].

To ensure that such mechanistic models are predictive we 
need a detailed assessment of the most important underlying 
biological reactions. However, within the large-scale networks 
generated, much of this information, such as binding affinities, 
(de)phosphorylation rates and synthesis, and degradation rates, 
is not easily obtained experimentally. To overcome the lack of 
information on parameters needed for this, we originally used a 
Monte Carlo strategy, selecting multiple random parameter vec-
tors for multiple solutions (12). The unknown kinetic parameters 
are repeatedly sampled from probability distributions of values 
and used in multiple parallel simulations.

As the models grow in size, representing more signaling path-
ways and cellular components, so does the inherent complexity 
of the model and the associated number of unknown parameters 
involved in each process (e.g., kinetic constants, component 
concentrations). The signal transduction model we are currently 
working with comprises hundreds of genes, their modifications, 
and associated interactions, equating to tens of thousands of 
parameters. To infer the unknown parameters within this grow-
ing large-scale network, parameter optimization and reverse 
engineering strategies are used to increase the accuracy of predic-
tions. This essentially means using data generated in experimental  
systems, e.g., mouse models, organotypic cultures, and cell 
culture, as well as data from patients (if available), for evaluating 
drug effects and other functional responses on the phenotypic 
and molecular level. We are generating this type of data within 
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the scope of a number of national and international projects, such 
as the Horizon2020 project CanPathPro (www.canpathpro.eu);  
focused on the development of a combined experimental and 
systems biology platform for predictive modeling of cancer 
signaling, Treat20Plus, a German Federal Ministry of Education 
and Research funded project that uses a computational modeling 
approach to predict treatment outcome for metastatic skin cancer 
patients, and the recently concluded OncoTrack project [www.
oncotrack.eu (15)], an IMI EU funded collaborative effort that 
aimed to develop and validate biomarkers for colon cancer, lev-
eraging “virtual patient” models, and multi-level omics data to 
provide a personalized approach to the treatment of colon cancer. 
Using such data, we can train the model’s parameters and struc-
ture, and validate the predictions made in an iterative fashion.

When using models of such scale, we are faced with the 
problem that the number of unknown parameters significantly 
outnumbers the datasets that can be accumulated, leading to lim-
ited identifiability of parameters. To identify model parameters, 
statistical methods such as Bayesian and frequentist estimation as 
well as global and local optimization techniques can be applied 
(29, 30). Partitioning of the datasets into training, validation, 
and test sets, i.e., cross validation, facilitates identification of 
optimized parameter vectors and provides an unbiased estimate 
of how these vectors actually perform with an independent 
dataset (31). However, due to the limited number of training 
datasets available, overfitting is likely to occur, e.g., predictions 
become overly influenced by “noise” in the dataset rather than 
the inherent trends, resulting in poor predictive performance. A 
number of approaches can be used to overcome overfitting, such 
as increasing the amount of data (real or in silico) and/or using 
regularization parameters, but with complex models these strate-
gies may bring limited improvements. An alternative strategy is 
to reduce the number of parameters by simplifying the model 
using model reduction methods (32, 33). These approaches 
face the challenge of identifying simplified models that exhibit 
dynamics comparable with the original. Ensembles of parameters 
that fit the data can further reduce overfitting effects. Moreover, 
techniques from artificial intelligence, such as deep learning, can 
help to learn directly from the data in an unsupervised fashion, 
without even knowing the underlying model (34).

MODeLs OF MODeLs: tHe Use OF 
PrecLiNicAL MODeLs FOr OPtiMiZiNG 
IN SILICO PreDictiONs

We see preclinical experimental models, including PDXs 
and transgenic mice [genetically engineered mouse models 
(GEMMs)] as well as cell and organotypic cultures, as being an 
integral part of the development and optimization of mechanistic 
computational models with more robust predictive capacity.

In particular, the contribution of mouse models to the under-
standing of fundamental biological processes, cancer research, 
and drug development has been significant, albeit with inevitable 
pitfalls (35, 36). PDX models have been shown to recapitulate the 
major molecular features of the tumor of origin, and therefore have 
immense utility in translational cancer research and personalized 

medicine applications (37, 38). Similarly, transgenic cancer mouse 
models, in which gene deletion or expression can be targeted in a 
spatial or temporal manner, are becoming an increasingly useful 
tool for understanding biological processes and disease develop-
ment. These genetically engineered mice develop tumors de novo, 
which closely mimic both the histopathological and molecular 
features of human tumors, and provide an experimentally trac-
table in vivo platform for investigating disease mechanisms and 
determining response to therapies (36, 39).

While each preclinical system has its particular merits and 
pitfalls, it is clear they can provide a flexible and accurate experi-
mental test bed for training and validating computational mod-
els. As part of a number of research projects (e.g., CanPathPro, 
Treat20Plus, and OncoTrack), the flexibility of preclinical systems 
is being leveraged to iteratively improve the accuracy of in silico 
predictions, regarding the functional consequences of molecular 
alterations on the signal transduction network, and the corre-
sponding response to in silico drug treatment.

Even at the level of cell culture, an opportunity is provided to 
engage in a depth and breadth of experimentation that may not 
be feasible, cost and time-wise, using more complex preclinical 
models such as PDXs and GEMMs. Due to the simplicity and 
low cost of cellular systems, in-depth experimentation is made 
possible. A systematic comparison of predicted and observed 
responses of different cell models—in the case of oncology, tumor 
cells—to a variety of drugs and their combinations can be con-
ducted in a quantitative and time-resolved manner. The observed 
phenotypic responses, e.g., does the cell respond to a drug or 
not, can be evaluated in the context of their specific molecular 
profiles. In addition, cell lines or organoids can be used for time-
resolved analysis of the molecular changes (e.g., transcriptome, 
proteome, metabolome, and other omics-strategies) triggered by 
adding a drug or drugs under investigation. In-depth data are 
generated that is likely to be required for model optimization in 
high-dimensional parameter spaces. This detailed comparison 
of a cellular model at the phenotypic and molecular level with 
the predicted behavior of its computational avatar provides an 
essential data foundation that enables fine-scale optimization and 
increased predictive accuracy of in silico models. Computational 
models can be optimized in an iterative fashion through in silico 
perturbation experiments and subsequent validation of param-
eter information and functional response within experimental 
systems. See Figure 1, for a typical iterative workflow.

A stepwise process is taken in which the generic cellular 
signaling model is first adapted to the cancer being studied, 
with additional relevant pathways and mutations being added 
as modular elements [see (13, 16)]. Next, multi-tiered omics 
data from model samples (e.g., tumor and control samples from 
PDXs and transgenic mice or organotypic/tumor cell culture 
samples) is acquired and analyzed for alterations such as single 
nucleotide polymorphisms, gene fusions, and mutations. These 
data are integrated into the signaling network in modular format 
to individualize and calibrate the model.

Given that many parameters will be unknown, estimation 
strategies are applied [as detailed above and in Ref. (13, 16)] 
and the effects of perturbations (e.g., genetic variants and/or 
drugs), in combination with omics data (e.g., transcriptome of 
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FiGUre 1 | The iterative optimization cycle. From data integration and analysis to computational model development and optimization. Multi-tiered omics data 
generated from experimental models (e.g., mice or cell lines) are integrated into the generic signaling model and used to train the model. The estimated model 
parameters are then used to simulate the effect of perturbations, such as molecular alterations and drugs. The resulting predictions are validated in the experimental 
model by comparison with the expected values. This process is repeated on an iterative basis, enabling identification of key parameters, furthering mechanistic 
understanding of disease processes and drug action, and increasing the predictive accuracy of the model.
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the respective samples), on network components are simulated. 
The generated simulation data are analyzed to make predictions 
regarding functional effects within the network, using indicators 
such as Myc levels or caspase activity as a proxy for phenotypic 
effects (e.g., cell proliferation, apoptosis). These predictions, 
including drug response, can subsequently be validated in an 
experimental system such as a PDX or cell culture. This detailed 
comparison of experimental results and predictions enables us 
to further refine our definition of the computational parameter 
space used for modeling, identifying parameters that are key to 
generating accurate predictions and that influence the phenotype 
of interest.

We are taking such an iterative approach within CanPathPro 
(www.canpathpro.eu), an EU Horizon2020 funded project, 
which focuses on the development of a combined experimental 
and systems biology platform for predictive modeling of cancer 
signaling. GEMMs, GEMM-derived cell lines, and organotypic 
cultures are used to provide an accurate route toward mapping 
the functional changes (e.g., deregulated pathways, pathway 
modules, and expression signatures) associated with a variety 
of mutated or over-expressed oncogenes and tumor suppressor 
genes that lead to different lung or breast cancer phenotypes.

For in silico experiments, a generic mouse-specific computa-
tional model has been generated based on the human-specific 
ModCell™ model (12, 13), leveraging the conservation and 
homologies existing between human and mouse genes, proteins, 
network structure, individual signaling relevant protein–protein 
interactions, and post-translational events (40–45). The mouse-
specific computational model is then “personalized” with multi-
layered omics data (e.g., exome, transcriptome, quantitative 
proteome, and phosphoproteome data), from individual tumor 
and control mouse tissues at different disease stages. This pro-
vides the model with essential information on parameters, such 
as presence or absence of mutations (including their frequencies), 

protein synthesis rates (derived from RNA-Seq data), and protein 
decay rates (e.g., derived from pulse chase experiments). Local 
and global optimization methods are employed to infer unknown 
parameters and ensembles of models with different parameter sets 
are used to simulate multiple hypothetical loss-/gain-of-function 
and under-/over-expression experiments or alternative interac-
tions among the model components. These simulations lead to 
the formulation of testable hypotheses, such as determination of 
a specific cancer phenotype, pathway activity, and/or cross-talk. 
The perturbations that have the strongest effect on measurable 
read-out components are most likely to be used to reject or accept 
a hypothesis. Selected hypotheses can then be tested experimen-
tally, first in cell lines and organotypic cultures and then in mouse 
models. Based on the outcome of these validation experiments, 
the quality and precision of the computational model predictions 
can be improved (see also Figure 1 for a depiction of the itera-
tive process). These systematic and detailed investigations will 
enhance the design of experiments and facilitate identification of 
new mechanistic interactions as well as synergistic and cross-talk 
effects between the cancer pathways.

Overall, the abundance of data that can be generated within 
preclinical systems provides a platform for validating computa-
tional model predictions, identifying the areas of the parameter 
space that correspond most closely to reality. More accurate 
identification of this space can reduce the gap between prediction 
and reality, improving the ability of the model to make accurate 
predictions, and potentially improving the translational capacity 
of results for the human system.

MODeLs OF MODeLs: AcceLerAtiNG 
DrUG DeveLOPMeNt

The drug development pipeline is notoriously fraught with dif-
ficulties. Preclinical models are a pivotal part of this pipeline, 
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FiGUre 2 | From discovery to approval. The use of computational models throughout the drug development process provides the scope to improve experimental 
design and increase the translational value of early and preclinical stage results. The “models of models” approach provides a flexible test bed, enabling extended 
testing not feasible in animal models due to welfare and economic concerns. In combination with highly optimized computational models with more robust predictive 
capacity, the approach has the potential to increase the translational value of preclinical results and improve the high level of drug attrition rates, especially within the 
cancer arena.
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bridging the translational gap from bench to bedside, however, 
approval rates of new drugs, especially in oncology, remain 
critically low—only ~5% of cancer drugs currently in Phase 
I trials will make it to market (46). A process with associated 
costs that amount to billions of dollars (47, 48). The reasons for 
such high attrition rates are complex and include the typically 
low response rate of patients to drugs, leading to the failure of 
late stage non-stratified clinical trials, usually after hundreds of 
millions to billions of dollars expenditure. Another key factor is 
the poor predictivity of preclinical models. Approximately 85% 
of drugs that have been successful in preclinical tests fail in early 
clinical trials, with cancer drugs making up the largest proportion 
of failures [reviewed in Ref. (49)]. Given that preclinical testing 
remains an integral part of the regulatory roadmap for drug 
development and approval, better approaches for improving the 
translational capacity of results generated are required.

In addition to virtual humans (either individual patients, or 
patients in large clinical trials), there is also the potential to model 
the large number of experimental models which are used during 
the preclinical phase of drug development. A highly optimized 
computational model opens up a range of opportunities for 
enhancing the design of experimental studies, thereby minimiz-
ing the number of experimental animals required, significantly 
reducing costs and improving animal welfare, and importantly, 
increasing the translational value of results generated.

The current strategy of directly extrapolating results of models 
to humans tends to ignore the enormous differences in the biology 
of models and human. It is really not very surprising that this will 
lead to imprecise predictions. After all, even the comparatively 
minor differences between different patients can cause enormous 
differences in response to already approved drugs (50). In a sense, 
we are trying to do the equivalent of directly transferring the 
results of a model plane in a wind tunnel to a large passenger 
plane, without taking into account key information on scaling 
effects and different aerodynamics.

To increase the translational success from experimental 
models to humans, we should first compare the results obtained 

from experimental models to the predictions obtained by compu-
tational modeling, e.g., the effects of a drug on a computer model 
of the animal or cell model, adapting this computer model first. 
This adaptation can then be transferred to the human model of 
each individual patient; an equivalent strategy to that used in 
airplane design.

Deployment of in silico models at multiple stages throughout 
the drug development process (Figure  2) provides an oppor-
tunity to streamline the pipeline. During the early stages of 
drug development, in  silico models can be deployed for select-
ing the most relevant drugs (and indeed models) for further 
development. Computational model-based knowledge gains in 
our understanding of the functional effects of disease-related 
molecular alterations could provide an effective pre-screening 
framework for selection of top priority candidates. By simulat-
ing the perturbation(s) occurring within the cellular transduc-
tion network, such as genetic alterations and drug treatment, 
in silico modeling has the capacity to improve understanding of 
disease progression and drug action. Model-based predictions of 
drug response/resistance and/or mode of action, based on the 
molecular profile of a specific experimental model, can in turn 
be independently validated in a preclinical experimental system 
using a variety of genetic manipulation techniques (e.g., RNA 
interference, over-expression analyses, etc.). In tandem, scope is 
provided to undertake experimental studies in silico that would 
not be possible due to cost and animal welfare constraints; for 
instance, more in-depth temporal investigations and extended 
screening of drug combinations.

A more robust translational route can be taken that combines 
the flexibility of optimized computational model predictions with 
experimental data, ultimately delivering benefits for patients.

OUtLOOK

Ultimately, the goal of any modeling approach is to generate 
results that will have a positive impact on patient outcomes and 
wellbeing, making it theoretically possible to identify the optimal 
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therapy or preventive measure for every individual patient. Cancer 
models, whether experimental or computational, allow us to con-
duct investigations that are not possible on patients due to welfare, 
ethical, and economic considerations, generating information that 
will, in the short or long term, benefit patients. However, most 
model systems fail to fully recapitulate the human situation. In 
tandem with issues of experimental design, these inherent short-
comings will impact the translational value of models, exemplified 
by the high rates of attrition when preclinical findings are trans-
lated to clinical scenarios. It is also clear that existing computer 
models do not reflect the full complexity of the biological systems 
being simulated. Our own mechanistic models incorporate only 
a fraction of all human protein coding genes (ca. 2.5%) and do 
not reflect all aspects that play a role in a patient’s response to 
drugs, such as the immune system, metabolism, and the microbial 
milieu associated with tumors. As our knowledge accumulates on 
these aspects, including the molecular mechanisms underlying 
interactions between tumor cells, their surrounding soma cells, 
and infiltrating cells of the immune system, more complex compu-
tational models can be developed that reflect the true complexity 
and heterogeneity of tumors. We are continually working on these 
components, but for now take a pragmatic approach that has ena-
bled the generation of a generic mechanistic model of a large-scale 
cellular signaling network capable of predicting patient-specific 
responses to miRNA-based treatments (14). Within the framework 
of a number of preclinical and clinical studies, issues of accuracy, 
sensitivity, and uncertainty are being addressed, as the model is 
expanded, optimized, and validated.

The tandem use of in  silico and preclinical models—models 
of models—provides a necessary and complementary approach 
for improving the translational value of both model types. By 
leveraging the flexibility of experimental systems to generate 
datasets from multiple experimental set-ups, we have the poten-
tial to develop highly optimized and validated computational 
models, with robust predictive potential. This extends from 
improving the predictive accuracy of the in silico model through 
iterative rounds of experimentation and validation to enhancing 
preclinical experimental study design, opening up the possibility 
of minimizing the number of animals or experiments required, 
thereby improving animal welfare and reducing costs.
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