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Despite decades of clinical trials for diffuse intrinsic pontine glioma (DIPG), patient 
survival does not exceed 10% at two years post-diagnosis. Lack of benefit from sys-
temic chemotherapy may be attributed to an intact bloodbrain barrier (BBB). We aim to 
develop a theoretical model including relevant physicochemical properties in order to 
review whether applied chemotherapeutics are suitable for passive diffusion through an 
intact BBB or whether local administration via convection-enhanced delivery (CED) may 
increase their therapeutic potential. Physicochemical properties (lipophilicity, molecular 
weight, and charge in physiological environment) of anticancer drugs historically and 
currently administered to DIPG patients, that affect passive diffusion over the BBB, were 
included in the model. Subsequently, the likelihood of BBB passage of these drugs was 
ascertained, as well as their potential for intratumoral administration via CED. As only 
non-molecularly charged, lipophilic, and relatively small sized drugs are likely to passively 
diffuse through the BBB, out of 51 drugs modeled, only 8 (15%)—carmustine, lomustine, 
erlotinib, vismodegib, lenalomide, thalidomide, vorinostat, and mebendazole—are theo-
retically qualified for systemic administration in DIPG. Local administration via CED might 
create more therapeutic options, excluding only positively charged drugs and drugs that 
are either prodrugs and/or only available as oral formulation. A wide variety of drugs 
have been administered systemically to DIPG patients. Our model shows that only few 
are likely to penetrate the BBB via passive diffusion, which may partly explain the lack of 
efficacy. Drug distribution via CED is less dependent on physicochemical properties and 
may increase the therapeutic options for DIPG.

Keywords: diffuse intrinsic pontine glioma, blood–brain barrier, chemotherapy, convection-enhanced delivery, 
drug delivery

BaCKGroUnd

Diffuse intrinsic pontine glioma (DIPG) is a rare, aggressive childhood malignancy of the brainstem 
with a 2-year survival rate of 10% (1, 2). Unlike the spectacular increase in survival of childhood 
leukemia patients from <10% to over 80% in the last 50 years, the prospect for patients suffering 
from DIPG has not changed (3–5), likely due to a lack of success from (chemo)therapeutic strategies. 
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Historically, this was blamed on the supposed resistance of DIPG 
tumor cells to cytotoxic agents. Preclinical studies have, how-
ever, recently shown that primary cultures derived from DIPG 
patients, are actually not resistant to a number of traditionally 
used cytotoxic drugs and novel targeted chemotherapeutics 
(5, 6). These results from pre-clinical studies contrasting with 
disappointing outcomes of clinical studies led to a shifting 
paradigm toward the hypothesis of a possible delivery problem 
of chemotherapeutics over the blood-brain barrier (BBB). This 
supposedly prevents drugs from reaching the tumor properly (7). 
In many brain tumors, the integrity of the BBB is affected by the 
formation of disordered and highly permeable tumor neovas-
culature. Infiltrating tumors, such as DIPG, however, make use 
of the existing brain vasculature with normal BBB integrity (8). 
Noteworthy in this respect, especially early-disease DIPGs show 
limited contrast enhancement after intravenous administration 
of gadolinium compared to glioblastoma multiforme tumors 
that harbor highly neovascular regions. As gadolinium has an 
average molecular weight of 545  kDa, which largely exceeds 
the penetration cut-off of the BBB (e.g., 400–600  Da), limited 
contrast enhancement in these tumors is suggestive of a largely 
intact BBB (9–11). Furthermore, to illustrate, studies investigat-
ing biopsy-derived intratumoral drug concentrations of systemi-
cally delivered drugs in adults with high-grade glioma show low, 
potentially sub-therapeutic local drug concentrations, especially 
in non-enhancing tumor regions (12–14).

To overcome the BBB, novel drug delivery techniques, such 
as convection-enhanced delivery (CED), have been developed. 
With CED, chemotherapeutic agents are administered directly 
into the tumor microenvironment via a highly controlled positive 
pressure gradient and a constant flow induced by a pump. This 
enables homogeneous distribution of high drug concentrations 
over an easy-to-define distance, presumably increasing the thera-
peutic potential and avoiding systemic toxicities (14, 15).

In this study, we aim to review all chemotherapeutic drugs 
(previously) administered systemically to DIPG patients by 
means of a theoretical model including all physicochemical 
properties that influence passive diffusion, to indicate their 
likeliness of passage over an intact BBB in DIPG. Furthermore, 
we aim to indicate whether local administration of these drugs 
via convection-enhanced delivery (CED) may increase their 
therapeutic potential.

ModeL desiGn

An extensive search of the literature and trial databases was per-
formed to identify all chemotherapeutics historically employed in 
DIPG patients. Databases of Medline/PubMed and The Cochrane 
Library were searched for potentially relevant articles. The search 
strategy combined controlled and free text words for the target 
population (e.g., children), the tumor type (e.g., DIPG or pontine 
glioma) and the application of chemotherapeutic drugs. The 
reference lists of all included articles were searched for additional 
studies. In addition, trial registries (www.clinicaltrials.gov, www.
clinicaltrialsregister.eu) as well as websites from consortia treat-
ing children with brain tumors (www.itcc-consortium.org, www.
pbtc.org, www.childrensoncologygroup.org) were searched for 

clinical trials in DIPG. The complete search strategy can be found 
in the supplementary data.

Subsequently, drug simulations were performed for both 
systemic administration to predict passive diffusion over an 
intact BBB and for local intratumoral drug delivery via CED, 
to predict convection-distribution efficacy, using relevant 
physicochemical properties (molecular weight, lipophilicity, 
and molecular charge). To this aim, physicochemical property 
data were extracted from various chemical databases: PubChem 
chemistry database, Drugbank.ca and Clarke’s Analysis of Drugs 
and Poisons. The molecular charge in physiologic environment 
was simulated by MarvinSketch® (Chemaxon), an advanced 
chemical editor for drawing chemical structures and calculating 
basic physicochemical properties (e.g., molecular charge, log P), 
using specific algorithms.

drug simulation for systemic  
drug administration
The BBB, formed by tightly interconnected endothelial cells in 
the capillary walls of the brain vasculature, protects the brain 
by limiting the inter- and paracellular transport of foreign sub-
stances from the systemic blood flow (16). Systemically applied 
chemotherapeutics enter the brain via passive diffusion or active 
transport mechanisms. The balance between in- and outflow 
depends both on the physicochemical properties of the drug 
itself and on its affinity for drug in- and efflux transporters and 
receptors expressed in the BBB.

The Lipinski Rule of 5 is used to determine a drug’s perme-
ability. According to this rule good permeability is likely if: (i) the 
molecular weight is ≤500 Da, (ii) the lipophilicity, measured by 
the partition coefficient (log P), is ≤5 (optimal value of 2.0–3.5), 
(iii) the structure has no more than 5 hydrogen bond donors, and 
(iv) no more than 10 hydrogen bond donor acceptors (16–18). 
Taking these rules into consideration, the physicochemical 
properties that determine passive diffusion through the BBB, are 
molecular weight, lipophilicity, and molecular charge. For every 
drug, molecular weight and Log P were included in the model 
and subsequently, the chemical structure was used to simulate 
the molecular charge of a drug in physiological environment 
(pH 7.4). Drugs with a molecular (positive or negative) charge 
of ≤10% were considered to be able to passively diffuse through 
the BBB. Drugs with a (positive or negative) molecular charge of 
≥90% are considered to have a higher affinity for the hydrophilic 
environment of the blood and are therefore not likely to passively 
diffuse through the BBB. Drugs with a molecular charge between 
10 and 90% are partly able to diffuse through the BBB, but are 
likely not to reach their therapeutic concentration after systemic 
administration. In case of prodrugs (i.e., inactive compounds that 
require metabolization into a pharmacologically active form), the 
physicochemical properties of the active metabolites were evalu-
ated in the model.

drug simulation for Local administration 
via Ced
For CED, drug distribution over the tumor volume mainly 
depends on two determinants: positive pressure gradient created 
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taBLe 1 | Overview of the physicochemical properties of all chemotherapeutic drugs historically applied to DIPG patients.

drug Log P Molecular weight (g/mol) Charge (%) systemic delivery Convection enhanced 
delivery

alkylating agents
Carmustine 1.53 214.10 0 + +

Cyclophosphamidea 0.20 277.09 0 +/− –

Dacarbazinea −0.5 126.12 0 +/− –

Ifosfamidea 0.20 277.09 0 +/− –

Lomustine 2.83 233.70 0 + –b

Melphalan −0.5 305.20 99 (+/−) – –

Temozolomide −1.1 194.15 0 +/− –b

Topo-isomerase inhibitors
Etoposide 0.60 588.56 1 (–) +/− +

Irinotecanc 3.50 586.70 100 (+) +/− –

Topotecan −0.88 412.45 100 (+) – –

signal transduction inhibitors
Monoclonal antibodies

Bevacizumab Unknown 149,000.00 Unknown – –

Cetuximab Unknown 145,781.60 Unknown – –

Nimotuzumab Unknown 151,000.00 Unknown – –

Pembrolizumab Unknown 146,286.29 Unknown – –

Tyrosine kinase inhibitors
Afatinib 3.60 485.94 96 (+) +/− –

Cobimetinib 3.90 531.32 100 (+) +/− –

Crenolanib 3.70 443.54 100 (+) +/− –

Crizotinib 3.70 450.34 98 (+) +/− –

Dasatinib 3.60 488.01 40 (+) +/− –

Erlotinib 2.95 393.44 0 + –b

Imatinib 3.25 493.60 88 (+) +/− –

Gefitinib 3.65 446.90 21 (+) +/− –b

Vandetanib 4.82 475.35 98 (+) +/− –

Proliferation signal inhibitors (mTOR)
Everolimus 5.90 958.22 0 – –b

Sirolimus 4.81 914.17 0 – –b

Tacrolimus 3.30 804.02 0 +/− +

Temsirolimus 4.25 1,030.29 0 – +

 Other signal transduction inhibitors
Vismodegib 2.70 421.30 0 + –b

Cytotoxic antibiotics
Dactinomycin 3.21 1,255.42 99 (+) – –

Daunorubicin 1.83 527.52 98 (+) – –

Doxorubicin 1.28 543.51 98 (+) – –

Mitoxantrone 1.19 444.48 99 (+) – –

antimitotic agents
Cabazitaxel 2.70 835.93 0 +/− +

Vincristine 2.82 824.96 98 (+) – –

Vinorelbine 4.84 778.93 100 (+) – –

antimetabolites
Capecitabine 0.56 359.35 12 (–) +/− –b

Cytarabine −2.46 243.22 0 +/− +
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(Continued)
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drug Log P Molecular weight (g/mol) Charge (%) systemic delivery Convection enhanced 
delivery

Gemcitabine −2.01 263.19 0 +/− +

Methotrexate −1.85 454.44 100 (–) – +/−

platinum containing cytotoxics
Carboplatin −0.19 371.25 0 +/− +

Cisplatin −2.19 300.05 0 +/− +

antihormones
Tamoxifen 6.70 371.51 95 (+) – –

other chemotherapeutics
Abemaciclib 3.8 506.59 77 (+) – –

Cilengitide −1 588.66 100 (+) – –

Imetelstat sodium na 4,895.95 100 (+) – –

lenalidomide −0.4 259.26 0 + –b

Panobinostat 3.0 349.43 98 (+) +/− –

Ribociclib 2.2 434.54 96 (+) +/− –

Thalidomide 0.33 258.23 0 + –b

Veliparib 0.5 244.29 99 (+) +/− –

Vorinostat 1.44 264.32 3 (–) + – c

other drugs
Mebendazole 2.83 295.29 8 (–) + –b

Valproic acid 2.75 144.21 99 (–) +/− +/−

Green = drugs with good BBB penetration (systemic) or high distribution volume (CED); yellow = drugs with moderate BBB penetration (systemic) or moderate distribution volume 
(CED); red = drugs with limited BBB penetration (systemic) or limited distribution volume (CED).
aProdrug.
bBased on physicochemical properties, suitable for CED, however, only available for oral administration. Both drug and metabolite are active, drug does not penetrate the BBB and 
metabolite does.
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taBLe 1 | Continued

by the drug infusion system and the molecular charge of a drug: 
positively charged molecules tend to form complexes with 
negatively charged cell membrane components, leading to lower 
distribution volumes (19–21). Mackay et  al. demonstrated that 
drugs with a positive charge of 10% show a significantly lower 
distribution than neutral drugs (20). Neutral or negatively 
charged drugs seem to optimally convect and distribute via CED. 
However, as negatively charged molecules have previously only 
been studied up to a charge of 10%, evidence of better convection 
and distribution of more negatively charged molecules is lacking. 
In addition, since CED circumvents the systemic circulation 
and thus the first pass effect, prodrugs are not suitable for local 
administration.

eFFiCaCy siMULation For drUG 
deLiVery in dipG

Table  1 shows the variables (i.e., the relevant physicochemical 
properties discussed above) included in the theoretical model 
and all drugs found in the literature search. The drugs were 
grouped based on their mechanisms of action (e.g., alkylating 
agents, topoisomerase inhibitors, signal transduction inhibi-
tors, cytostatic antibiotics, antimitotic agents, antimetabolites, 
platinum-containing cytotoxics, antihormones, and others).  

An “efficacy simulation” was performed including the phys-
icochemical properties of each chemotherapeutic agent and the 
environmental properties (i.e., pH 7.4). In this efficacy simulation 
every property was scored to be either optimal (1) or poor (0) 
based on the “Lipinski rule of five.” The sum of the scores for 
each variable was used to determine the likelihood of the drug 
to penetrate the BBB after systemic administration, or the likeli-
ness of drug distribution over the tumor volume using CED. The 
colors in Table  1 indicate which chemotherapeutic agents are 
theoretically well suited for systemic and/or local administration 
via CED (score 3: marked green), or which chemotherapeutic 
agents are not (score 0/1: marked red). Chemotherapeutic agents 
with intermediate BBB penetration (score 2) have the potential 
to passively diffuse through the BBB, but likely in such low 
concentrations that they presumably do not reach therapeutic 
concentrations. These drugs are therefore marked yellow.

Drug affinity for efflux transporters (ATP-binding cassette 
(ABC) transporters) is an important factor in the prediction of 
ultimate brain uptake. These transporters include P-glycoprotein 
(P-gp/MDR1/ABCB1), breast cancer-resistant protein (BCRP/
ABCG2), and multidrug resistance protein 1 (MRP1/ABCC1) 
(16, 17, 22). Drug affinity for these transporters has not been 
investigated for the majority of chemotherapeutics. Besides, as 
efflux transporter affinity strongly depends on the concentra-
tion of a drug, it is difficult to give uniform values on these 
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taBLe 2 | Overview of efflux transporter affinity of all chemotherapeutic drugs 
historically applied to DIPG patients.

 p-gp 
substrate

BCrp 
substrate

Mrp1 
substrate

references

alkylating agents
Carmustine + − + (6)
Cyclophosphamide + + − (23, 24)
Dacarbazine + na na (25)
Ifosfamide + na + (26, 27)
Lomustine + + + (28)
Melphalan + − − (6)
Temozolomide + + − (6, 29)

topo-isomerase inhibitors
Etoposide + + + (6)
Irinotecan + + + (30–32)
Topotecan + + + (33, 34)

signal transduction inhibitors
Monoclonal antibodies

Bevacizumab na na na
Cetuximab na na na
Nimotuzumab na na na
Pembrolizumab na na na

Tyrosine kinase inhibitors
Afatinib + + na (25)
Cobimetinib + − na (25)
Crenolanib na na na
Crizotinib + − + (35)
Dasatinib + + + (6, 36, 37)
Erlotinib + + + (6, 38, 39)
Imatinib + + + (37, 40, 41)
Gefitinib + + + (31, 39,  

42, 43)
Vandetanib + + − (44–46)

Immosuppressives
Everolimus + − na (47)
Sirolimus + + na (48, 49)
Tacrolimus + + na (49)
Temsirolimus + − − (6)

Other signal transduction inhibitors
Vismodegib + na na (50, 51)

Cytotoxic antibiotics
Dactinomycin + − + (52, 53)
Daunorubicin + + + (30)
Doxorubicin + + + (6)
Mitoxantrone + + + (6)

antimitotic agents
Cabazitaxel +/− − na (25)
Vincristine + − + (30–32)
Vinorelbine + na − (53–55)

antimetabolites
Capecitabine na na na
Cytarabine +/− − na (24, 53, 56)
Gemcitabine +/− na + (24, 57)
Methotrexate + + + (30, 31, 58)

platinum containing cytotoxics
Carboplatin + − + (6, 59)
Cisplatin +/− + + (23)

antihormones
Tamoxifen + + − (60–63)

other chemotherapeutics
Abemaciclib + + na
Cilengitide + na na (64)
Imetelstat sodium na na na
Lenalidomide + − − (25)
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transporters’ affinity. Therefore, the influence of ABC trans-
porters could not be included in the model. For completeness, 
Table 2 was designed to summarize all known drug affinities for 
the efflux transporters located in the BBB.

Based on our model, including 51 drugs, only 8 (15%)—
carmustine, lomustine, erlotinib, vismodegib, lenalidomide, 
thalidomide, vorinostat, and mebendazole—appear to be of use 
for systemic administration (green cells in Table  1 column 5), 
presumably resulting in adequate brain uptake in case of an intact 
BBB. These drugs will very likely have good BBB passage due to 
their relatively small molecular weight, lipophilicity and limited 
molecular charge. Drugs expected to have limited BBB passage 
(marked in yellow) are either (partly) charged (e.g., dasatinib) or 
too hydrophilic (e.g., temozolomide), limiting their passive dif-
fusion. Drugs that are marked in red are unlikely to penetrate an 
intact BBB, mostly due to their molecular charge in physiological 
environment (up to 100%).

Potential candidates for CED, listed green in Table 1 column 6, 
are carmustine, etoposide, tacrolimus, temsirolimus, cabazitaxel, 
cytarabine, gemcitabine, carboplatin, and cisplatin. These drugs 
have a neutral charge in physiological environment. Methotrexate 
and valproic acid (in yellow), being negatively charged, might also 
be suitable for CED, but this is speculative, as only molecules 
with a negative charge up to 10% have been investigated (20). 
The other drugs, marked in red, are theoretically not suitable 
for CED, mainly due to their positive charge (e.g., topotecan). 
Furthermore, prodrugs such as cyclophosphamide (indicated 
with superscript a) are not suitable for CED since these drugs 
require to be metabolized into their active (effective) metabolite. 
Additionally, drugs indicated with superscript b are currently 
only available for oral administration and not in liquid form. 
These drugs however are theoretically suitable for CED based on 
their favorable neutral charge. It might be worth to investigate 
reformulation of these drugs into liquid formula for local brain 
delivery applications.

disCUssion

In this study, we developed a theoretical model to review whether 
chemotherapeutics are suitable for passive diffusion through 
an intact BBB (after systemic administration) or whether local 
administration via convection-enhanced delivery (CED) may 
increase their therapeutic potential. We demonstrated that most 
systemically (intravenously or orally) administered chemothera-
peutic drugs thus far investigated in clinical trials in DIPG are 
not likely to reach adequate intratumoral concentrations in case 
of intact BBB, rendering most of these therapies likely ineffective 
for use in DIPG.

To date, only few studies investigated the actual brain 
concentration of chemotherapeutic drugs after systemic admin-
istration. In 2007, Muldoon et  al. reviewed these studies and 
showed that (from our list of chemotherapeutic drugs histori-
cally administered to DIPG patients) there was no brain uptake 
of doxorubicin, vincristine, and methotrexate after systemic 
administration in healthy and glioma-bearing dogs and rats (8). 
Cytarabine and etoposide showed low brain concentrations in 
these preclinical models. In adults, on-therapy biopsies showed (Continued)
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 p-gp 
substrate

BCrp 
substrate

Mrp1 
substrate

references

Panobinostat − na − (65)
Ribociclib na na na
Thalidomide +/− na na (66)
Veliparib + + na (67–69)
Vorinostat na na na (65)

other drugs
Mebendazole − na na (25)
Valproic acid − − + (70–72)

na: not applicable.
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radiotherapy-induced BBB disruption in DIPG is unknown and 
warrants further investigation.

In conclusion, this review raises awareness for the impact of 
physicochemical properties of anticancer drugs that influence 
their passive diffusion through an intact BBB after systemic 
administration. In diffuse gliomas such as DIPG, in which the 
BBB is largely intact in large parts of the tumor, during most time 
of the disease course, one must critically weigh drug candidates 
that a priori are unlikely to pass the BBB and thus are unlikely to 
have therapeutic effect in patients suffering from these tumors. 
This might also be valid for other diffuse growing brain tumors 
in child- and adulthood that show areas of tumor infiltration 
behind an intact BBB. We furthermore postulate that a novel 
drug delivery technique, such as CED theoretically increases the 
therapeutic potential of some of the drugs previously admin-
istered systemically. This might require repositioning of these 
drugs and reformulation to render them suitable for local delivery 
strategies.

FUtUre prospeCts

Our review calls for further preclinical BBB drug delivery models, 
as well as clinical research on actual intratumoral drug uptake and 
local drug delivery techniques such as CED. The model itself may 
be helpful in the design of future treatment regimens in which the 
combination of systemic administration and local or alternative 
delivery of different chemotherapeutics is explored. It aims to 
provide a first selection of drugs that have the highest potential to 
penetrate the BBB. Ultimately, best (combinations) of potentially 
effective drugs against DIPG can be sought combining these data 
with IC50 data from preclinical studies (77), and information on 
drug efflux mechanisms. Ideally, this theoretical BBB-passage 
model needs (pre)clinical validation. Although research into 
intratumoral drug concentrations remains challenging, especially 
in DIPG, a preclinical validation study of our model is currently 
being developed. Clinical validation using on-therapy tumor 
biopsy studies (i.e., to directly measure intratumoral drug uptake 
after systemic administration of chemotherapeutic agents), or 
less invasively with PET imaging (73) are currently emerging 
and will provide further information on drug uptake in these 
detrimental diseases.
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taBLe 2 | Continued

low brain concentrations of cisplatin, imatinib gemcitabine, and 
methotrexate after systemic administration (8, 12–14). These 
results are in line with the results of our theoretical review.

Muldoon et al. also showed that the brain:plasma ratio found 
in preclinical and clinical pharmacology studies was variable, 
mainly due to the inconsistent interstitial fluid pressure and 
location of the samples taken, indicating heterogeneous drug 
distribution (8). Recently, we introduced PET imaging of zir-
conium-89 (89Zr)-labeled bevacizumab in children with DIPG 
and demonstrated considerable heterogeneity in drug delivery 
between patients and within DIPG tumors (73). PET technology 
enables imaging of radiolabeled drugs, especially monoclonal 
antibodies and tyrosine kinase inhibitors (74). By this non-
invasive in patient quantification of tumor uptake and drug 
distribution not only therapeutic potential but also toxicity can 
be predicted. We advocate the development of molecular drug 
imaging studies additional or parallel to clinical trials because 
especially in children with cancer, drugs without therapeutic 
effect (based on a lack of drug-uptake in the tumor), may only 
cause (life-long) side effects.

In addition to the potential to reach therapeutic concentra-
tions, a drug’s maximum tolerated dose and toxicity profile could 
be a limiting factor, even when a drug has proven to penetrate 
the BBB. Recent clinical studies in DIPG have, therefore, started 
focusing on alternative routes of drug delivery. Alternatives 
include CED, for which we here show that it theoretically 
increases the therapeutic potential of suited drugs previously 
administered systemically in DIPG patients without effect. It 
should be noted, however, that CED targets only the primary 
tumor site and will not target disseminated disease. As 13–17% 
of DIGP patients show distant parenchymal, subependymal, 
and leptomeningeal metastases in the brain and/or spine, 
CED should very likely be complemented with “whole-brain 
therapy” (75). Other alternative drug delivery techniques that 
are currently being investigated include (i) encapsulation of 
cationic substances into liposomes (micro- and nanoparticles) 
to decrease their tissue affinity and thus increase their volume of 
distribution and (ii) temporary BBB disruption techniques, such 
as focused or unfocused ultrasound-mediated drug delivery, to 
enhance uptake of systemically delivered drugs (19–21, 76). 
Since the variables that determine local drug concentrations in 
these techniques are heterogeneous and not widely investigated 
yet, these alternative techniques could not be taken into account 
in our model design and review. The exact extent and timing of 

http://www.frontiersin.org/Oncology/
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