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Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow character-
ized by an uncontrolled proliferation of undifferentiated myeloid lineage cells. Decades of 
research have demonstrated that AML evolves from the sequential acquisition of genetic 
alterations within a single lineage of hematopoietic cells. More recently, the advent of 
high-throughput sequencing has enabled the identification of a premalignant phase of 
AML termed preleukemia. Multiple studies have demonstrated that AML can arise from 
the accumulation of mutations within hematopoietic stem cells (HSCs). These HSCs 
have been termed “preleukemic HSCs” as they represent the evolutionary ancestors of 
the leukemia. Through examination of the biological and clinical characteristics of these 
preleukemic HSCs, this review aims to shed light on some of the unexplored questions 
in the field. We note that some of the material discussed is speculative in nature and is 
presented in order to motivate future work.

Keywords: leukemia, myeloid, acute, preleukemic hematopoietic stem cell, clonal hematopoiesis, clonal evolution, 
premalignant lesions

iDenTiFiCATiOn OF PReLeUKeMiC HeMATOPOieTiC STeM 
CeLL (HSC)

The earliest evidence for a preleukemic phase of acute myeloid leukemia (AML) came from clonality 
studies in adult and pediatric patients (1–15). Collectively, these experiments demonstrated that leu-
kemogenic mutations arise in multipotent hematopoietic cells and have been thoroughly reviewed 
previously (16, 17). The current model for preleukemic clonal evolution has resulted from multiple 
lines of scientific evidence ranging from mouse models to high-throughput sequencing of primary 
human specimens. This model (18) posits that the first leukemogenic mutation must either occur in 
a cell that is capable of self-renewal or confer self-renewal upon the cell. If the first mutation fails to 
meet one of these two criteria, it will be lost over time due to terminal differentiation.

This model has been investigated over the past 5 years, beginning with the first prospective iden-
tification of preleukemic HSCs (19). These initial observations were enabled by the identification of 
cell surface markers, TIM3 and CD99, which allow for prospective separation of normal HSCs from 
leukemic cells (20, 21). Utilizing these markers, immunophenotypic HSCs isolated from leukemia 
patients are capable of generating bi-lineage engraftment in immunodeficient mice, demonstrating 
that they represent bona fide HSCs (19). From targeted deep sequencing, these HSCs were identified 
to harbor some, but not all, of the leukemia-specific mutations. Moreover, single-cell-derived colonies 
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FigURe 1 | Preleukemic burden is highly variable in acute myeloid leukemia (AML) patients. (A) Preleukemic burden is defined as the percentage of hematopoietic 
stem cells (HSCs) in an AML patient that harbor at least the earliest preleukemic mutation. This diagram depicts the preleukemic phase of evolution with the 
acquisition of three distinct mutations represented by three distinct colors (blue, orange, and purple). Eventually, the first mutation (blue) is present in every HSC, 
leading to a preleukemic burden of 100%. (B) This diagram depicts the acquisition of the same three mutations shown in panel (A) but the resulting HSCs fail to 
expand. In this scenario, only a minority of the HSCs harbor mutations, and therefore, the preleukemic burden is low.
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generated from patient HSCs allowed for the determination of 
the order of mutation acquisition (19). Collectively, this work 
provided the first modern proof of the existence of preleukemic 
HSCs in AML.

geneTiC, MOLeCULAR, AnD CeLLULAR 
CHARACTeRiSTiCS OF PReLeUKeMiC 
HSCs

Follow-up studies provided additional support for these conclu-
sions through investigation of expanded patient cohorts and 
targeted sequencing experiments (22, 23). In particular, these 
studies identified patterns of mutation acquisition whereby the 
earliest mutations in leukemia evolution occur predominantly 
in genes that regulate the epigenome, while the latest mutations 
occur predominantly in genes that lead to activated signal trans-
duction and proliferation pathways (22–28). The most common 
preleukemic mutations occur in the DNA methyltransferase 3A 
(DNMT3A) and ten-eleven translocated 2 (TET2) genes (22–24). 
Additional genes mutated during the preleukemic phase include 
isocitrate dehydrogenase 1 and 2 (IDH1/2) (22, 29) and the 
members of the cohesin complex (30). The most common late 
(non-preleukemic) mutations occur in Fms-like tyrosine kinase 3 
(FLT3) and Kirsten rat sarcoma viral oncogene homolog (KRAS). 
Mutations in other common leukemia-related genes such as 
nucleophosmin 1 (NPM1), CCAAT/enhancer-binding protein 
alpha (CEBPA), and Wilms tumor 1 (WT1) have been found to 
occur as both preleukemic and late events (22, 23).

In addition, recent work has demonstrated that the penetrance 
of preleukemic mutations varies greatly across patients (31). We 
have previously introduced the concept of “preleukemic burden,” 
which we define as the percent of HSCs in a leukemia patient 
that harbor at least the first preleukemic mutation. In this way, 
patients whose preleukemic HSCs have expanded greatly will have 
a high preleukemic burden (Figure 1A). It is now clear that the 
preleukemic burden across AML patients can vary from 100% to 

below the limit of detection of standard high-throughput sequenc-
ing methodologies (~1%) (Figure 1B) (31, 32). To illustrate this 
point clearly, a preleukemic burden of 100% indicates that a single 
HSC expanded to outcompete all other HSCs after acquisition of 
the first preleukemic mutation. This highlights some of the key 
characteristics of preleukemic HSCs—the ability to survive, out-
compete normal HSCs, and undergo clonal evolution through the 
acquisition of multiple additional mutations, eventually leading 
to frank leukemia. Mutations in both TET2 and DNMT3A have 
been shown to be significantly associated with high preleukemic 
burden in AML (31). Nevertheless, it remains unclear how some 
patients develop AML with undetectable preleukemic burden 
while others exhibit full reconstitution of their HSC pool with 
mutated HSCs. Some of this difference may be mediated by the 
preleukemic mutations acquired and the time since mutation 
acquisition, but this is only one piece of a very complicated puz-
zle (33). Moreover, the same mutations can sometimes lead to 
highly divergent preleukemic burdens. For example, mutations in 
DNMT3A have been shown to lead to preleukemic burden rang-
ing from undetectable to 100% (31). One intriguing hypothesis 
is that this difference is mediated by epigenetic differences in the 
cell of origin, with certain epigenetic profiles being more primed 
for clonal competition than others. Future work investigating 
how and why preleukemic burden is so variable will be crucial to 
our understanding of this phase of the disease.

The precise mechanisms that mediate this clonal outcompeti-
tion remain incompletely understood. From an evolutionary 
standpoint, an increase in the “fitness” of a stem cell would likely 
come from an increase in self-renewal. More specifically, a stem 
cell that produces more daughter cells whose self-renewal poten-
tial is at least as great as the parental cell would have an increased 
fitness. In the context of a preleukemic stem cell, it is not sufficient 
to merely produce more daughter cells. Rather, those daughter 
cells must retain the ability to self-renew if they are to persist 
long enough to acquire additional preleukemic and eventually 
leukemic mutations. This idea has been functionally tested in 
preleukemic HSCs isolated from AML patients, demonstrating 
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that preleukemic HSCs resist enforced differentiation in vitro in 
comparison to both cord blood- and adult bone marrow-derived 
hematopoietic stem and progenitor cells (31). This observa-
tion supports the hypothesis that mutations in certain genes  
(i.e., DNMT3A, TET2, IDH1/2, and the cohesin complex) occur 
predominantly during the preleukemic phase because they 
function in part to prevent differentiation. Presumably, these 
mutations simultaneously enable the HSCs to persist long enough 
to acquire additional mutations and prevent full differentiation 
during the leukemic phase of AML. Mechanistically, mutations 
in these epigenetic regulators could lead to modest but impact-
ful alterations in key lineage defining genes that lead to clonal 
outcompetition (34, 35). This model of preleukemic evolution 
is supported by additional studies that demonstrate that certain 
preleukemic mutations prevent differentiation, both in mouse 
models and in in vitro culture (30, 36–42).

CLOnAL HeMATOPOieSiS (CH)  
AnD PReLeUKeMiA

Since the discovery of preleukemic HSCs, multiple groups have 
identified an age-associated syndrome that has been termed clonal 
hematopoiesis of indeterminate potential (CHIP) (43–50). CHIP 
was identified by searching for mutations in genes that occur in 
hematologic malignancies in blood cells from individuals with 
no history of hematologic disease that had been sequenced for 
genomic studies of other conditions. CHIP is characterized by 
the clonal outgrowth of mutated hematopoietic cells. The most 
frequently mutated genes in CHIP are DNMT3A and TET2, echo-
ing their role during the preleukemic phase of AML (43, 44, 50). 
These studies have shown that the incidence of CHIP is associated 
with age, with very few individuals under the age of 40 showing 
detectable CH and more than 10% of individuals over the age of 
70 showing detectable CH (43, 44). In fact, a small-scale follow-
up study using targeted error-corrected sequencing for more 
sensitive mutation detection (≥0.0003 VAF) identified CHIP in 
95% of individuals between the ages of 50 and 60 years old (51). 
Most individuals only have one detectable mutation in a gene 
known to be involved in hematologic malignancy. Importantly, 
the presence of CHIP with a variant allele fraction of at least 0.10 
is associated with a 49-fold higher relative risk of developing a 
hematologic malignancy. However, the absolute risk of hemato-
logic malignancy remains small, with only 4% of persons with 
CHIP progressing to malignancy (43, 44). These findings raise the 
possibility of leukemia prevention if therapeutics are developed 
that can target these pre-malignant cells (discussed below).

In addition to being associated with an increased risk of 
hematologic cancer, CHIP is also associated with other adverse 
health outcomes. Of particular note, after controlling for age, 
sex, and diabetes, the presence of CHIP is associated with an 
increased all-cause mortality (hazard ratio, 1.4). Contributing 
to this increase in all-cause mortality, carriers of CHIP have a 
1.9-fold higher risk of coronary heart disease, potentially due to 
an increased secretion of several cytokines and chemokines from 
mutant hematopoietic cells that contribute to atherosclerosis  
(52, 53). Intriguingly, a recent study of more than 8,000 individuals 

has shown an association of CH with solid tumor malignancies 
(54). Of all cancer patients, 25% carried CH, with 4.5% harboring 
a presumptive leukemia driver mutation. In this study, CH was 
associated with increased age, prior radiation therapy, and tobacco 
use. This indicates that CH may be caused by environmental 
factors as well as age-dependent stochasticity. The mechanisms 
accounting for the increased association of CH with solid tumors 
are unclear, but we propose the intriguing possibility that CH 
affects the immune system in such a way as to inhibit immune 
surveillance of cancer. Similar studies have implicated CH as 
a risk factor for the development of therapy-related myeloid 
neoplasms (55, 56). Certainly, this will be an important area for 
further investigation.

DURATiOn OF THe PReLeUKeMiC 
PHASe

An important topic that remains poorly understood is the dura-
tion of the preleukemic phase of AML. To date, no studies have 
provided concrete evidence to suggest an upper and lower bound 
for the period of time between the acquisition of the first leuke-
mogenic mutation and the onset of disease. However, multiple 
lines of anecdotal evidence exist to provide an estimate. Recently, 
multiple studies have tracked the development of leukemia 
in allogeneic bone marrow transplant donors and recipients 
(57, 58). In one study, both the donor and the recipient were 
diagnosed with AML more than 7  years posttransplant. Both 
patients harbored mutations in DNMT3A and this mutation 
was retrospectively identified in the donor prior to transplant 
(VAF = 41%) (58). In the second study, both donor and recipient 
developed DNMT3A-mutant AML within 2 years of transplanta-
tion and the donor was retrospectively found to have a mutation 
in DNMT3A (VAF = 46%) at the time of transplant (57). These 
studies indicate that preleukemic evolution takes at least 7 years 
and, in reality, probably many more as the DNMT3A HSC clone 
had already expanded substantially in the donor at the time of 
transplant. Research from our own group has identified a single 
patient where we believe the preleukemic phase lasted for at least 
15 years (31). This particular patient was diagnosed with AML at 
age 29 and harbored a preleukemic IDH1 mutation. Intriguingly, 
this mutation was also present at high penetrance (VAF = 25%) 
in T cells. As the vast majority of an individual’s T cell repertoire 
is established prior to puberty and progressive thymic involution 
(59), this indicates that this preleukemic clone likely arose prior 
to adolescence. In this case, the preleukemic phase could have 
lasted more than 15 years.

These temporal dynamics of the preleukemic phase of AML 
raise multiple interesting, and as of yet unanswered questions. 
Even if the preleukemic phase lasts 20–30  years, why are the 
majority of AML patients over the age of 65? If leukemia is capa-
ble of developing in just 20 years, why do we not observe more 
cases of AML in younger adults? Are aged HSCs more susceptible 
to mutation? Are aged HSCs more capable of accepting the epige-
netic consequences of a mutation in DNMT3A or TET2? Perhaps, 
the progressive myeloid bias observed during aging (60, 61) plays 
a role in this process as well. Answering these questions will lead 
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to clear advances in our understanding of the preleukemic phase 
and identify opportunities for therapeutic intervention prior to 
the onset of AML.

PReLeUKeMiC HSCs in ReMiSSiOn  
AnD ReLAPSe

The identification of preleukemic HSCs as the reservoirs for 
mutation acquisition prior to the onset of AML raises the ques-
tion of whether these cells have a clinical relevance beyond the 
preleukemic phase. We hypothesized that preleukemic HSCs 
could survive standard induction chemotherapy, persist during 
remission, and contribute to relapsed disease through the acqui-
sition of a small number of additional mutations (17). Several 
studies demonstrated that preleukemic HSCs did, indeed, survive 
standard induction chemotherapy (6, 22, 23, 62, 63). However, no 
formal proof of the ability of preleukemic HSCs to seed relapsed 
disease in AML has been provided. This is likely due to the inad-
equacy of our standard treatment regimens which fail to eradicate 
every AML cell, making it difficult to distinguish rare minimal 
residual disease (MRD) from residual preleukemia. Currently, 
relapsed disease most frequently originates from re-emergence 
of a clone present at diagnosis or further evolution of a clone pre-
sent at diagnosis (64, 65). Without full eradication of the AML, it 
remains unlikely that additional mutations would accumulate in 
preleukemic HSCs more rapidly than the expansion of an existing 
AML clone that has survived therapy. One intriguing possibility 
is that preleukemic HSCs may acquire additional mutations with 
delayed kinetics and perhaps give rise to late relapses (16, 17). 
Nevertheless, we believe that preleukemic HSCs do represent an 
important clinical entity and have the ability to generate relapsed 
disease if our therapies improve to the point of sufficiently eradi-
cating all frankly leukemic cells.

PReLeUKeMiC BURDen  
AnD PATienT SURvivAL

Recently, multiple studies have identified a correlation between 
high preleukemic burden and a worse overall or relapse-free 
survival. In a broad characterization of preleukemic HSCs in a 
cohort of nearly 40 AML patients, high pre-leukemic burden 
was defined as greater than 20% of HSCs harboring at least the 
first mutation. Overall and relapse-free survival was significantly 
shorter in patients with high pre-leukemic burden with hazard 
ratios of 3.3 and 2.99, respectively (31). Similarly, a second study 
of patients with lympho-myeloid clonal hematopoiesis (LM-CH) 
showed that the preleukemic clone was refractory to chemo-
therapy, leading to a higher incidence of relapse than patients 
without LM-CH (63). This association is somewhat paradoxical 
in that, at diagnosis, preleukemic HSCs make up less than 1% 
of the total cells, and that the relapsed disease of these patients 
did not necessarily originate directly from preleukemic HSCs. 
One possible explanation for this observation is that a higher 
preleukemic burden predisposes for a more aggressive leukemia. 
This would be consistent with the increased competitive advan-
tage that leads to a higher preleukemic burden. As mentioned 

previously, it is possible that a higher preleukemic burden could 
be associated with an epigenetic profile that is primed to medi-
ate out-competition. Additional mechanisms including both 
cell-intrinsic and cell-extrinsic effects could be involved. Further 
studies on larger patient cohorts will need to be performed in 
order to validate these observations and motivate future work 
into understanding why high preleukemic burden is associated 
with poor outcomes in AML.

MRD AnD PReLeUKeMiC MUTATiOnS

In situations where standard induction chemotherapy regimens 
can be implemented, the majority of AML patients are able to 
achieve a complete morphologic remission (66). However, many 
of these patients inevitably relapse and succumb to less responsive 
relapsed disease. As mentioned previously, this relapsed disease 
largely originates from leukemic clones present at diagnosis (64, 
65). The key clinical decision is to determine which patients 
should receive transplants during first remission. One avenue 
that is being explored to inform this decision is the monitoring of 
MRD, sub-microscopic levels of persistent leukemic cells that can 
be monitored with flow cytometry, quantitative PCR, or sequenc-
ing methods (67). MRD has been most successfully tracked using 
detection of mutated NPM1 transcripts (68–70). Recent work 
has shown that the persistence of NPM1-mutated transcripts in 
peripheral blood during remission is associated with a signifi-
cantly higher risk of relapse at 3 years than is the absence of such 
transcripts (82 vs. 30%, univariate hazard ratio  =  4.80) and a 
lower rate of survival (24 vs. 75%, univariate hazard ratio = 4.38) 
(68). Similar results have been shown for other AML-specific 
mutations occurring in genes such as DNMT3A, TET2, IDH1/2, 
KRAS, and FLT3 (71).

The clinical relevance of MRD and the persistence of preleu-
kemic HSCs during remission illustrate the potential for preleu-
kemic mutations to confound MRD detection. For example, if 
a mutation in DNMT3A occurred in a preleukemic HSC, the 
persistence of this mutation during remission may demonstrate 
the persistence of preleukemic cells rather than frankly leukemic 
cells. As relapse from a preleukemic clone is likely rare, one might 
reason that detection of preleukemic cells during remission may 
not be relevant to treatment decisions. This would suggest that 
late occurring mutations will be more effective markers for MRD. 
However, one recent study has shown a clear difference in event-
free survival between patients with any mutation detectable 
above 5% VAF at 30 days post therapy compared to patients with 
no mutation detectable above 5% VAF (71). Some of these muta-
tions were clearly being detected in preleukemic cells as the blast 
count showed a strong response to therapy but no corresponding 
change in VAF was observed. This study indicates that patients 
with high preleukemic burden have a poorer prognosis and that 
detection of preleukemic mutations during remission may also be 
an indicator of poor survival outcome. This is consistent with the 
previously mentioned retrospective studies (31, 63) showing that 
patients with high preleukemic burden have poorer outcomes 
than patients with low preleukemic burden. While there are many 
reasons to suggest that preleukemic cells should not be considered 
“disease” during MRD monitoring, these results should serve to 
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motivate future work on the impact of persistent preleukemic 
cells during remission on patient outcome.

TARgeTing PReLeUKeMiC MUTATiOnS 
AnD PReLeUKeMiC HSCs

The identification and characterization of preleukemic HSCs 
has raised the question of how this knowledge should influence 
therapy development and treatment decisions. As discussed 
above, recent work on CHIP has shown that carriers have an 
increased risk for developing hematologic malignancies. This 
indicates that, if these cells could be targeted without adverse 
side effects, it could be possible to prevent the onset of AML. 
However, it remains unclear how best to approach this problem. 
First and foremost, successful targeted therapeutic intervention 
would require identification of a dependency unique to preleu-
kemic HSCs. Recent work has identified minimal consistent 
transcriptional and epigenetic differences between healthy and 
preleukemic HSCs (31), making it unlikely that these cells will 
be universally sensitive to the same intervention. This means that 
any targeted preleukemic therapy would likely be based on the  

genetic mutations present in preleukemic cells and would there-
fore target DNMT3A or TET2. Though no approved targeted 
therapeutics exist for either of these genes, studies have demon-
strated proof-of-concept targeting of DNMT3A-mutant cells with 
an inhibitor of the DOT1-like histone lysine methyltransferase 
(72). Effective therapies would preferentially tip the scales in favor 
of differentiation of preleukemic HSCs, leading the mutations to 
exhaust as the clone undergoes lineage commitment (Figure 2A). 
Importantly, no therapies have been designed with preleukemic 
HSCs as the primary target and it is likely that therapies that are 
effective against AML cells would be ineffective against preleu-
kemic cells (Figure 2B). Even if a targeted preleukemic therapy 
existed, there are situations where therapeutic intervention during 
the preleukemic phase could be highly detrimental. For example, 
in patients with very high preleukemic burden, up to 100% of 
HSCs could harbor preleukemic mutations. If these HSCs were 
induced to differentiate, the patient could suffer widespread bone 
marrow failure that would only be treatable by bone marrow 
transplantation (Figure 2C). As most of these individuals would 
be of advanced age, this type of therapy would likely be poorly tol-
erated. Some of these problems are exemplified by the treatment 

FigURe 2 | Treatment scenarios in acute myeloid leukemia (AML) and the impact of preleukemic hematopoietic stem cells (HSCs). (A) The ideal treatment would 
combine a therapy targeted against the frankly leukemic cells (such as anti-FLT3 therapy) to eradicate AML cells followed by a targeted therapy against the 
preleukemic cells (such as anti-DNMT3A therapy). This would lead to long-term durable remission and disease cure. (B) Current AML therapies largely target late 
mutations, such as FLT3-ITD, which are not present in preleukemic HSCs. In the event that all AML cells are eradicated, the preleukemic HSCs could eventually lead 
to relapsed disease. (C) Targeting of preleukemic HSCs in the context of high preleukemic burden could lead to bone marrow failure and cytopenias as the vast 
majority of HSCs would be targeted.
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