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Background: Radiotherapy is one of the main treatment methods for nasopharyngeal 
carcinoma (NPC). It requires exact delineation of the nasopharynx gross tumor volume 
(GTVnx), the metastatic lymph node gross tumor volume (GTVnd), the clinical target vol-
ume (CTV), and organs at risk in the planning computed tomography images. However, 
this task is time-consuming and operator dependent. In the present study, we developed 
an end-to-end deep deconvolutional neural network (DDNN) for segmentation of these 
targets.

Methods: The proposed DDNN is an end-to-end architecture enabling fast training and 
testing. It consists of two important components: an encoder network and a decoder 
network. The encoder network was used to extract the visual features of a medical 
image and the decoder network was used to recover the original resolution by deploying 
deconvolution. A total of 230 patients diagnosed with NPC stage I or stage II were 
included in this study. Data from 184 patients were chosen randomly as a training set 
to adjust the parameters of DDNN, and the remaining 46 patients were the test set to 
assess the performance of the model. The Dice similarity coefficient (DSC) was used 
to quantify the segmentation results of the GTVnx, GTVnd, and CTV. In addition, the 
performance of DDNN was compared with the VGG-16 model.

results: The proposed DDNN method outperformed the VGG-16 in all the segmenta-
tion. The mean DSC values of DDNN were 80.9% for GTVnx, 62.3% for the GTVnd, and 
82.6% for CTV, whereas VGG-16 obtained 72.3, 33.7, and 73.7% for the DSC values, 
respectively.

conclusion: DDNN can be used to segment the GTVnx and CTV accurately. The accu-
racy for the GTVnd segmentation was relatively low due to the considerable differences 
in its shape, volume, and location among patients. The accuracy is expected to increase 
with more training data and combination of MR images. In conclusion, DDNN has the 
potential to improve the consistency of contouring and streamline radiotherapy work-
flows, but careful human review and a considerable amount of editing will be required.

Keywords: automatic segmentation, target volume, deep learning, deep deconvolutional neural network, 
radiotherapy
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inTrODUcTiOn

Nasopharyngeal carcinoma (NPC) is a malignant tumor 
prevalent in southern China. Radiotherapy is one of the main 
treatments for NPC, and its rapid development has played a 
significant role in the improvement of tumor control probability. 
Intensity-modulated radiotherapy and volumetric-modulated 
radiotherapy (VMAT) have become the state-of-the-art methods 
for the treatment of NPC over the past two decades (1, 2). These 
technologies can facilitate dose escalation to the tumor target 
while improving the sparing of organs at risk (OARs), and the 
dose distribution usually has steep gradients at the target bound-
ary. Modern treatment planning system (TPS) requires exact 
delineation of the nasopharynx gross tumor volume (GTVnx), 
the metastatic lymph node gross tumor volume (GTVnd), the 
clinical target volume (CTV) to be irradiated, and OARs to be 
spared in planning computed tomography (CT) images so that 
a radiation delivery plan can be optimized reversely. This task is 
a type of image segmentation and is usually carried out manu-
ally by radiation oncologists based on recommended guidelines  
(e.g., RTOG 0615 Protocol). However, the manual segmentation 
(MS) process is time-consuming and operator dependent. It has 
been reported that the segmentation of a single head-and-neck 
(H&N) cancer case takes an average of ~2.7  h (3). This time-
consuming work may be repeated several times during a course 
of NPC radiotherapy due to a tumor response or significant 
anatomic changes and alterations. In addition, the accuracy of the 
segmentation is highly dependent on the knowledge, experience, 
and preference of the radiation oncologists. Considerable inter- 
and intra-observer variation in segmentation of these regions of 
interest (ROIs) have been noted in a number of studies (4–7).

As a result, a fully automated segmentation method for 
radiotherapy is helpful to relieve radiation oncologists from the 
labor-intensive aspects of their work and increase the accuracy, 
consistency, and reproducibility of ROI delineation. “Atlas-based 
segmentation” (ABS) (8–10) incorporates a prior knowledge into 
the process of segmentation and is one of the most widely used 
and successful image segmentation techniques for biomedical 
applications. In this type of method, an optimal transformation 
between the target image to be segmented and a single atlas or 
multiple atlases containing some ground truth segmentations is 
computed using deformable registration techniques. Then, all the 
labeled structures in the atlas image can be propagated through 
the registration transformation onto the target image automati-
cally. ABS has become a popular method in automatic delineation 
of target and/or OARs in H&N radiotherapy (11–17) due to its 
acceptable results and fully unsupervised mode of operation. Han 
et al. (11) used the object shape information in the atlas to account 

for large inter-subject shape differences. Sjöberg et al. (12) applied 
fusion of multiple atlases to improve the segmentation accuracy 
than single atlas segmentation. Tao et al. (13) used ABS to reduce 
interobserver variation and improve dosimetric parameter con-
sistency for OARs. Teguh et  al. (14) evaluated autocontouring 
using ABS and found it was a useful tool for rapid delineation, 
although editing was inevitable. Sims et al. (15) did a pre-clinical 
assessment of ABS and showed that it exhibited satisfactory sensi-
tivity; however, careful review and editing were required. Walker 
et al. (16) concluded ABS was timesaving in generating ROI in 
H&N, but attending physician approval remained vital. However, 
there are two main challenges using the ABS method. First, due 
to the anatomical variations of human organs, it is difficult to 
build a “universal atlas” for all human organs. The ROI may be 
considerably different according to the body shape and body size 
of the patient. The variability should be taken into account to 
construct a patient-specific atlas from all atlas images, but there 
are difficulties for target images with a large variability in shape 
and appearance. Second, a large disadvantage of using ABS is the 
large computation time that is involved in registering the target 
image to its atlas image (18). Moreover, it often requires the target 
image to be aligned to multiple atlases, which will increase the 
process of registration several times.

Deep learning methods have achieved enormous success in 
many computer vision tasks, such as image classification (19–21), 
object detection (22, 23), and semantic segmentation (24–26). 
Convolutional neural networks (CNNs) have become the most 
popular algorithm for deep learning (21, 27). CNNs consist of 
alternating convolutional and pooling layers to automatically 
extract multiple-level visual features and have made significant 
progress in computer-aided diagnosis and automated medical 
image analysis (28–31). Melendez et  al. (29) applied multiple-
instance learning for tuberculosis detection using chest X-rays 
and reported an AUC of 0.86. Hu et  al. (30) proposed a liver 
segmentation framework based on CNNs and globally optimized 
surface evolution, yielding a mean Dice similarity coefficient 
(DSC) of 97%. Esteva et  al. (31) trained a CNN using a large 
dataset to classify skin cancer and achieved higher accuracy 
than dermatologists. In addition, CNNs have been applied in 
the segmentation of many organs and substructures, such as 
cells (32), nuclei (33), blood vessels (34), neuronal structures 
(35), brain (36), ventricles (37), liver (38), kidneys (39), pancreas 
(40), prostate gland (41), bladder (42), colon (43), and vertebrae 
(44) with relatively better overlap compared with state-of-the-art 
methods. However, these studies have been confined mostly to 
the field of radiology.

Furthermore, there has been increasingly more interest in 
applying CNNs to radiation therapy (45–48). Recently, Ibragimov 
and Xing (49) used CNNs for OARs segmentation in H&N CT 
images and obtained DSC values that varied from 37.4% for 
chiasm to 89.5% for mandible. This was the first report on OAR 
delineation with CNNs in radiotherapy; however, no target was 
segmented. In this work, we developed a deep deconvolutional 
neural network (DDNN) for the segmentation of CTV, GTVnx, 
and GTVnd for radiotherapy of NPC. The experimental results 
show that the DDNN can be used to realize the segmentation of 
NPC targets while planning CT images. DDNN is an end-to-end 

Abbreviations: NPC, nasopharyngeal carcinoma; GTVnx, nasopharynx gross 
tumor volume; GTVnd, metastatic lymph node gross tumor volume; CTV, clini-
cal target volume; OARs, organs at risk; CT, computed tomography; H&N, head 
and neck; GT, ground truth; CNNs, convolutional neural networks; DDNN, deep 
deconvolutional neural network; DSC, Dice similarity coefficient; TCP, tumor 
control probability; IMRT, intensity-modulated radiotherapy; VMAT, volumetric-
modulated radiotherapy; TPS, treatment planning system; ROIs, regions of inter-
est; ABS, Atlas-based segmentation; BN, batch normalized; ReLU, rectified linear 
non-linearity.
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FigUre 1 | Overall framework of the proposed algorithm.
FigUre 2 | The detailed architecture of deep deconvolutional neural 
network.
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architecture consisting of two important components, including 
an encoder and a decoder. Different from typical CNNs, we per-
formed a reversed deconvolution at decoder networks to rebuild 
high-resolution feature maps from low-resolution ones. Our work 
is the first attempt at applying DDNN for the auto-segmentation 
of a target for the planning of radiotherapy in NPC.

MaTerials anD MeThODs

Data acquisition
A total of 230 patients diagnosed with NPC stage I or stage II 
that received radiotherapy during January 2011 to January 2017 
in our department were included in our study. All patients were 
immobilized with a thermoplastic mask (head, neck, shoulder) in 
the supine position. Simulation contrast CT data were acquired 
on a Somatom Definition AS 40 (Siemens Healthcare, Forchheim, 
Germany) or Brilliance CT Big Bore (Philips Healthcare, Best, 
the Netherlands) system set on helical scan mode with contrast 
enhancement. CT images were reconstructed using a matrix size 
of 512 × 512 and thickness of 3.0 mm. MR images of all patients 
were acquired to assist the definition of the targets. Radiation 
oncologists contoured the GTVnx, the GTVnd, CTV, and OARs 
in the planning CT using a Pinnacle TPS (Philips Radiation 
Oncology Systems, Fitchburg, WI, USA) system. The GTVnx 
was defined as the primary nasopharyngeal tumor mass. The 
GTVnd was defined as the metastatic lymph nodes. The CTV 
(CTV1  +  CTV2) included GTVnx, GTVnd, high-risk local 
regions that contain the parapharyngeal spaces, the posterior 
third of nasal cavities and maxillary sinuses, pterygoid processes, 
pterygopalatine fossa, the posterior half of the ethmoid sinus, 
cavernous sinus, base of skull, sphenoid sinus, the anterior half of 
the clivus, petrous tips, and high-risk lymphatic drainage areas, 
including bilateral retropharyngeal lymph nodes and level II.

DDnn Model for segmentation
In the present study, we introduced a DDNN model to segment 
the target NPC for radiotherapy. DDNN is an end-to-end seg-
mentation framework that can predict pixel class labels in CT 
images. Figure 1 depicts the flowchart of the proposed model. 
As is shown in Figure 2, the DDNN networks consisted of two 
important components, including an encoder part and a decoder 
part. The encoder network consisted of 13 convolutional layers 

for feature extraction and was used to extract the visual features 
of the medical image, and the decoder network recovered the 
original resolution by deploying deconvolution. Specifically, the 
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TaBle 1 | Dice similarity coefficient (DSC) and Hausdorff distance for 
nasopharynx gross tumor volume (GTVnx), metastatic lymph node gross tumor 
volume (GTVnd), and clinical target volume (CTV).

Dsc (%) hausdorff distance 
(mm)

region of interest cTV gTVnx gTVnd cTV gTVnx gTVnd

Deep deconvolutional 
neural network

82.6 80.9 62.3 6.9 5.1 25.8

VGG-16 73.7 72.3 33.7 11.1 7.7 51.5

FigUre 3 | Boxplots obtained from Dice similarity coefficient analyses.
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In addition, the performance of DDNN was compared with 
VGG-16. The average DSC and Hausdorff distance values for the 
three targets (GTVnx, GTVnd, and CTV) were analyzed with 
paired t-tests between DDNN and VGG-16. All analyses were 
performed with a p-value set to <0.05.

resUlTs

The results for all tested patients and GTVnx, GTVnd, and CTV 
values are summarized in Figure 3 and Table 1. The proposed 
DDNN auto-segmentation showed a better overall agreement 
than the VGG-16 based auto-segmentation, as shown by the DSC 
values. The average DSC value of DDNN was 15.4% higher than 
the VGG-16 average DSC value (75.3 ± 11.3 vs. 59.9 ± 22.7%, 
p < 0.05). Automatic delineation with DDNN produced a good 
result for the GTVnx and CTV, with DSC values of 80.9 and 82.6%, 
respectively. These values showed a reasonable volume overlap of 
the auto-segmented contours and the manual contours. The qual-
ity of the automatically generated GTVnd was barely satisfactory, 
with a mean DSC value of 62.3%. The Hausdorff distance values 
for all targets were reduced by DDNN compared with VGG-16 
(12.6 ± 11.5 vs. 23.4 ± 24.4, p < 0.05).

encoder network layers were based on the VGG-16 architecture 
(21), used for high-quality image classification. Different from 
VGG-16, we performed a reversed deconvolution at decoder 
networks to rebuild high-resolution feature maps from low-
resolution. In addition, we replaced the fully connected layers 
with fully convolutional layers for our segmentation task. With 
the adaptation, the networks can achieve pixel segmentation 
in CT images. Please refer to the appendix for more technical 
specifications of the architecture.

experiments
Data from 184 patients out of 230 were chosen randomly as a 
training set to adjust the parameters of the DDNN model, and the 
remaining 46 patients were used as the test set to evaluate the per-
formance of the model. In this work, we implemented our model’s 
training, evaluation, error analysis, and visualization pipeline 
using Caffe (50), which is a popular deep learning framework, 
and then compiled using cuDNN (51) computational kernels. 
For the experiments, we adopted data augmentation techniques, 
such as random cropping and flipping to reduce over fitting.  
We used stochastic gradient descent with momentum to optimize 
the loss of function. We set the initial learning rate to 0.0001, 
learning rate decay factor to 0.0005, and decay step size to 2,000. 
Instead of using a fixed number of steps, we trained our model 
until the mean average precision of the training set converged, 
and then evaluated the model using the validation set. We used 
NVIDIA TITAN XP GPU for all experiments.

Quantitative evaluation
A total of 46 patients were used to assess the performance of the 
model. MSs were defined as the reference segmentations gener-
ated by the experienced radiation oncologists. All the voxels 
that belong to the MS were extracted and labeled. During the 
testing phase, all the 2D CT slices were tested one by one. The 
input was the 2D CT image, and the final output was pixel-level 
classification, which was the most likely classification label. 
Performance of the proposed method was tested and compared 
with the segmentation of the GTVnx, GTVnd, and CTV. The 
DSC and the Hausdorff distance (H) were used to quantify the 
results.

The DSC is defined as shown in Eq. 1 as follows:

 
DSC A B A B

A| B
( , ) | |

| | |
=

+
2 ∩

 
(1)

where A represents the MS, B denotes the auto-segmented struc-
ture and A ∩ B is the intersection of A and B. The DSC results in 
values between 0 and 1, where 0 represents no intersection at all 
and 1 reflects perfect overlap of structures A and B.

The Hausdorff distance (H) is defined as

 H h h( , ) max( ( , ), ( , ))A B A B B A=  (2)

where

 
h a b

a A b B
( , ) max(min )

,
A B = −
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(3)

and ‖.‖ is some underlying norm on the points of A and B.  
As H(A,B) diminishes, the overlap between A and B increases.
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FigUre 6 | Segmentation results for metastatic lymph node gross tumor 
volume, shown in transverse computed tomography slices.

FigUre 5 | Segmentation results for nasopharynx gross tumor volume, 
shown in transverse computed tomography slices.

FigUre 4 | Segmentation results for clinical target volume, shown in 
transverse computed tomography slices.
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Figures 4–6 show auto-segmentation of CTV, GTVnx, and 
GTVnd for test cases, respectively. In these examples, the auto-
segmented contours of CTV and GTVnx using DDNN were 
close to the MS contours, although inconsistencies existed. 
Only a few corrections were necessary to validate the automatic 
segmentation. However, for the segmentation of the GTVnd, 
there was some deviation from the MS in shape, volume, and 
location.

DiscUssiOn

We have designed an automated method to segment CT images 
of NPC. To the best of our knowledge, this task has not previously 

been reported. Our results suggest that the proposed DDNN 
algorithm can learn the semantic information from nasopharyn-
geal CT data and produce high-quality segmentation of the 
target. We compared the proposed architecture with the popular 
Deeplab v2 VGG-16 model. This comparison revealed that our 
method achieved better segmentation performance. Our DDNN 
method deployed a deeper encoder and decoder neural network, 
which used convolutional filters to extract feature and deployed 
deconvolutional filters to recover the original resolution. Thus, 
detailed segmented results were learned/predicted better than 
bilinear interpolation.

Consistency of target delineation is essential for the improve-
ment of radiotherapy outcomes. Leunens et  al. (52) demon-
strated that inter- and intra-observer variation is considerable. 
Lu et al. (53) investigated the interobserver variations in GTV 
contouring of H&N patients and reported a DSC value of only 
75%. Caravatta et  al. (54) evaluated the overlap accuracy of 
CTV delineation among different radiation oncologists and 
got a DSC of 68%. Automatic segmentation has the potential 
to reduce variability of contours among physicians and improve 
efficiency. The gains in efficiency and consistency are valuable 
only if accuracy is not compromised. Assessment of accuracy of 
a segmentation method is complex, because there is no common 
database or objective volume for comparison. The evaluation of 
automatic segmentation for radiotherapy planning usually uses 
the DSC value, thus providing a reasonable basis for comparison. 
Apparently, our method showed good performance compared 
with the existing studies regarding the auto-segmentation topic. 
In addition, such auto-segmentation methods are atlas- and/or 
model based, and there is no report on segmentation of GTV 
or CTV using a deep learning method. Regarding the target, 
the comparison is difficult since N-stage (most often N0) and 
selected levels were quite different from one study to another. 
For CTV, different previous publications reported mean DSC 
values of 60% (55), 60% (8), 60% (56), 67% (14), 77% (57), 
78% (58), 79% (59), and 80.2% (60), whereas the DSC value of 
DDNN was 82.6%. There are few reports on auto-segmentation 
of GTVnx or GTVnd. For segmentation of GTVnx, DSC values 
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have been reported to be 69.0% (58) and 75.0% (61), whereas our 
proposed method demonstrated a high DSC value of 80.9%. The 
segmentation of GTVnd reported in the literature has yielded 
DSC values of 46.0% (62), and our method showed a DSC value 
of 62.3%. It is unfair to say our proposed algorithm is superior 
because the comparison with the published methods was not 
done with the same dataset; however, it is reasonable to con-
clude DDNN resulted in good results. Meanwhile, the proposed 
method learns and predicts in an end-to-end form without 
post-processing, which makes the inference time of the whole 
network within seconds.

Although the segmentation accuracy for GTVnd was better 
than previously reported, it was still too low. There are several 
reasons for this deficiency. First, this low result was due to lack 
of soft tissue contrast in CT-based delineation. Second, the 
GTVnd typically does not have constant image intensity or clear 
anatomic boundaries, and its shape and location are more vari-
able compared with CTV and GTVnx among different patients. 
Moreover, there is no GTVnd region in N0 patients, who were 
also included in our training and test sets. All of these factors will 
hinder the DDNN model from learning the robust features and 
making accurate reasoning. Thus, the segmentation accuracy 
of GTVnd remains unsatisfactory at present. Zijdenbos et  al. 
(63) suggests that a DSC value of >70% represents good over-
lap. Although the segmentation accuracy of CTV and GTVnx 
exceeded this standard, attending physician oversight remains 
critical. Imperfect definition of target volumes, which are then 
used for treatment planning, may result in under dosage of target 
volumes or an overdose delivered to normal tissues. As a result, 
the proposed method cannot be applied in an unsupervised 
fashion in the clinic. Human review and a considerable amount 
of editing might be required.

There are several limitations to our study. First, a model trained 
on N0 and N+ patients was used to assess the testing set, includ-
ing both N0 and N+ patients. This may make the model difficult 
to converge and reduce the accuracy of the prediction. Second, 
only one physician delineated the target for each patient but all 
the patients were delineated by several observers. Although the 
targets were contoured by experts according to the same guide-
line for NPC, there was still interobserver variability in all cases.  
We cannot exclude such possible bias, which challenges the 
DDNN method. Another limitation of our study is that all of the 
included patients were stage I or stage II. A target with different 
stages may have different contrast, shapes, and volumes, thus, 
influencing the performance of the automated segmentation.

This study mainly focused on NPC target segmentation 
from CT images. However, MR images in H&N have superior 
soft-tissue contrast and the GTV delineation often depends on 
MR images. In addition, functional MR may allow accurate 
location of the tumors. In the future, DDNN is expected to 
combine with the MR or other types of images to improve target 
volume delineation. The training set included only 184 patients. 
Increasing the amount of training data could make the DDNN 
model more robust, improving the segmentation accuracy. 
With the initiation of improved target visualization and further 
improvement of segmentation algorithms in the future, accuracy 
of auto-segmentation is likely to improve.

cOnclUsiOn

Accurate and consistent delineation of tumor target and OARs 
is particularly important in radiotherapy. Several studies have 
focused on the segmentation of OARs using deep learning 
methods. This study shows a method using DDNN architecture 
to auto-segment nasopharyngeal cancer stage I or stage II in 
planning CT images. The results suggest that DDNN can be used 
to segment GTVnx and CTV with high accuracy. The accuracy 
for GTVnd segmentation was relatively low due to the consider-
able differences in shape, volume, and location among patients. 
The performance is expected to improve with multimodality 
medical images and more training data. In conclusion, DDNN 
has the potential to improve the consistency of contouring and 
streamline radiotherapy workflows, but careful human review 
and a considerable amount of editing will be required.
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aPPenDiX

architecture of Deep Deconvolutional 
neural network (DDnn)

As is shown in Figure  2, the architecture of the proposed 
DDNN consisted of two parts, each of which had its own role. 
The encoder networks consisted of 13 convolutional layers for 
feature extraction. All the kernels of convolutional layers had a 
window size of 3  ×  3, a stride of 1, and a padding of 1 pixel. 
In addition, there was a batch normalized option following each 
convolution layer and then an element-wise rectified linear 
non-linearity max (0, x) was applied. The pooling options were 
added after the layers of conv1_2, conv2_2, conv3_3, conv4_3, 
conv5_3, de_conv5_1, and de_conv4_1 in order to get the robust 
feature. Specifically, the input size of the medical images in this 
work was cropped to 417 × 417 with 3 channels. Conv1_1 and 
conv1_2 convolved the input to 417 × 417 × 64, and then reduced 
to 209 × 209 × 64 feature maps using pooling option with kernel 
size of 3 × 3, a stride of 2, and a padding of 1 pixel. Similarly, the 
layers of conv2_1 and conv2_2 took pool1 as input. After using 

3 × 3 convolution with a stride of 1 and a padding of 1 pixel, it 
produced 105 ×  105 ×  256 feature maps and then was pooled 
by pool2 and convolved by conv3, conv4, and conv5. The max 
pooling options of pool4 and pool5 with 3 ×  3 filter size, pad 
1 and stride 1, resulted in a 53 × 53 × 512 output. The pooling 
options reduced the spatial size of feature map, so the feature map 
needed to be recovered to the original spatial size for segmenta-
tion task. Most previous methods used bilinear interpolation to 
get high-resolution image; however, a coarse segmentation was 
not enough to produce good performance for nasopharyngeal 
cancer. Therefore, the decoder part deployed a deep deconvolu-
tion neural network which took pool5 as input and a serial of 
deconvolution layers for upsampling. All the deconvolutional 
layers used 3  ×  3 convolution with the padding size of 1. At 
de_conv5_3, de_conv4_3, and de_conv3_3, the stride was set 
to 2. For others, the stride was set to 1. After 8× enlarging, the 
feature maps recovered the high resolution as same as input. At 
fc6 and fc7 layers, we replaced fully connected layer with 1 × 1 
convolution. Thus, we can carry on the pixel-level classification 
for the segmentation task. The final outputs generated predicted 
label for each pixel.
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