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Myeloid malignancies, including myelodysplastic syndromes and acute myeloid leu-
kemia, are clonal diseases arising in hematopoietic stem or progenitor cells. In recent 
years, microRNA (miRNA) expression profiling studies have revealed close associations 
of miRNAs with cytogenetic and molecular subtypes of myeloid malignancies, as well 
as outcome and prognosis of patients. However, the roles of miRNA deregulation in 
the pathogenesis of myeloid malignancies and how they cooperate with protein-coding 
gene variants in pathological mechanisms leading to the diseases have not yet been fully 
understood. In this review, we focus on recent insights into the role of miRNAs in the 
development and progression of myeloid malignant diseases and discuss the prospect 
that miRNAs may serve as a potential therapeutic target for leukemia.

Keywords: acute myeloid leukemia, microRnAs, microRnA-based therapeutics, myelodysplastic syndrome, 
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inTRODUCTiOn

MicroRnAs (miRnAs) in Cancer
MicroRNAs are small non-coding RNAs with 19–22 nucleotides to control gene expression through 
binding to mRNA of their cognate target genes and thereby participate in numerous biological pro-
cesses such as cell proliferation, differentiation, development, metabolism, apoptosis, survival, and 
hematopoiesis (1). miRNA is transcribed by RNA pol II/III to generate a primary miRNA followed 
by nuclear cleavage by the RNase III endonuclease Drosha and its binding to the double-stranded 
RNA-binding protein DGCR8 to form a precursor miRNA (pre-miRNA) (2, 3). Subsequently, the 
pre-miRNA is transported by Exportin-5/RanGTP to the cytoplasm to be further cleaved by the 
RNase III endonuclease Dicer, leaving an unstable miRNA duplex that unwinds. The 5′ guide strand 
containing the mature miRNA sequence is incorporated into a ribonucleotide silencing complex, 
while the 3′ passenger strand undergoes rapid degradation (4–6).

While miRNAs located within chromosomes deleted in cancer play roles as tumor suppres-
sors, miRNAs located in genomic regions amplified in cancer function as oncogenes. Deregulated  
miRNAs found in both solid tumors and hematopoietic malignancies target the transcripts of 
essential protein-coding genes involved in tumorigenesis (7, 8). Fingerprints of miRNAs’ expression 
are linked to clinical and biological characteristics of tumors including tissue type, aggressiveness, 
and therapy response. Abnormal expression of pre-miRNA is also found in various types of human 
cancer. Because sequence abnormalities of miRNAs’ genes and transcripts are also observed in the 
germline (8), the inherited subtle variations in miRNAs may have a great effect on the expression 
profiles of protein-coding genes in cancer.

miRnAs in Hematological Malignancies
Hematological malignancies comprise a collection of heterogeneous diseases, all originating from 
cells of the bone marrow or lymphatic system. Hematological malignancies include leukemias, 
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TAble 1 | MicroRNAs (miRNAs) in myeloid malignancies.

miRnA expression profiles in leukemias Reference

miR-22 High in AML/high in MDS (12, 13)
miR-99 High in AML (14)
miR-128a High in AML (15)
miR-155 High in AML (16)
miR-182 High in AML (17)
miR-221/miR-222 High in AML (18)
miR-4262 High in AML (19)
miR-29 Low in AML (20)
miR-34a Low in AML (21)
miR-34b Low in AML (22)
miR-137 Low in AML (23)
miR-142-3p Low in AML (24)
miR-194-5p Low in AML (25)
miR-204 Low in AML (18)
miR-217 Low in AML (26)
miR-223 Low in AML with t(8;21) (18, 27–29)
miR-302a Low in AML (30)
miR-451 Low in AML (31)
miR-650 Low in AML (32)
miR-125b High in AML (33, 34)
miR-192 Low in AML (35, 36)
miR-193 Low in AML (37)
miR-124 Low in AML (38, 39)
miR-181a Low in AML (18, 40)
miR-196b High in AML (34, 41)
miR-21 High in acute lymphoblastic  

leukemia, high in MDS
(42, 43)

miR-17–92/miR-20 High in CML/high in MDS (44, 45)
miR-10a Low in CML, high in MDS (18, 46)
miR-126 High in AML (47, 48)
miR-155 High in MDS (46)
miR-130 High in MDS (46)
MiR-144/451 Low in MDS (12, 49)
miR-146a Low in MDS (46)
miR-150 Low in MDS (46)
let-7a Low in MDS (46)

AML, acute myeloid leukemia; MDS, myelodysplastic syndromes.
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lymphomas, myelodysplastic syndromes (MDS), and myelopro-
liferative neoplasms (9). Myeloid malignancies are clonal disor-
ders that are characterized by excessive proliferation, abnormal 
self-renewal, and/or differentiation blocks of hematopoietic 
stem cells (HSCs) and myeloid progenitor cells (10, 11). miRNA 
expression profiling in myeloid malignancies has revealed  
distinct signatures associated with diagnosis, stage classification, 
progression, prognosis, and response to treatment of leukemias 
(Table  1). miRNAs can be regulated by epigenetic modifiers 
including DNA methylation and histone modification in leuke-
mias, suggesting that aberrant expression of miRNAs by epige-
netic mechanisms may trigger hematopoietic cell transformation.

In this review, we focus on recent advances in understanding 
the roles of miRNA deregulation in the pathogenesis of myeloid 
malignancies and discuss the prospect that miRNAs may serve as 
potential therapeutic targets for leukemias.

miRnA DeReGUlATiOn in MDS

Myelodysplastic syndromes are HSC disorders characterized by 
ineffective hematopoiesis and a high risk of progression to acute 

myeloid leukemia (AML) (50). More than 70% of all human 
miRNAs are located within regions of recurrent copy-number 
alterations in MDS and AML cell lines (51). The targeted abla-
tion of Dicer1 in murine hematopoietic system leads to abnormal 
hematopoiesis and MDS, supporting the relevance of miRNA 
deregulation to the pathogenesis of MDS (52).

Several recent studies have addressed the role of miRNAs in 
MDS pathogenesis. Vasilatou et al. have shown that miR-17-5p 
and miR-20a, as members of the miR-17–92 cluster, repress 
the transcription factor E2F1, which is highly expressed in 
67% of patients with MDS (44). Similarly, let-7a downregu-
lates KRAS, which is aberrantly expressed in high-risk MDS 
(53, 54). A subset of miRNAs involved in stage-specific 
regulation of erythropoiesis are also deregulated in MDS (55). 
Overexpression of miR-181, miR-221, miR-376b, miR-125b, 
miR-155, or miR-130a inhibits erythroid cell growth (56), 
and this event might be responsible for disease-associated 
ineffective erythropoiesis. miR-155 targeting CEBPB and 
CSF1R is significantly upregulated in high-risk MDS (57). 
High expressions of miR-155, miR-126, and miR-130 in 
MDS restrain megakaryopoiesis and may account for higher 
frequency of thrombocytopenia observed during disease pro-
gression (46). However, recent evidence reveals that reduction 
of Rho family members by miR-155 contributes to impaired 
neutrophil migration in MDS (58). miR-21 expression has 
been found to be increased in MDS, and its interaction with 
SMAD7 mRNA leads to ineffective, MDS-like hematopoiesis 
via overactivating TGFβ signaling (42). In addition, serum 
miR-21 level appears to act as a potential non-invasive 
biomarker that predicts a response following treatment with 
hypo-methylating agents, such as azacytidine or decitabine in 
MDS patients (59). In contrast, decreased expression of the 
miR-144/451 members targeting the erythroid transcription 
factor GATA-1 is closely associated with high-risk MDS  
(12, 49). Overall, both the aberrant expression and the func-
tion of miRNAs are the important factors contributing to 
MDS pathogenesis and prognosis.

Despite significant amount of evidence demonstrating 
miRNA expression and role in tumorigenesis is available, a very 
few studies illustrate mechanisms of miRNA deregulation and 
related mechanisms underlying MDS. miR-22 has been found to 
be overexpressed in MDS patients with poorer survival outcome 
(60). Furthermore, transgenic mice expressing hematopoietic 
miR-22 exhibit decreased global 5-hydroxymethylcytosine 
levels and increased HSC self-renewal along with defective 
differentiation and develop MDS and myeloid leukemia over 
time. miR-22 directly targets the DNA demethylating enzyme 
ten-eleven-translocation 2 (TET2) and affects the epigenetic 
landscape in the hematopoietic compartment, while forced 
expression of TET2 suppresses the miR-22-induced malignant 
phenotypes. A significant inverse correlation between miR-22 
and TET2 observed in MDS patients suggest the miR-22-TET2 
regulatory network as a reliable factor for MDS pathogenesis 
(60, 61). A better understanding of miR-22 deregulation in MDS 
disease progression and AML transformation will provide insight 
into the mechanisms of MDS pathogenesis and provide new 
therapeutic strategies against leukemia transformation.
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eMeRGinG ROleS OF miRnA 
DeReGUlATiOn in THe PATHOGeneSiS 
OF AMl

Acute myeloid leukemia is characterized by the accumulation of 
immature myeloid cells in the bone marrow and shows genetic 
abnormalities including mutations and chromosomal transloca-
tions (10). Distinctive miRNA expression profiles have been 
demonstrated for cytogenetic subtypes and mutations in CEBPA, 
FLT3, and NPM1 of AML (62–64). miRNA profiles are also 
associated with AML prognosis, underscoring the importance of 
miRNAs in AML (65). As such, miRNAs impact AML develop-
ment and progression through targeting known oncogenes or 
tumor suppressors or collaborating with them to promote or 
suppress myeloid malignancy.

miR-9 has shown to be overexpressed in MLL-rearranged 
AML and play a critical oncogenic role in MLL fusion-mediated 
leukemogenesis (66). Ectopic expression of miR-9 blocks neutro-
phil development in myeloid cell lines and in murine primary 
lineage-negative bone marrow cells by inhibiting ETS-related gene 
(67). Also, miR-9 exerts its tumor-suppressive effects through the 
cooperation with let-7 to repress the oncogenic Lin28b/HMGA2 
axis in AML (68).

miR-125b is upregulated in AML patients and blocks the 
differentiation of AML blast cells by directly targeting the cyto-
plasmic tyrosine-protein kinase FES that is expressed exclusively 
in myeloid cells (33). Overexpression of miR-125b also leads to a 
reduction in expression of the RNA binding protein Lin28A (69), 
which is known to play an important role in stem cell biology.

miR-181 and miR-128 target Lin28, leading to the progres-
sion of myeloid leukemia and differentiation blockage of 
hematopoietic cells to their lineage (15, 70, 71). The inhibition 
of miR-181 expression partially reverses the lack of myeloid 
differentiation in AML patients and in the mice implanted with 
CD34+ hematopoietic stem/progenitor cells (HSPCs) from AML  
patients (72).

The targeted miR-126 reduction in cell lines and primary AML 
samples results in decreased AML growth through inhibiting 
multiple components of the PI3K/AKT/mTOR pathway (47, 73, 
74). The attenuated expression of miR-126 also leads to expand 
normal HSC (75), suggesting that miR-126 dictates opposing self-
renewal outcomes in normal and leukemic HSC. Furthermore, 
both gain- and loss-of-function in  vivo studies of miR-126 in 
murine models demonstrate that either overexpression or knock-
out of miR-126 promotes development of AML in mice (76). This 
result suggests that miR-126 plays a dual role in leukemogenesis 
and supports a new layer of miRNA regulation in AML.

Overexpressed miR-155 is associated with poor outcome in 
AML patients. miR-155 promotes FLT3-ITD-induced myelo-
proliferative disorder through inhibition of the interferon (IFN) 
response, inositol 5-phosphatase 1 (SHIP1), CEBPB, and PU.1, 
while it is upregulated in FLT3-ITD+ and MLL-rearranged AML 
(57, 77–80). These results suggest that miR-155 can collaborate 
with FLT3-ITD to promote myeloid cell expansion, and this 
involves a multi-target mechanism that includes repression of 
IFN signaling.

miR-22 is overexpressed in AML, and its aberrant expres-
sion correlates with silencing of TET2 in AML patients (60). 
Approximately 70% of miR-22 transgenic mice develop AML 
by 2 years of age. Also, miR-22 impairs the MLL-AF9-induced 
leukemogenesis through repressing CREB and Myc pathways 
and relieves the monocyte/macrophage differentiation and the  
growth of AML by targeting MECOM (81, 82). Therefore, in 
AML, miR-22 can be both oncogenic and tumor-suppressive, 
depending on the specific individual backgrounds (e.g., early 
HSCs versus the committed myeloid progenitors).

The accumulation of peroxiredoxin III caused by decreased 
miR-26a leads to a marked reduction in reactive oxygen species 
(ROS) in primary AML granulocyte samples (83). Growing 
evidence demonstrates that ROS plays a key role in regulating 
the balance between self-renewal and differentiation of HSCs 
(84). Thus, the reduced ROS levels might drive HSCs toward 
differentiation into myeloid lineage fates, providing a potential 
mechanism for miR-26a’s role as a tumor suppressor.

miR-29a appears to be significantly increased in peripheral 
blood mononuclear cells and bone marrow white blood cells 
from AML patients. Increased miR-29a promotes differentiation 
into granulocytes and monocytes, while reduction of miR-29a 
suppresses myeloid differentiation in leukemic cells (85). In 
myeloid leukemogenesis, c-Myc inhibits miR-29a expression, 
resulting in increased AKT2 and Cyclin D2 expressions in 
AML (86). Conversely, ectopic expression of miR-29a in murine 
HSPCs leads to acquisition of self-renewal capacity by myeloid 
progenitors, biased myeloid differentiation, and the development 
of a myeloproliferative disorder that progresses to AML (87).

miR-34a is downregulated in AML and induces apoptosis via 
inhibition of autophagy by targeting HMGB1 in leukemic cells 
(21). miR-34b plays a critical role in AML pathogenesis by tar-
geting CREB, and its expression is repressed due to its promoter 
hypermethylation in AML patients (22). The methylation of the 
miR-124a family, including miR-124a-1 and miR-124a-3, is also 
observed in AML patients independently of their cytogenetic 
subtypes (88). It is also noted that epigenetic silencing of miR-
124a is associated with the expression of EVI1 in AML (89, 90).

While studies of miR-125b suggested that it has oncogenic role 
in AML, miR-125a is considered as a tumor-suppressive miRNA. 
miR-125a expression in cytogenetically normal AML appear 
to be most decreased in favorable and intermediate prognostic 
populations and associated with decreased survival (91).

In the context of AML caused by toxic DNA interstrand 
crosslinks (ICLs), miR-139 and miR-199a have opposite roles in 
hematopoietic cell expansion and leukemogenesis (92). The levels 
of miR-139 and miR-199a are elevated with age in myeloid pro-
genitors from the nucleotide excision repair gene (Ercc1)-deficient 
mice. Ectopic expression of miR-139 inhibits proliferation of 
myeloid progenitors, whereas increased miR-199a enhances pro-
liferation of progenitors and augments the AML phenotype. This 
study supports the oncogenic role of miR-199a and also indicates 
that the elevated miR-139 as a tumor suppressor is involved in the 
defective hematopoietic function in ICL-induced AML.

miR-223 decreases cell proliferation and enhances cell 
apoptosis in AML via targeting FBW7 (93, 94). miR-223 was 
originally identified as a critical regulator in granulopoiesis and 
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FiGURe 1 | A prospect of miRNA-based therapy for myeloid malignancies. 
(A) Synthetic oligonucleotides used for restoring the depleted microRNAs 
(miRNAs) bind to their target mRNAs for inhibiting mRNAs of oncogenes.  
(b) Anti-miRNA oligonucleotides (AMOs) interact with oncomiRs, thus 
preventing them from interacting with their target mRNA. (C) miRNA-mask is 
designed to bind to 3′UTR of mRNAs, thus preventing oncomiRs recognition 
their target mRNAs. (D) miRNA sponges have multiple complementary sites 
against targeted miRNA, thereby inhibit the functions of oncomiRs.
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transactivated by NFI-A and C/EBPα in acute promyelocytic 
leukemia (27). AML1/ETO oncoprotein induces epigenetic 
silencing of miR-223 through directly binding to the pre-miR-223 
gene in AML (28). miR-223 targets E2F1 to inhibit cell cycle 
progression, thereby resulting in myeloid differentiation, and in 
turn, E2F1 represses miR-223 transcription, forming a negative 
feedback loop in AML (95–97). In summary, scientific evidence 
supporting the role of miRNAs in the pathogenesis of AML with 
proven tumor suppressors or oncogenic activities is becoming 
increasingly clear.

miRnA-bASeD THeRAPeUTiCS in 
MYelOiD MAliGnAnCieS

As the understanding of miRNA expression and action in myeloid 
malignancies continues to evolve, miRNAs have a great potential 
to serve as both the non-invasive biomarkers and a potential 
therapeutic target for leukemia. For example, miRNA expression 
signatures classify leukemias of uncertain lineage as either AML 
or acute lymphoblastic leukemia (98). miRNA expression profiles 
can also predict progression of MDS to AML (99) and survival 
outcome of AML patients (100, 101). Furthermore, circulating 
miRNAs have been recently demonstrated as an economical, 
non-invasive, and sensitive tool to monitor for minimal residual 
disease, which refers to the persistence of a small number of 
leukemic blasts in the bone marrow after chemotherapy and can 
ultimately cause disease relapse. Indeed, AML patients have a 
distinctive circulating miRNA expression profiles compared to 
healthy controls (102, 103), and an altered expression signature of 
serum miRNAs is observed after standard chemotherapy (104).

Yet, cancer therapy is based on a therapy targeting a single gene 
or pathway: “one target, one drug” model. A treatment effectively 
targeting multiple genes and pathways of cancer concomitantly 
may be an important innovation. Such an approach would not 
only more effectively suppress cancer cell growth but also would 
inhibit the common emergence of resistance in a single gene or 
pathway. miRNAs form a complex network where each miRNA 
can regulate multiple genes and pathways and each gene or 
pathway can be regulated by multiple miRNAs. Thus, miRNAs 
hold promising potential for “multi-targeted therapy” in cancer 
patients. To date, miRNA replacement therapy has largely made 
use of synthetic miRNA mimics to restore lost tumor suppressor 
expression (105). Restoration of lost tumor suppressor miRNAs 
using synthetic double-stranded RNAs (with a delivery agent) 
has been successful in preclinical models of leukemia. For 
example, the targeted delivery of miR-29b mimics by transferrin- 
conjugated lipid nanoparticles in mice engrafted with human 
AML cells shows a significantly longer survival compared to 
control nanoparticles or free miR-29b (106).

Conversely, targeting overexpressed oncomiRs can be 
conducted mainly by three approaches: anti-miRNA oligonu-
cleotides (AMOs; antagomiRs), miRNA masking, and miRNA 
sponges (Figure  1). AMOs that are chemically modified with 
the locked nucleic acid (LNA) can be systemically delivered to 
affect cancer-related pathway via the binding and inhibiting 
oncomiRs in leukemia. For instance, targeting nanoparticles 
containing miR-126 antagonists (antagomiR-126) results in an 

in vivo reduction of leukemic stem cells by depletion of the qui-
escent cell sub-population (74). miR-21- and miR-196b-specific 
antagomiRs inhibit in vitro leukemic colony-forming activity and 
in vivo leukemia-initiating cell activity of HOX-based leukemias, 
which have led to improved survival and delayed disease onset in  
murine AML models (107). miRNA-masking antisense oligo-
nucleotides (miR-mask) can be used to achieve a gene-specific 
anti-miRNA therapy that masks the specific target mRNA from 
endogenous miRNA, and thus prevent the inhibitory action of 
miRNA. miRNA sponges are another approach to silence miR-
NAs with potentially important clinical utility, and have comple-
mentary binding sites to seed sequences of target miRNAs. This 
advantage gives them the ability to inhibit multiple miRNAs that 
have the same sequence in their seed region. It has been shown 
that using miR-22 sponges, both the leukemic cell proliferation 
and the activity of miR-22 are markedly impaired (60).

In addition to these encouraging outcomes with the use of 
miRNA-based therapy in preclinical, animal models, the first 
therapies targeting miRNAs have now entered clinical trials 
(108). Treatment of an LNA inhibitor of miR-122 (known as 
Miravirsen) in patients with hepatitis C virus infection holds great 
promise of miRNA-based therapeutics (https://ClinicalTrials.
gov, NCT01200420) (109). Furthermore, the first cancer-targeted 
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miRNA drug—MRX34, a liposome-based miR-34 mimic—has 
entered clinical trials in patients with advanced or metastatic liver 
cancer (https://ClinicalTrials.gov, NCT01829971) (110). These 
studies provide a proof of principle that should encourage future 
endeavors of miRNA-directed therapy for leukemia.

COnClUSiOn AnD PeRSPeCTiveS

There are many more miRNAs, shown in publication, that are 
involved in the pathogenesis of myeloid malignancies, suggest-
ing intense enthusiasm for research in this area in recent years. 
However, the regulatory changes in miRNA levels are often small 
and might get lost in the biological noise when using a small 
number of samples. Using in vitro systems to study the miRNA 
phenotypes might be different from what happens in  vivo. 
Also, the efficacy of overexpression or antagomiR tools should 
be validated using downstream target readout to convince the 
endogenous interaction between the miRNA and the targets.

MicroRNAs have emerged as the potential targets for thera-
peutic applications. Circulating miRNAs in exosomes/extracel-
lular vesicles from serum or plasma represent a new source of 
promising biomarkers that may be applied to clinical settings.  
A specific MDS/AML-associated serum miRNA profiles could 
not only provide an exciting screening tool for early detection of 
leukemia in the clinic but could also be used to track leukemic 
blasts relapsed after chemotherapy. However, exosomal miRNAs 
loaded from leukemic cells can be transferred to stromal or 
normal HSC recipient cells and alter their functions, thereby 
promoting leukemic phenotypes. A further investigation of the 
relevance of exosomal miRNAs to the pathogenesis of myeloid 
malignancies is clearly warranted.

Although the case of miRNA-based therapeutics entering 
clinical trials continues to grow, no miRNA-based therapy has 

yet made its way to clinical trials particularly for the treatment 
of AML. A main obstacle of applying miRNA-based therapeutics 
for clinical use is the limitation of more efficient and specific 
delivery methods. Thus, many new approaches are currently 
being explored for improved delivery of miRNA-based therapies, 
including liposomes, nanoparticles, LNAs with increased stabil-
ity, and peptide-based inhibitors. Further, how to precisely deliver 
miRNA mimics or antagomiRs into the targeted cells in vivo has 
also become another major barrier preventing the establishment 
of miRNA-directed strategies. But nevertheless, miRNA-based 
therapies may be available soon for the treatment of myeloid 
malignancies, and miRNA-based therapeutics may be efficacious 
when used in a combination with current chemotherapy regimen 
for leukemia.
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