
February 2018 | Volume 8 | Article 151

Mini Review
published: 05 February 2018

doi: 10.3389/fonc.2018.00015

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Leonardo Freire-de-Lima,  

Universidade Federal do Rio de 
Janeiro, Brazil

Reviewed by: 
Daniele Vergara,  

University of Salento, Italy  
Bernd Groner,  

Georg Speyer Haus, Germany  
Vandna Kukshal,  

Washington University in St. Louis, 
United States

*Correspondence:
George Poulogiannis  

george.poulogiannis@icr.ac.uk

Specialty section: 
This article was submitted to 

Molecular and Cellular Oncology,  
a section of the journal  

Frontiers in Oncology

Received: 15 December 2017
Accepted: 17 January 2018

Published: 05 February 2018

Citation: 
Turgeon MO, Perry NJ and 

Poulogiannis G (2018) DNA Damage, 
Repair, and Cancer Metabolism.  

Front. Oncol. 8:15.  
doi: 10.3389/fonc.2018.00015

DnA Damage, Repair, and Cancer 
Metabolism
Marc-Olivier Turgeon1, Nicholas J. S. Perry1 and George Poulogiannis1,2*

1 Department of Cancer Biology, Institute of Cancer Research, London, United Kingdom, 2 Division of Computational and 
Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom

Although there has been a renewed interest in the field of cancer metabolism in the 
last decade, the link between metabolism and DNA damage/DNA repair in cancer has 
yet to be appreciably explored. In this review, we examine the evidence connecting 
DNA damage and repair mechanisms with cell metabolism through three principal links.  
(1) Regulation of methyl- and acetyl-group donors through different metabolic path-
ways can impact DNA folding and remodeling, an essential part of accurate double 
strand break repair. (2) Glutamine, aspartate, and other nutrients are essential for de 
novo nucleotide synthesis, which dictates the availability of the nucleotide pool, and 
thereby influences DNA repair and replication. (3) Reactive oxygen species, which can 
increase oxidative DNA damage and hence the load of the DNA-repair machinery, are 
regulated through different metabolic pathways. Interestingly, while metabolism affects 
DNA repair, DNA damage can also induce metabolic rewiring. Activation of the DNA 
damage response (DDR) triggers an increase in nucleotide synthesis and anabolic glu-
cose metabolism, while also reducing glutamine anaplerosis. Furthermore, mutations 
in genes involved in the DDR and DNA repair also lead to metabolic rewiring. Links 
between cancer metabolism and DNA damage/DNA repair are increasingly apparent, 
yielding opportunities to investigate the mechanistic basis behind potential metabolic 
vulnerabilities of a substantial fraction of tumors.
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inTRODUCTiOn

Over the past decade, a renewed interest in cancer metabolism has emerged. The idea originated 
from the work of Otto Warburg and colleagues—first published in the 1920s—who noticed the 
propensity for cancer cells to consume increased quantities of glucose (1, 2). We now understand 
that there is extensive metabolic rewiring in cancer cells, and we are starting to decipher how cancer 
cells reprogram their metabolism to adapt to changes in their microenvironment and support their 
high metabolic needs (3–5). Cancer metabolism is a broad topic and our current understanding of 
how metabolic reprogramming is linked to malignant transformation has been extensively reviewed 
elsewhere (6–8). Therefore, in this review, we decided to focus on the connections between cell 
metabolism and another major aspect of cancer biology, DNA-repair/DNA-damage pathways.

The major hallmarks, as described by Pavlova and Thompson (7), include: deregulated glucose 
and amino acid uptake, opportunistic ways of acquiring nutrients, use of metabolic intermediates for 
biomass and nicotinamide adenine dinucleotide phosphate (NADPH) synthesis, increased demand 
for nitrogen, and alterations in metabolite-driven gene expression and interaction with the microen-
vironment (7, 9). Importantly, the wide differences in metabolic dependencies across cancer types, 
or stage of progression, as well as the dynamic shifts between metabolic pathways, make the study of 
cancer metabolism and the development of new therapies targeting these pathways very challenging.
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FiGURe 1 | Overview of principal links between cell metabolism and DNA repair. (A) Methyl-group donors from the S-adenosylmethionine pathway and  
acetyl-donors from citrate cycle-derived acetyl coenzyme A contribute to dynamic chromatin packaging and remodeling essential to DNA double-strand repair.  
(B) Metabolic intermediates derived from glucose, glutamine, and aspartate are required for de novo nucleotide synthesis. The ready availability of a pool of 
nucleotides facilitates appropriate DNA repair and replication. (C) Intracellular reactive oxygen species (ROS) levels reflect a balance between generation and 
detoxification. A principal ROS detoxification mechanism involves reduced glutathione (GSH), determined by glutamine and cysteine availability, as well as  
NADPH levels. High ROS-induced DNA damage leads to excessive burden on the DNA repair machinery.
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In addition to the accepted role for cell metabolism in cancer, 
it is well established that DNA-repair/DNA-damage pathways 
are important in cancer progression because dysregulation leads 
to higher levels of genomic instability, increased mutation rate, 
and enhanced intra-tumor heterogeneity (10–13). There are 
currently three principal mechanisms through which changes in 
cell metabolic status are thought to have an influence on DNA-
damage/DNA-repair pathways: chromatin remodeling, double-
strand break (DSB) repair, and redox homeostasis (Figure  1). 
Uncovering new links between these important aspects of cancer 
biology might lead to the development of new targeted therapies 
in DNA-repair deficient cancers or even improving the efficacy 
of existing therapies, such as PARP inhibitors, anthracyclines, 
and platinum salts. In this review, we examine work seeking to 
uncover the links between DNA-repair/DNA-damage and cell 
metabolism.

Metabolic Status Affects DnA Folding  
and Repair Pathways
The first link between DNA repair and cell metabolism involves 
DNA folding and organization. Chromatin packaging and 
remodeling, through different histone posttranslational modi-
fications—including acetylation, methylation, phosphorylation, 
and ubiquitination, as well as through DNA modifications such 
as methylation—can regulate gene expression levels by modulat-
ing the access to DNA of different protein complexes (14, 15). 
Interestingly, similar mechanisms can also regulate access of 
DNA-repair proteins to the DNA double-helix (16). When repair-
ing DSBs, the first step involves unfolding DNA to allow access of 
the repair complexes to the DSB (17). There is a growing body of 
evidence suggesting that these mechanisms can in fact regulate the 
choice of DNA-repair pathway (i.e., homologous recombination), 
or non-homologous end-joining used to repair the DSB (16). 
Substrates added to histones or DNA are derived from metabolic 
intermediates (18–20) (Figure  2). For example, methyl-group 
donors mostly come from the S-adenosylmethionine (SAM) 
pathway (18), while the sole acetyl-group donor is acetyl coen-
zyme A (acetyl-CoA), known for the transfer of its acetyl group to 
oxaloacetate to form citrate and start the tricarboxylic acid (TCA) 
cycle (21). It has been shown that expression levels of the enzyme, 
ATP citrate lyase, can regulate the availability of acetyl-CoA in 
the cell (22). Restricting the amount of acetyl-group donors can 
disrupt proper DNA organization and have an impact on DNA 
folding and DNA remodeling essential to successful DNA DSB 
repair (22, 23). Acetyl-CoA can also be generated from acetate 
and CoA from the acetyl-CoA synthetase 2 enzyme. In fact, 
under metabolic stress conditions in which oxygen and lipids are 
deprived, acetate-generated acetyl-CoA is enhanced and acetate-
derived carbons are incorporated in lipid synthesis (24, 25). 
Acetate-derived acetyl-CoA has also been shown to be involved 
in histone acetylation, suggesting that acetate availability could 
influence histone acetylation in cancer cells (26).

Additionally, changes in the activity of the SAM pathway due 
to availability of necessary nutrients or substrates also influence 
DNA or histone methylation by regulating the pool of methyl-
donors (27). The SAM pathway is interconnected with methio-
nine, tetrahydrofolate (THF), one-carbon metabolism, and 

choline pathways. These pathways tend to compensate for one 
another; however, depletion of choline, folate, or methionine can 
still have an impact on the final SAM concentration (18). Such 
changes in the SAM pathway not only influence gene expression 
of cancer-associated genes through epigenetic modifications but 
can also impact DNA folding during DNA repair processes. The 
latter can also be influenced directly by metabolic intermediates 
such as fumarate. DNA-PK dependent activation of fumarase 
contributes to enhanced local generation of fumarate, which in 
turn promotes DNA repair via inhibition of KDM2B-mediated 
histone demethylase activity (28). Accumulation of fumarate 
can also lead to epithelial-to-mesenchymal transition and poor 
clinical outcome (29). Since modifications in histone and DNA 
are important for proper repair of DNA DSBs (30), changes in 
nutrient and substrate levels that disrupt these modifications are 
bound to affect DNA-repair pathways.

nucleotide Levels Affect DnA-Repair 
Potential of Cancer Cells
Another major mechanism upon which cell metabolism can 
regulate DNA-repair/DNA-damage is through the regulation 
of the pool of nucleotides used for DNA replication and repair  
(31, 32). Many different metabolic pathways are involved in  
de novo nucleotide synthesis and can have an impact on the lev-
els of intracellular nucleotides available (Figure 2) (31, 33, 34). 
An important precursor in the synthesis of the ribose backbone, 
essential for both purines and pyrimidines, comes from ribose-
5-phosphate, an intermediate of the pentose-phosphate path-
way (PPP) (31). Briefly, the PPP utilizes glucose-6-phosphate 
(G6P), an intermediate of glycolysis, which can be redirected 
to generate metabolic intermediates necessary for nucleotide 
and protein synthesis, as well as generation of NADPH. The 
PPP is a major focus in cancer metabolism, and it has been 
carefully reviewed elsewhere (31, 35, 36). The increased glu-
cose consumption observed in cancer cells has been shown, at 
least in some cancers, to be used to fuel the PPP, where it can 
potentially be used to generate reducing power in the form of 
NADPH and nucleotide precursors (32). Additionally, other 
metabolic pathways are involved more specifically in purine 
or pyrimidine ring synthesis. The amide group of glutamine 
is essential in two steps of inosine monophosphate synthesis, 
an intermediate in de novo purine synthesis, and in one step 
of uridine monophosphate synthesis, an intermediate in de 
novo pyrimidine synthesis (37, 38). In glioblastoma, it has been 
shown that α-ketoglutarate is diverted out of the TCA cycle to 
synthesize more glutamine through the glutamine synthetase 
enzyme. The resulting glutamine is then used for de novo 
purine synthesis (39). Furthermore, aspartate is essential for 
the synthesis of pyrimidines, and glycine is also essential for 
purine synthesis (38). Loss-of-function mutations in arginosuc-
cinate synthase 1, which leads to reduced arginine production 
in the urea cycle, promotes the use of aspartate for pyrimidine 
synthesis (33). Aspartate is mostly synthesized from glutamate 
and oxaloacetate. Therefore, the availability of glutamine and/
or other amino acids/metabolic substrates can influence the 
amount and ratio of nucleotides produced in a cell and might 
provide a regulatory mechanism for DNA-repair.
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FiGURe 2 | Simplified diagram of the main metabolic pathways involved in DNA damage/repair. nucleotide pool: nucleotide precursor ribose-5-phosphate (R5P) 
is generated from the pentose-phosphate pathway (PPP). Purines and pyrimidines precursors, inosine monophosphate (IMP), and uridine monophosphate (UMP), 
respectively are synthesized from glutamine, and aspartate and carbamoyl phosphate, respectively. Redox homeostasis: nicotinamide adenine dinucleotide 
phosphate (NADPH) is generated from the PPP and the serine synthesis pathway. Glutathione (GSH) is generated from cysteine and glutamate. Chromatin 
remodeling: methyl-group donors (CH3) are generated from the S-adenosyl methionine (SAM) pathway and acetyl-group donors (acetyl coenzyme A) are generated 
from the citrate cycle or from acetate. GLUT-1, glucose transporter 1; SCL1A5, alanine, serine, cysteine-preferring transporter 2 (ASCT2); G6P, glucose 
6-phosphate; GA3P, glyceraldehyde 3-phosphate; SAH, S-adenosyl homocysteine; xCT, cystine-glutamate antiporter; MCT, monocarboxylate transporter family.
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Deregulated Redox Homeostasis 
Promotes DnA Damage
The metabolic regulation of reactive oxygen species (ROS) 
levels is the third and final link that we address here between 

DNA-repair/DNA-damage and cell metabolism. High ROS levels 
affect many aspects of tumor biology and, here, we focus on their 
role in inducing DNA damage and genomic instability. Most of 
the DNA lesions that are formed by ROS-induced damage are 
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single strand breaks (SSBs) that can be repaired through nucleo-
tide or base excision repair (NER/BER) (40). However, these SSBs 
can lead to stalling of the replication fork or error in replication, 
ultimately leading to DSBs (40). The accumulation of oxidative 
DNA damage increases the burden on the DNA-repair machin-
ery. Tight regulation of cellular redox stress is essential, since high 
ROS levels can lead to oxidative stress and oxidative damage of 
proteins, DNA, and lipids, while a certain level of ROS is essential 
for activating signaling pathways involved in multiple biological 
processes (41–43). Cells have evolved a number of ways to bal-
ance ROS levels (Figure 2). Glutathione (GSH) is one of the major 
ROS-scavenging molecules (44), and it occurs in two versions; 
the reduced form, sulfhydryl GSH, and the oxidized, glutathione 
disulfide (GSSG). The enzyme GSH peroxidase catalyzes the 
reduction of H2O2 to water and lipid hydroperoxides to their cor-
responding lipid alcohols and in turn oxidizes GSH to GSSG. The 
reverse reaction is catalyzed by the enzyme glutathione reductase, 
also known as glutathione-disulfide reductase using the reducing 
potential of NADPH (45).

Glutathione is synthesized in the cytoplasm from cysteine 
and glutamate, and cysteine availability is the rate-limiting step 
of the synthesis reaction (46, 47). Cysteine can be synthesized 
from serine through the transsulfuration pathway (47), or it can 
be transported into the cells as cystine in exchange for glutamate 
using the cystine-glutamate antiporter xCT (39). Interestingly, 
mTORC2 can phosphorylate and inhibit the xCT antiporter, 
therefore providing a mechanism to regulate intracellular cysteine 
levels (48). Furthermore, it has been shown that, in some cancer 
types, growing cells in DMEM containing cystine leads to xCT 
dependent glutamine dependency in vitro, providing evidence for 
context dependent changes in metabolism (5). The main source of 
NADPH comes from the PPP and a significant amount also comes 
from the serine synthesis pathway through the THF pathway. 
Both harness the energy from the catabolism of metabolic inter-
mediates to generate NADPH (31, 47). Interestingly, an important 
regulator of ROS levels is the transcription factor nuclear factor 
E2-related factor 2 (NRF2) that has been shown to directly regu-
late the key serine synthesis enzymes (PHGDH, PSAT1, ATF4) 
(49). This provides a potential mechanism through which NRF2 
can regulate ROS levels by influencing NADPH and GSH levels. 
Importantly, the DNA-repair protein, BRCA1, regulates NRF2, 
providing an additional link between DNA repair pathways and 
ROS levels (50). Overall, there are still many open questions with 
regards to how cancer cells can rewire their metabolism based 
on different nutrient availability, but there is growing evidence to 
suggest that maintaining cellular redox homeostasis plays a major 
role on DNA-damage/DNA-repair pathways.

DnA Damage Response (DDR) Triggers 
Metabolic Rewiring
While DNA-repair pathways can be influenced by cellular meta-
bolic status and nutrient availability in the tumor microenviron-
ment, accumulation of DNA damage due to extrinsic and intrinsic 
genotoxic stress, or deficient DNA repair can also cause abrupt 
rewiring of cell metabolism. Cells have evolved the DDR pathway 
(DDR) to monitor this genotoxic stress and maintain accurate 
transmission of genetic information to subsequent generations. 

The DDR can, therefore, halt cell-cycle progression, induce DNA-
repair mechanisms, or trigger programmed cell death when DNA 
damage is irreparable (51). Ataxia telangiectasia mutated (ATM) 
and ataxia telangiectasia and Rad3-related (ATR) kinases are two 
key enzymes in the recognition of DNA damage and implementa-
tion of the DDR (51, 52). Upon activation by DNA-damage, ATM 
and ATR generate a second wave of phosphorylation that impacts 
many downstream effector proteins. An important aspect of 
DDR, driven by ATM and ATR activation, is the induction of 
metabolic rewiring to promote the resolution of genotoxic stress. 
ATM has been shown to activate the PPP through induction of 
the rate-limiting enzyme glucose-6-phosphate dehydrogenase 
(G6PD), to support the synthesis of reducing power in the form 
of NADPH, and generate ribose-5-phosphate for nucleotide 
synthesis (53, 54).

Increased carbon flux to the PPP from glucose derivatives is 
driven not only by increased glucose consumption often observed 
in cancer cells (55, 56) but also through ROS-mediated inactiva-
tion of many glycolytic enzymes, notably PKM2 that promotes 
flux into the oxidative arm of the PPP as well as serine biosynthe-
sis (57). Many studies have shown increased glucose dependency 
following DDR (58), and these data demonstrate the challenge 
posed to cancer cells under genotoxic stress. They need to contain 
ROS levels, enhance nucleotide synthesis to repair DNA damage, 
and inhibit cell-cycle progression until resolution. To this end, 
SIRT4 activation upon DDR has been shown to inhibit glutamine 
consumption in HepG2, HeLa, HEK293T cells, and in lung tissue 
(58). The reduced glutamine consumption or, more specifically, 
reduced anaplerosis of glutamine into the TCA cycle, confers 
improved cell survival compared to SIRT4 knockout cells that 
cannot activate this response (58). While this study suggests that 
DDR undoubtedly causes changes in metabolism, conflict in the 
literature indicates that the nature of these changes is context- and 
cell type-dependent. For example, the concept that cells undergo-
ing genotoxic stress need to synthesize more nucleotides to repair 
the DNA damage contradicts the reduced glutamine consump-
tion. As mentioned previously, the amide group of glutamine 
is essential for purine and pyrimidine de novo synthesis. Other 
interesting points to note are that in non-cancerous tissues/cells, 
there are increases in fatty acid oxidation (FAO) and oxidative 
phosphorylation (OXPHOS) in response to acute or chronic 
genotoxic stress (59). Increased FAO/OXPHOS is driven by AMP 
kinase (AMPK) activation resulting from the depletion of ATP. 
In the context of that study, cells are depleted of ATP because 
of the utilization of NAD+ by the DNA repair enzyme PARP-1. 
PARP-1 generates PAR chains from NAD+ and PARylates DNA 
to induce repair. This leads to depletion of NAD+, reduction of 
ATP synthesis, and activation of AMPK (59). This study further 
supports that DNA damage impacts cell metabolism. However, 
given the current literature, it is still unclear how a cell’s nutrient 
availability can dictate the nature of its metabolic rewiring.

Metabolic Changes Driven by  
DDR Gene Mutations
The p53 protein encoded by the TP53 gene is another key player 
in DDR through its role in DNA repair and cell-cycle regulation 
(60–62). While p53 levels are kept low under normal conditions, 
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upon DNA damage or other cellular stress, p53 is activated by 
phosphorylation events that prevent its degradation (60). Wild-
type p53 activation regulates cell-cycle entry by transcriptionally 
repressing cyclin B and CDC25B, and it also plays an important 
role in DNA-repair. More specifically, it determines whether or 
not to repair the DNA or trigger senescence or apoptosis. p53 also 
plays many modulatory roles in the metabolic rewiring of cells. 
Among these, is its regulation of glycolysis through transcrip-
tional activation of the TP53-induced glycolysis and apoptosis 
regulator (TIGAR) protein (63). TIGAR inhibits glycolysis by 
dephosphorylating fructose-2,6-biphosphate (F2,6B) leading to 
degradation of F2,6P and inhibition of phosphofructo kinase 
1, an enzyme integral to glycolysis. p53 has also been shown to 
inhibit other enzymes of glycolysis as well as directly repress the 
expression of glucose transporters, GLUT1 and GLUT4 (61, 64). 
One might surmise that this impediment in glycolysis potentially 
leads to a surplus in glycolytic intermediates, leading to redirec-
tion toward the PPP. However, p53 has also been shown to inhibit 
the flux of glucose to the PPP by directly binding to G6PD and 
preventing its active dimer formation (61).

In addition, p53 has been shown to transcriptionally regulate 
proteins involved in the electron transport chain and mitochon-
drial stability, therefore, providing a mechanism to regulate 
OXPHOS (61, 65). Together, these data suggest that the role of 
p53 in metabolic regulation is context and tissue dependent. 
Importantly, TP53 is one of the most mutated genes in cancer and 
many gain-of-function mutations have been described, leading to 
different changes in p53 depending on the mutation and the con-
text. For example, mutant p533KR cannot induce cell-cycle-arrest, 
senescence, or apoptosis, but it can still regulate metabolic target 
genes resulting in decreased ROS levels and reduced glycolytic 
flux (61, 66). Therefore, mutations in DDR or DNA-repair genes 
may result from the application of selective pressures established 
by the metabolic niches of cancer cells.

Other genes involved in DNA-repair are also commonly 
mutated in cancer (13). Some of the most well-known DNA-
repair genes associated with cancer are BRCA1 and BRCA2 but 
mutations in other genes such as ATM, ATR, and CDK12 [for a 
more extensive list, see Ref. (13)] also lead to DNA-repair deficient 
cancers (13, 67–70). Some cancers with a similar phenotype to 
DNA-repair mutant cancer do not harbor any mutations in those 
pathways. Together, these DNA-repair deficient cancers have 
been described as having a “BRCAness” phenotype (13, 71). Some 
metabolic changes have been described in the context of BRCA1 or 
BRCA2 mutations (50, 72–74); however, it is still unclear whether 
these are due to their DNA-repair function or some alternative 
role. Since connections have been drawn between metabolism 
and DNA-repair, it seems likely that the “BRCAness” phenotype 
and BRCA1/2 mutations would be associated with changes in 
metabolism. Again, as with most other mutations found in cancer, 

the metabolic changes associated with these DNA repair defects 
might reflect the context and tissue of origin.

COnCLUSiOn

Historically, cancer has been thought of as a genetic disease 
driven by the accumulation of multiple mutation “hits” (75–77). 
However, in recent years, this paradigm has begun to shift, and 
cancer is often regarded as a “metabolic disease” (78, 79), which 
is influenced by complex interactions between the tumor and its 
microenvironment. Therefore, when examining data suggesting 
that mutations lead to the rewiring of cancer metabolism, in fact, 
it may be more pertinent to question whether these mutations 
arise in the first place from selective pressures applied by extrinsic 
metabolic factors in the tumor microenvironment. In a notewor-
thy example, while KRAS-mutant cancers exhibit resistance to 
low-glucose growth conditions, glucose deprivation has been 
shown to drive the accumulation of novel KRAS mutations in 
KRAS wild-type cancers (80). This indicates that extrinsic factors, 
such as the availability of essential nutrients, directly influence the 
fate of resulting genetic alterations that confer growth and sur-
vival advantages of cancer cells in their given microenvironment.

With regards to mutations in DNA-repair genes, it is possible 
that the highly dynamic and fluctuating conditions encountered 
in the tumor microenvironment provide an evolutionary pressure 
to select for cancer cells that have heightened genomic instability 
and are more proficient at adapting to these changes as a result. 
Consistently, it has been shown that tumors with increased het-
erogeneity are less responsive to therapy and behave more aggres-
sively than tumors arising from single clonal populations (81–83). 
As we have discussed, a multitude of extrinsic metabolic factors 
affects DNA repair and, subsequently, genomic stability (Figures 1  
and 2). Therefore, when considering future strategies to refine 
existing or develop novel cancer therapies, it will be essential at all 
stages of research and drug design to take account of the dynamic 
interplay between microenvironment and metabolic factors that 
are proving to influence treatment efficacy so substantially.
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