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Recent years have seen cancer emerge as one of the leading cause of mortality world­
wide with breast cancer being the second most common cause of death among women. 
Individuals harboring BRCA mutations are at a higher risk of developing breast and/
or ovarian cancers. This risk is much greater in the presence of germline mutations. 
BRCA1 and BRCA2 play crucial role in the DNA damage response and repair pathway, 
a function that is critical in preserving the integrity of the genome. Mutations that interfere 
with normal cellular function of BRCA not only lead to onset and progression of cancer 
but also modulate therapy outcome of treatment with platinum drugs. In this review, we 
discuss the structural and functional impact of some of the prevalent BRCA mutations in 
breast and ovarian cancers and their role in platinum therapy response. Understanding 
the response of platinum drugs in the context of BRCA mutations may contribute toward 
developing better therapeutics that can improve survival and quality of life of patients.

Keywords: breast cancer, ovarian cancer, BRCA1/2 mutations, platinum drugs, response, resistance

iNTRODUCTiON

Cancer is one of the leading causes of mortality worldwide. As per WHO estimates, 8.8 million 
cancer related deaths were reported in 2015, and this number is projected to rise to 13.1 million 
by the year 2030, with low- and middle-income countries bearing approximately 70% burden of all 
deaths worldwide. Of these, breast cancer has emerged as the second major cancer type comprising 
almost 25% of all cancers among women. Breast cancer is the most commonly occurring cancer 
among women with incidence rates varying widely across the world, having rates ranging from 27 
per 100,000 in Middle Africa and Eastern Asia to 92 in Northern America. But the mortality rate is 
lower in the developed countries as compared with low- and middle-income countries, because of 
higher survival of breast cancer patients in developed nations (1, 2).

Mutations in breast cancer susceptibility gene type 1 and type 2 (BRCA1 and BRCA2) put women 
at a higher risk of developing breast and/or ovarian cancer. In individuals harboring mutations in 
BRCA1, the probability of developing breast cancer over a lifetime is about 57–65% and that of 
ovarian cancer is about 39–40%. With BRCA2 mutations, the probabilities are at 45–49% for breast 
cancer and 11–18% for ovarian cancer (3, 4). Women with germline mutations are more prone to 
develop these cancers at a younger age with more aggressive disease and poorer prognosis as com-
pared to those with somatic mutations. BRCA-mutated tumors exhibit both higher clinical grade 
and stage disease with greater metastatic potential (5). 70% of breast tumors containing germline 
mutations in BRCA1 fall in the category of triple-negative breast cancer (TNBC), a highly aggressive, 
highly metastatic subtype, comprising approximately 15% of all breast cancer cases, characterized by 
the absence of hormone receptors with no amplification of growth signal receptor (6).
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TABle 1 | Clinically significant BRCA1/2 mutations in breast and ovarian 
cancers.

Type of 
mutation

Amino acid 
position

Amino acid 
change

Functional significance

BRCA1

Missense 10 E → K Familial breast and ovarian cancer

23 E → K Familial breast and ovarian cancer

61 E → K Breast and ovarian cancer. Interaction 
with BAP1 lost

64 C → G Loss of interaction with BAP1 in 
breast cancer

67 D → Y Breast cancer. Decreased ubiquitin 
function of BRCA1

1685 T → I Could be associated with 
susceptibility to cancer

1699 R → Q Reduced affinity for BRIP1 
phosphopeptide in breast cancer

R → W Reduced protein stability breast and 
ovarian cancer

1749 P → R Reduced binding to BRIP1

1775 M → K Breast cancer. Interaction with BRIP1 
and RBBP8 lost

Deletions 185delAG Exon 2. Truncated protein. Functional 
null

Δ369 Deleted in breast cancer

Insertion 5382insC Breast and ovarian cancer. C­terminal 
truncated protein

BRCA2

Missense 25 G → R Breast cancer. PALB2 interaction lost

31 W → C/R Breast cancer. PALB2 interaction lost

372 N → H Common polymorphism that may 
elevate the risk of breast cancer

Δ1286 Deleted in breast cancer

Δ1302 Deleted in breast cancer

2336 R → H Decreased homologous 
recombination repair

2722 T → R Breast cancer. Exon skipping resulting 
in out of frame exons 17 and 19 
fusion

2723 D → H Promotes RAD51 cytoplasmic 
localization in heterozygous state

Frameshift 6174delT Truncated protein. BRCA1 C­terminus 
domain, NLS lost. Rad51 interaction 
lost
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Ovarian cancer patients with BRCA mutations exhibit a higher 
histological grade disease compared to those with sporadic disease 
and respond better to platinum therapy, having better prognosis 
(7, 8). In the absence of functional BRCA proteins, cells fail to 
repair intra-strand crosslinks formed by DNA cross-linking 
agents such as platinum drugs, leading to apoptotic cell death. 
Cisplatin is the most commonly used therapeutic agent for treat-
ing gynecological cancers either as a single agent before surgery 
or in combination with other drugs. Despite the favorable initial 
response, these cancers eventually develop tolerance to platinum 
leading to therapy failure. This review examines a few clinically 
relevant mutations that are common in breast and ovarian can-
cers. The structural and functional changes resulting from these 
mutations are explored further, focusing on their implications in 
modulating response to platinum therapy.

BRCA MUTATiONS iN BReAST AND 
OvARiAN CANCeRS

BRCA1 and BRCA2 play a crucial role in maintaining genome 
integrity by repairing double-strand DNA breaks via the homolo-
gous recombination repair (HRR) pathway. Any mutations 
that cause functional disruption of these proteins may prove 
to be highly deleterious, leading to the development of cancer. 
In addition, BRCA1 and BRCA2 also play a critical role in cell 
division where they are transported to the cytosol to participate 
in regulating various molecular events during mitosis. Mutations 
impacting these important functions of BRCA1/2 can affect the 
delicate balance of the tightly regulated cellular processes that 
may lead to progression of disease.

BRCA mutations show huge diversity in various populations, 
many of which are functionally neutral or are of unknown patho-
logical significance. However, there are some mutations that are 
more significant than others (Table  1). One of the most com-
mon cancer related mutations found in BRCA1 is the 5382insC, 
reported to have originated from a common European ancestor 
about 400–500  years ago. It was first described as the founder 
mutation in the Ashkenazi Jew population and could be present in 
other European populations as well. This mutation is also reported 
to be associated with a higher incidence of ovarian cancer (9.4%) 
but a lower incidence of breast cancer in Slavic countries (9). 
185delAG located in exon 2 of BRCA1 is another common muta-
tion reported in various ethnicities including Ashkenazi Jews and 
Indian population where it occurs at a high frequency of 16.4%. 
Missense mutation at the Cys61 (C61G) of BRCA1 is a founder 
mutation in Polish population and is included as a standard test 
for diagnosis and treatment of breast and ovarian cancer for Polish 
women (10, 11). 6174delT mutation is common in BRCA2 in the 
Ashkenazi Jewish population and other ethnic groups (12). In 
addition, BRCA1 and BRCA2 contain numerous other mutations 
that show a more population-specific distribution. This has been 
summarized in a review by Karami and Mehdipour (9). Screening 
for specific BRCA1/2 mutations that occur at high frequency in 
certain populations not only help in better clinical management 
of breast and ovarian cancers but can also be an invaluable tool in 
identifying healthy individuals who are currently disease-free but 
are at an increased risk of developing breast and/or ovarian cancer 

later in life (13). In addition to the presence of either BRCA1 or 
BRCA2 mutations in breast and/ovarian cancer patients, there are 
reports of patients being double heterozygous for both BRCA1 
and BRCA2 mutations. These patients develop cancer at a much 
earlier age and with more severe disease (14, 15).

CANCeR-ASSOCiATeD MUTATiONS 
AlTeR THe BiOlOGY OF BRCA 
PROTeiNS

BRCA1 and BRCA2 are at the intersection of numerous key cellu-
lar pathways and perform multiple functions ranging from DNA 
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FiGURe 1 | BRCA1 is at the hub of numerous interconnecting cellular pathways. BRCA1 interacts with numerous intermediate proteins in these pathways that 
contribute toward genomic and cellular stability.
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damage response and DNA repair activity, chromatin remodeling 
and transcription, and protein ubiquitination (16–19) (Figure 1). 
Single- or double-strand DNA breaks may arise from various 
sources like natural metabolic processes or from extraneous 
sources like chemical agents or irradiation. Left unrepaired, these 
DNA breaks may lead to the accumulation of deleterious muta-
tions with a potential to cause genomic instability. Efficient repair 
of double-strand breaks via the HRR pathway requires functional 
involvement of BRCA1 and BRCA2 via their interaction with 
numerous other proteins (20, 21). Upon DNA damage, BRCA1 
acts as a mediator bringing together components of the DNA 
repair pathway to the site of damage where it interacts with a 
large complex called the BRCA1-associated genome surveillance 
complex (BASC complex), along with the components of the 
DNA repair machinery (22, 23). Although BRCA1 and BRCA2 
function in the DNA damage repair pathway, both have func-
tionally distinct roles (23). BRCA1 functions as a DNA damage 
checkpoint activator and also in DNA repair, whereas BRCA2 is 
a core component of the HRR machinery. Homozygous BRCA1 
knockout mice are embryonic lethal at age E7.5–E13.5, suggest-
ing that functional loss of BRCA1 cannot be compensated by the 
presence of wild-type BRCA2 (24).

The BRCA proteins are organized into functional domains 
that enable numerous protein–protein interactions that are vital 

for their optimal function. BRCA1, a 220 kDa protein, contains 
an RING domain in the N-terminus that interacts with BRCA1-
associated RING domain protein 1 (BARD1), the heterodi-
merization of which increases BRCA1 ubiquitin ligase activity by 
many folds. The BRCA1 C-terminus domain is conserved across 
many proteins that are involved in DNA repair and is the site for 
numerous phosphoprotein interactions. Limited structural data 
are available for the region of BRCA1 between exons 11 and 13, 
despite it being the binding site for a number of proteins that are 
involved in multiple cellular pathways. Some of the proteins that 
bind to this region of BRCA1 are retinoblastoma protein (RB), 
the transcription factor c-Myc, DNA repair proteins RAD50, 
RAD51, and PALB2 that forms a scaffold for BRCA1 and BRCA2 
interaction (25). A common feature shared by many proteins that 
are at the hub of interconnecting pathways is the intrinsically 
disordered structure (26). Exons 11–13 of BRCA1 exhibit such 
disordered structure that perhaps provide a scaffold for multiple 
interactions and signal integration from various pathways (27). 
BRCA2 is a large 385 kDa protein with an N-terminus transacti-
vation domain, a long exon 11 containing RAD51-specific bind-
ing site and a DNA binding domain toward the C-terminus (28). 
BRCA2, like BRCA1, contains disordered structure interspersed 
between more structured motifs, suggesting its participation in 
multiple cellular pathways (29, 30) (Figure 2). Here, we discuss 
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FiGURe 2 | BRCA1 and BRCA2 interact with numerous proteins via their multiple functional domains. The N and C termini of BRCA1 have structural motifs that 
allow multiple protein–protein interaction. Exons 11–13 in the middle of BRCA1 are more unstructured, which contains two nuclear localization signals. BRCA2 
secondary structure prediction indicate a more helical middle region, which contains BRC repeats and binding sited for various proteins of the DNA damage 
response pathway.
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FiGURe 3 | (A) Mutations in BRCA1 and BRCA2 found in breast and ovarian cancers that affect response to platinum therapy. Deletion of multiple functional 
domains from BRCA1 result in truncated protein that is unable to repair DNA damage efficiently whereas missense mutations that result in amino acid substitutions 
result in altered response to platinum therapy. (B) Schematic representation of prevalent somatic mutations in BRCA1 and BRCA2 from breast cancer patients 
showing relative positions of various missense, truncations, and in­frame mutations (Adapted from www.cBioPortal.org) (31).
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some key mutations in BRCA1 and BRCA2 that have strong 
correlation with breast and ovarian cancer and their functional 
consequences (Figures 3A,B).

185delAG—A two nucleotide deletion in exon 2 of BRCA1 
produces a 39 amino acids long, functionally null truncated pro-
tein that has lost most of its functional domains as compared with 
a 220 kDa wild-type protein. The loss of the ring finger domain 
abrogates the binding of BARD1 and BAP1, which are important 
regulators of E3 ubiquitin ligase activity of BRCA1. Therefore, 
the loss of the ring finger domain of BRCA1 and consequently, 
loss of E3 ubiquitin ligase activity may be an important event 
in the development and progression of breast cancer (32, 33). 
BRCA1 interacts with both upstream and downstream effectors 
of cell cycle checkpoint kinases—deletion of binding domains 
result in the loss of these interactions and failure of the S and 
G2/M phase checkpoints allowing cell cycle progression even 
in the presence of DNA damage (34–37). Interaction of BRCA1 
and BRCA2 is mediated by PALB2, and the complex is critical 
in RAD51-mediated HRR of damaged DNA. Disruption of this 
interaction by functional loss of BRCA1 protein results in defec-
tive DNA repair and consequently propagation of mutations that 
accumulate in daughter cells during cell division (38). However, 
nuclear expression of Maspin (mammary serine protease inhibi-
tor), a member of the serpin superfamily and a target of truncated 
BRCA1, has been correlated with increased sensitivity to cisplatin 
with improved prognosis in ovarian cancer (39).

5382insC produces a C-terminal truncated BRCA1 commonly 
encountered in breast and ovarian tumors. The C-terminus of 
BRCA1 contains numerous domains for various protein–protein 
interactions including RNA-helicase binding, HDAC interaction, 
CtIP binding, and many others proteins (40–42). Thangaraju and 
colleagues have reported that the deletion of the C-terminus 
of BRCA1 through the 5382insC mutation resulted in loss of 
apoptosis in cell lines. It has been speculated that the deletion of 
the transactivation domains may be responsible for loss of tran-
scriptional activation and/or repression of several genes, which 
may lead to apoptotic cell death (43).

6174delT—A frameshift mutation in the BRCA2 produces 
a 224 kDa truncated protein, about 2,002 amino acids long as 
compared with the 3,418 amino acids long wild-type protein 
(390 kDa). This truncation leads to the loss of two BRC repeat 
domains, loss of DNA binding, and the C-terminus RAD51 bind-
ing domain along with the nuclear localization signal, resulting 
in cells’ defective DNA repair machinery that are unable to form 
RAD51 foci (44). In addition, cells carrying this mutation have a 
higher sensitivity to inhibitors of poly(ADP-ribose) polymerase 
(PARP). Edwards et al. reported that deletion of the 6174delT 
mutation could make the otherwise PARP inhibitor sensitive 
cells resistant to the drug. This acquired resistance to PARP 
inhibitors could be reversed upon restoration of the reading 
frame of BRCA2 (45), providing a window of opportunity for 
development of newer and effective strategies for clinical man-
agement of BRCA2-mutated cancers. C-terminal truncation of 
BRCA2 results in the loss of DSS1-mediated stabilization and 
rapid degradation of BRCA2, leaving cells vulnerable to DNA 
damage (46, 47). Other interacting partners of BRCA2 include 
EMSY and DMC1. Sporadic breast and ovarian tumors show 

amplification of EMSY, a binding partner of BRCA2, and have 
been associated with poor survival. Interaction of EMSY with 
exon 3 of wild-type BRCA2 (deleted in cancer) functionally 
inactivates BRCA2, suggesting a regulatory role for EMSY in 
the HRR pathway (48). The region between amino acids 2386 
and 2411 of BRCA2 is highly conserved across species and is 
the binding site for DMC1, a germ cell counterpart of RAD51. 
Loss of this interaction due to the 6174delT mutation results in 
defective meiosis and propagation of chromosomal abnormali-
ties in the germline (49).

SPORADiC CANCeR AND BRCAness

BRCA1/2 mutations, seen most commonly in familial breast 
and ovarian tumors, impact the DNA repair pathway leading to 
genomic instability. However, some sporadic tumors that contain 
wild-type BRCA1 also have defective DNA repair pathway that 
may have resulted via other mechanisms. These characteristics 
of sporadic tumors that are similar to familial cancers are col-
lectively called “BRCAness.” Inactivation of BRCA1 in sporadic 
breast and ovarian tumors may be brought about by non-genetic 
mechanisms like promoter methylation that result in lowering of 
gene expression to undetectable levels and loss of heterozygosity. 
In contrast, BRCA2 inactivation does not occur by promoter 
hypermethylation—a significant number of sporadic breast and 
ovarian tumors show amplification of EMSY at the gene level. As 
discussed earlier, EMSY–BRCA2 interaction may regulate DNA 
repair via HRR pathway (50). A common feature that both BRCA-
mutated cancers and those showing characteristics of BRCAness 
share is the elevated susceptibility to DNA cross-linking agents 
like platinum drugs and this has been the rationale for including 
these as therapeutic agents (8).

BRCA-MUTATeD TUMORS ARe 
SeNSiTive TO PlATiNUM THeRAPY

Ever since its approval as an antineoplastic agent, cisplatin has 
been effective in BRCA-mutated breast cancer either as a single 
agent or in combination with other anticancer drugs (51, 52). The 
involvement of BRCA1 in efficient DNA repair mechanism has 
been highlighted by in vitro studies that showed that cells con-
taining mutant BRCA1 showed increased sensitivity to platinum 
drugs as compared with those cells that have elevated BRCA1 lev-
els. This heightened sensitivity could, however be, reversed upon 
restoration of the full-length functional BRCA1 (53, 54). BRCA1 
has been identified as a key gene of the DNA repair machinery not 
only by siRNA screens but also using BRCA1, TP53 conditional 
knockout mice where animals after an initial favorable response 
to cisplatin, doxorubicin, and docetaxel, became resistant to dox-
orubicin and docetaxel but remained sensitive to cisplatin (55). 
Breast cancer xenografts using HCC1935 with mutated BRCA1 
showed complete inhibition of tumor growth upon treatment 
with cisplatin whereas only partial response in xenografts that 
had the wild-type BRCA1 reconstituted. Moreover, significant 
cell cycle arrest at the S phase and G2/M transition was observed. 
This not only points to the role of BRCA1 in DNA repair pathway 
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and cell cycle checkpoint activation but also its involvement in 
modulating response to platinum drugs (56, 57).

Although BRCA-mutated breast tumors exhibit higher his-
tological grade due to increased accumulation of chromosomal 
aberrations over time and are particularly sensitive to platinum 
drugs, their therapeutic use is limited to first-line treatment mainly 
due to development of resistance (58–62). This was demonstrated 
as early as 1988 when 47% partial response was achieved with 
a dose of 30  mg/m2/day of cisplatin for 4  days, every 3  weeks, 
in six cycles as a first-line therapy for metastatic breast cancer 
(63). In another study, 83% pathologic complete response (pCR) 
was reported in breast cancer patients treated with cisplatin as a 
neoadjuvant treatment for TNBC. Also, higher response to plati-
num and pCR has been shown to be associated with low BRCA1 
expression, promoter methylation, p53 frameshift or nonsense 
mutation, and E2F3 activation (64). Huang et al. reported more 
than 11 years of remission in a BRCA2-mutated metastatic breast 
cancer patient who received chemotherapy using high dose of 
cisplatin along with anthracyclin and alkylating agents (65). 
BRCA1-mutated metastatic breast cancer that was unresponsive 
to docetaxel, responded well to cisplatin and gemcitabine combi-
nation therapy for more than 6 months (66). In case of ovarian 
cancer, BRCA1 and BRCA2 patients exhibit a differential age of 
tumor development—BRCA1 carriers develop tumors earlier 
than those carrying BRCA2 mutations (48 vs. 57  years). Also, 
BRCA mutations seem to render the tumors more responsive 
to platinum drugs with a better survival (91 vs. 54 months) and 
longer disease-free interval (49 vs. 19 months) as compared with 
sporadic ovarian cancer (67, 68).

SeCONDARY SOMATiC BRCA 
MUTATiONS CONTRiBUTe TO THe 
DevelOPMeNT OF ReSiSTANCe TO 
PlATiNUM DRUGS

28.3% of recurrent ovarian cancer tumors contain secondary 
mutations as compared with only 3.1% in primary tumors, while 
46.2% of platinum resistant tumors have secondary mutations 
that restored the function of BRCA1/2 as compared with 5.3% 
that are sensitive to platinum drugs (69). This implies that the 
secondary mutations in BRCA1/2 may be instrumental in the 
development of drug resistance to platinum therapeutics. The 39 
amino acid long, non-functional BRCA1, produced due to the 
185delAG mutation in the exon 2, severely impair its DNA repair 
function making the cells highly sensitive to platinum. This may 
get circumvented by the restoration of the reading frame that pro-
duces the full-length functional protein resulting in efficient DNA 
damage repair. Various studies indicate that platinum refractory 
BRCA1-mutated tumors carry two nucleotide insertions that are 
otherwise not present in BRCA1-mutated platinum-sensitive 
tumors. Similar results were demonstrated in case of BRCA2 
mutations. In addition, new secondary mutations arise due to 
selection pressure exerted by prolonged exposure to platinum 
drugs resulting in resistance to both platinum drugs as well as 
PARP inhibitors (70). Such accumulation of secondary mutations 
could contribute to the development of resistance to platinum 

drugs over time. The presence of secondary mutations restoring 
the function of BRCA1/2 could be developed as a promising 
prognostic marker for either screening patients that are likely to 
respond favorably to platinum therapy or for predicting clinical 
outcome in patients already receiving platinum drugs or PARP 
inhibitor as single agent or in combination (71).

Apart from accumulated secondary mutations in BRCA, 
missense mutations in the ring finger domain affect response to 
platinum drugs. C61G missense mutation in exon 5 of BRCA1 
abrogates BRCA1–BARD1 heterodimerization leading to loss 
of E3 ubiquitin ligase activity and cytoplasmic mislocalization 
of BRCA1. This results in diminished availability of BRCA1 at 
the site of DNA damage and impaired DNA repair, increasing 
vulnerability of these cells to platinum drugs. Homozygous C61G 
mice are embryonic lethal with severe developmental delays, 
mimicking phenotype of BRCA1 null mice. Interestingly, unlike 
BRCA1 null mice, these mice were reported to have developed 
resistance to both cisplatin and the PARP inhibitor olaparib, 
suggesting a hypomorphic activity of C61G mutation in BRCA1 
(72). D67Y, another missense mutation that substitutes aspartic 
acid for a tyrosine residue at the 67th position result in decreased 
ubiquitin function of the mutated BRCA1 protein. In contrast 
to the C61G mutation, the D67Y mutation has been reported to 
increase cisplatin sensitivity in vitro (73).

In addition to mutational inactivation of BRCA function 
contributing to resistance to platinum drugs, several other 
mechanisms may exist that result in tumors not responding to 
platinum therapy (Figure  4). The dynamic balance between 
influx and efflux of platinum drugs influence its availability in 
the intracellular milieu to form DNA adducts and ultimately lead 
to apoptotic cell death. Copper transporters (CTR1 and CTR2) 
and copper-transporting p-type adenosine triphosphatase 1 and 
2 (ATP7A and ATP7B) are key molecules that are responsible 
for intracellular transport of platinum drugs. In a meta-analysis 
study, Sun and colleagues reported positive correlation between 
CTR1 expression levels and response to cisplatin with favorable 
overall survival, progression, and disease-free survival. However, 
no such correlation could be made for CTR2, ATP7A, and ATP7B 
(74). Therefore, how a patient would response to platinum 
therapy is dependent not only on the occurrence of mutations 
that functionally inactivate BRCA1/2 but also to a large degree 
on other cellular mechanisms such as ion transport pathways that 
influence the dynamics of the drug within the tumor.

OveRCOMiNG PlATiNUM ReSiSTANCe 
iN BRCA-MUTATeD CANCeRS

Treatment failure as a consequence of development of resistance 
to platinum drugs resulting in disease recurrence is a major 
roadblock in clinical management of cancers that carry BRCA 
mutations. In such cases, non-platinum-based drugs can achieve 
improved response and extended survival. PARP-1 and PARP-2, 
members of the PARP family, recruit the base excision repair 
(BER) machinery, a parallel, but less efficient mechanism for 
repairing damaged DNA, to the site of single-strand DNA breaks. 
In the absence of PARP, these lesions persist resulting in stalling 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FiGURe 4 | Probable mechanism of resistance to platinum drugs in BRCA­mutated cells. Multiple pathways could be activated simultaneously conferring resistance 
to platinum drugs in cells. Downregulation of copper transporter (CTR1) and organic cation transporters (OCT1/2/3) can decrease the uptake of platinum drugs 
whereas upregulation of efflux pumps can bring about increased transport of the drug out of the cells. In the cytosol, platinum drugs can bind to a protein such as 
chaperons that interfere with the drug reaching the target. Functional restoration of BRCA1/2 and elevated expression of ERCC1 leading to effective removal of 
platinum–DNA adducts and efficient DNA repair contribute to decreased cytotoxicity of platinum drugs.
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of the replication fork during DNA synthesis and formation of 
DSBs (75). The concept of synthetic lethality, the underlying 
premise of which is that functional depletion of two genes singly 
may not cause deleterious effect but together are lethal, was thus 
introduced to cancer therapeutics to develop better treatment 
strategies. This was mainly achieved by blocking the BER pathway 
by small molecule inhibitors against PARP in BRCA1/2-mutated 
cancers (76).

Poly(ADP-ribose) polymerase inhibitor olaparib has recently 
received FDA approval for treatment of ovarian cancer with 
mutated BRCA1/2 and EMEA approval for maintenance therapy 
for platinum-sensitive ovarian cancer (77). Randomized phase 
II clinical trial for evaluating the efficacy of olaparib, the first 
clinically approved PARP inhibitor, in combination with either 
paclitaxel or carboplatin, followed by olaparib monotherapy 
resulted in improved progression-free survival in BRCA-mutated 
high grade ovarian cancer patients compared with treatment 
with paclitaxel and carboplatin (78). PARP inhibitors have also 
been reported to be effective in other BRCA-mutated cancers. 
Clinical trials are underway to assess the efficacy of these (79, 
80). Other PARP inhibitors such as niraparib, veliparib, and 
rucaparib are currently being tested in various clinical trials  
(81). Kim et al. reported that there is no clear correlation between 
BRCA1 expression and response to docetaxel (82), while Byrski 
et al. reported that non-BRCA1 mutation carriers showed higher 
complete or partial response to docetaxel as neoadjuvant therapy 

when compared with patients who were BRCA1 mutation car-
riers (83). In vitro studies using breast cancer cells indicate that 
BRCA1 mutations make the cells non-responsive to taxanes, an 
observation supported by in  vivo experiments where targeted 
deletion of p53 and BRCA1 in mammary tissue rendered tumors 
resistant to docetaxel but not cisplatin (52). Clinical correlation 
between BRCA1 mutation and response to taxane is not clear 
with several studies reporting data that are largely inconclusive.

CONClUSiON

Structural organization of BRCA1 and BRCA2 into functionally 
distinct domains allow for multiple protein–protein interactions 
with numerous binding partners that facilitate participation in 
various cellular activities including DNA damage repair pathway. 
Specific protein–protein interaction such as BRCA1 and BARD1 
that is crucial for the E3 ubiquitin ligase activity and the numerous 
phosphoproteins that bind to the C-terminus of BRCA1 make it 
an important node in the highly branched intracellular signaling 
network (29, 30, 84–88). Most common type of mutation observed 
among breast and ovarian cancer patients is deletion of multiple 
functional domains of BRCA1/2 that lead to not only impaired 
DNA repair but also abrogation of cell cycle checkpoints and 
transcriptional mis-regulation of genes, which eventually lead to 
global genomic instability. Suboptimal DNA repair mechanism 
arising from BRCA mutations render cells highly vulnerable to 
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DNA cross-linking agents, such as platinum drugs, making them 
useful therapeutics in many cancers. In vitro data have provided 
strong evidence toward better response to platinum drugs in 
the presence of BRCA mutations and is corroborated by clinical 
studies where BRCA mutation carriers exhibit better survival and 
longer disease-free intervals upon treatment with platinum drugs, 
suggesting beneficial therapy outcome. Along with targeting 
the suboptimal HRR pathway that results from non-functional 
BRCA1/2, the blocking of the BER pathway with PARP inhibitors 
significantly improves survival rates of cancer patients. Although 
BRCA1/2-mutated tumors are highly susceptible to platinum 
drugs and PARP inhibitors, development of resistance poses a 
major challenge in the clinical management of these cancers and 
secondary mutations significantly contribute toward this.

The inherent susceptibility of BRCA-mutated tumors to 
platinum drugs makes it an appropriate target for development 
of newer therapeutic agents. The ongoing efforts to design and 
develop novel inhibitors for the various components of the DNA 
repair pathway may yield encouraging results and in combina-
tion with platinum drugs could further improve the treatment 
options available for cancer patients. In addition, molecular 
signatures that can predict the outcome of a treatment regimen 
are being evaluated as biomarkers, which may help in identifying 
a target population that is more likely to respond to therapy. For 
instance, the C118T and C8092A polymorphisms in ERCC1 
have been strongly correlated with objective response rate and 
overall survival (89). Similarly, the levels of annexin A3 in the 
peripheral blood may be a potential predictor for platinum resist-
ance in ovarian cancer (90). Although molecular markers have 
the potential to predict therapy response, rigorous validation in 
large patient cohorts would truly bring out the benefits of such 

predictions. The formation of DNA–platinum adducts and sub-
sequent progression toward apoptotic cell death was believed to 
be the mechanism of action for platinum drugs. Recent advances 
have brought forth other novel mechanisms by which platinum 
drugs exert their cytotoxic effect. One such mechanism is the 
ability of platinum drugs to modulate the host immune system. 
Treatment regimen that includes platinum drugs in combination 
with immune checkpoint blockers, such as anti-CTLA4 antibody 
and ipilimumab, has been approved for metastatic melanoma, 
whereas anti-PD-L1 antibody, atezolizumab, has been approved 
for metastatic lung cancer (91).

Platinum drugs, although highly efficacious in patients car-
rying BRCA1 and BRCA2 mutations, come at a cost in the form 
of severe side effects—nephrotoxicty and ototoxicity being two 
of the major unwanted effects of cisplatin treatment. The major 
challenge is to target the drug specifically to the tumor alone and 
minimize its accumulation in non-tumor tissue. Development of 
better drug-delivery vehicles that can ensure targeted delivery at 
the tumor site will not only maximize availability of the therapeu-
tic agent at the site of the tumor but also reduce accumulation in 
healthier tissue, thereby minimizing toxicity. Thus, a therapeutic 
regimen that includes inhibitors for the DNA repair pathway, a 
tumor-specific platinum drug, together with radiotherapy may 
prove to be an effective way of treating and managing the cancer 
burden due to BRCA1 and BRCA2 mutations.
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