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Aberrant glycosylation of tumor cells is recognized as a universal hallmark of cancer patho-
genesis. Overexpression of fucosylated epitopes, such as type I (H1, Lewisa, Lewisb, and 
sialyl Lewisa) and type II (H2, Lewisx, Lewisy, and sialyl Lewisx) Lewis antigens, frequently 
occurs on the cancer cell surface and is mainly attributed to upregulated expression 
of pertinent fucosyltransferases (FUTs). Nevertheless, the impact of fucose-containing 
moieties on tumor cell biology is not fully elucidated yet. Here, we review the relevance 
of tumor-overexpressed FUTs and their respective synthesized Lewis determinants in 
critical aspects associated with cancer progression, such as increased cell survival 
and proliferation, tissue invasion and metastasis, epithelial to mesenchymal transition, 
endothelial and immune cell interaction, angiogenesis, multidrug resistance, and cancer 
stemness. Furthermore, we discuss the potential use of enhanced levels of fucosylation 
as glycan biomarkers for early prognosis, diagnosis, and disease monitoring in cancer 
patients.
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iNTRODUCTiON

The abnormal cell growth and the potential to invade or spread to other tissues of the body is what 
characterizes cancer. Aberrant glycosylation has been recently proposed as universal aspect of this 
disease. Despite the notable absence of this critical post-translation modification of proteins and 
lipids from both the original (1) and the next-generation (2) hallmarks of neoplastic malignancies, 
altered glycosylation is causally associated with the acquisition of all characteristic features of tumor 
cells (3).

Hakomori and Kannagi were the first to describe the incomplete and neo-synthesis processes 
defining tumor-specific glycosylation (4). Cancer cells often display differential expression levels 
of critical glycans or distinct carbohydrate epitopes that are not present in their normal counter-
parts. Increased fucosylation, truncated O-glycans, and increased sialylation are a well-established 
signature of malignant cell transformation (5). Importantly, these alterations greatly affect tumor 
cell–cell adhesion, cell–matrix interactions, cell-signaling, metabolism, angiogenesis, and immune 
modulation, eventually leading to cancer progression and metastasis.

Fucosylation represents the transfer of a fucose residue (from GDP-fucose) to oligosaccharide 
chains carried by cell-surface glycoproteins or glycolipids (6). It is regulated by a number of 
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molecules, such as GDP-fucose synthetic enzymes, GDP-fucose 
transporters, and fucosyltransferases (FUTs). Two types of 
fucosylation exist, depending on the site of the oligosaccharide 
chain to which the fucose is added: core fucosylation and 
terminal fucosylation. Today, the biological role of enhanced 
fucosylation during inflammation and cancer is gaining more 
attention (7), since changes in fucosylation can facilitate the 
development of novel strategies for early prognosis, diagnosis, 
and therapy (8).

Type I and type II Lewis antigens are terminal fucosylated 
carbohydrate epitopes belonging to the human histo-blood group 
antigen system, which is generally known as the Lewis antigen 
system (9). H1, H2, Lewisa (Lea), Lewisb (Leb), Lewisx (Lex), and 
Lewisy (Ley) are all structurally related members of this system 
(Figure 1). The same three monosaccharide units are present in 
all Lewis determinants, namely, N-acetylglucosamine (GlcNAc), 
galactose (Gal), and fucose (Fuc), which differ only in their 
corresponding glycosidic bonds (Galβ1-3GlcNAc in type I and 
Galβ1-4GlcNAc in type II Lewis antigens). Further addition of 
sialic acids to these epitopes can give rise to more complex glycan 
structures, such as sialyl Lewisa (sLea or CA19-9) (10) and sialyl 
Lewisx (sLex) (11) (Figure 1).

According to the species-, tissue-, or cell-specific expres-
sion, early studies have shown that Lewis antigens are involved 
in various intercellular and intracellular biological processes, 
including cell adhesion and cell communication events during 
embryogenesis and later development (9). However, pronounced 
overexpression of Lewis epitopes has been reported in many 
types of cancers (12). Specifically, high-density expression of 
fucosylated antigens by carcinomas, such as colorectal cancer, 
is attributed to the increased expression of relevant FUTs and is 
correlated with poor prognosis and decreased survival (13).

We here review the impact of Lewis antigen overexpression 
by tumor cells on multiple biological aspects related to cancer 
development and progression. Great emphasis is given to the 
potential role of fucosylated epitopes as cancer biomarkers and 
to their involvement in the increased proliferative, invasive, and 
metastatic capacity of cancer cells. Also, we discuss in detail the 
implications of Lewis antigens in endothelial to mesenchymal 
transition (EMT), in the interaction of cancer cells with endothe-
lial and/or immune cells and in the induction of multidrug 
resistance and cancer stemness. Throughout this review, we will 
highlight the significance of a fine-tuned expression of Lewis 
moieties, since their uncontrolled appearance on the cancer 
cell surface can have detrimental effects on tumor growth and 
the subsequent communication with their surrounding tissue 
microenvironment.

SPeCiFiCiTY OF FUTs

So far, 13 FUT genes have been identified and characterized in 
humans. The enzymes that are coded by these genes can be cat-
egorized into five groups, according to the type of linkage of the 
added fucose residue. FUT1 (H enzyme) and FUT2 (Se enzyme) 
are α1-2 fucosyltransferases (14), whereas FUTs3–7 together with 
FUT9 are α1-3 fucosyltransferases (15). Recent studies suggest 
that FUT10 and FUT11 belong to the α1-3 fucosyltransferase 

family, as well (16). Remarkably, only the FUT3 enzyme exhibits 
a combined α1-3 and α1-4 fucosyltransferase activity. FUT8 
is responsible for the production of core fucosylation (α1-6 
fucosyltransferase) (17, 18), whereas Pofut1 and Pofut2 (protein 
O-fucosyltransferase 1 and 2, respectively) are enzymes specific 
only for O-fucosylation (19, 20).

The preferred sites for fucosylation differ substantially 
between FUTs (21), something that greatly affects the synthesis 
of terminally fucosylated epitopes. All the known Lewis antigen-
synthesizing fucosyltransferases (FUTs1–7 and FUT9) possess a 
unique substrate specificity, thereby increasing the complexity 
and the bioavailability of fucose-containing Lewis epitopes in 
naturally occurring glycoconjugates. Nevertheless, the biological 
consequences of this complexity in different stages of human 
carcinogenesis are not fully elucidated yet (Table 1).

PHYSiOLOGiCAL eXPReSSiON OF LewiS 
ANTiGeNS

Understanding the pattern of Lewis antigen expression in nor-
mal tissues, together with the physiological functions that these 
carbohydrates exert, will set the framework to understand their 
altered regulation and their tumor-promoting capabilities in the 
context of cancer.

During human embryogenesis, the appearance of fucosylated 
epitopes is attributed to the overexpression of certain FUT genes, 
such as the Fut4 and the Fut9 genes (22). The Lewisx/SSEA-1 
(Stage-specific embryonic antigen-1) trisaccharide is the most 
representative example. Its expression begins gradually during 
cell differentiation in the nephric duct, nephric tubule, yolk sac, 
and on the surface of embryonic ectodermal cells of the epider-
mis, where it is known to play a vital role in cell–cell recognition 
and adhesion processes (23).

Lewis antigens that are moderately expressed in healthy adult 
tissues, such as in the mucosal epithelium of the digestive system, 
in the brain and by certain immune cell subsets, have similar 
functions, however, in a different context (24). In epithelial tis-
sues, Lewisx expression is mainly found in the stomach, colon, 
salivary glands, kidneys, bladder, epididymis, uterus, cervix, and 
medulla, while Lewisy expression has been detected in epithelial 
cells from the breast, lung, prostate, colon, stomach, pancreas, 
uterus, ovary, salivary glands, and the Panneth cells of the small 
intestine. In contrast, sialyl Lewisa is mostly expressed on normal 
fibroblasts, on the luminal side of ductal epithelial cells, and on 
some parenchymatous cells (25).

Lewisx is the predominant fucosylated antigen in the brain and 
it facilitates cell–cell interactions involved in neuronal develop-
ment, with FUT9 being the responsible Lewisx-synthesizing 
enzyme in the nervous system (26). Mice lacking the Fut9 gene, 
thus fully devoid of Lewisx expression in the brain, exhibit no 
obvious pathological differences compared to wild-type mice, but 
have an increase in anxiety-like behaviors (27). Currently, Lewisx 
is still used as a surface biomarker for the identification of neural 
stem cells (28).

Moreover, immune cells display different fucosylated epitopes 
on their cell-surface. For example, expression of Lewisx on human 
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FiGURe 1 | Cell-surface fucosylated antigens. Type I (H1, Lewisa, Lewisb, and sialyl Lewisa) and type II (H2, Lewisx, Lewisy, and sialyl Lewisx) Lewis antigens are 
terminal fucosylated carbohydrate motifs decorating cell surface glycoproteins or glycolipids. In the case of glycoproteins, N- and O-linked glycans containing Lewis 
antigens are covalently attached to the protein at Asparagine (Asn), or Serine and Threonine (Ser/Thr) residues, respectively. Expression of Lewis antigens is 
attributed to the expression of key enzymes, named fucosyltransferases (FUTs). The substrate specificity of different FUTs determines the site-specific transfer of 
fucose to oligosaccharides and the synthesis of the respective Lewis determinants.
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mature granulocytes (neutrophils, eosinophils, and mast cells) is 
attributed to FUT9 activity, whereas Lewisx expression on pro-
myelocytes is determined by FUT4 (29). In terms of function, 

Lewisx is necessary for neutrophil transepithelial migration 
(30), and it exerts positive immunomodulatory effects on den-
dritic cells (DCs) via engagement of the C-type lectin receptor 
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TAbLe 2 | Clinical relevance of Lewis antigen overexpression in different types of cancers.

Lewis antigen Major protein carriers Cancer types Clinical relevance to cancer

Lewisx Carcinoembryonic antigen (CEA) and carcinoembryonic  
antigen cell adhesion molecule (CEACAM) family (76),  
CD98 (59), and ICAM-1 (59)

Epithelial cancers, brain 
cancers, leukemias, and 
lymphomas

Decreased survival (36, 38), metastasis (39, 44, 45, 51), 
correlation with cancer stage (51), and cancer  
biomarker (58)

Lewisy CEA and CEACAM family (76), carbohydrate antigen  
125 (70, 71), and CD44 (153)

Epithelial cancers Decreased survival (40), metastasis (47, 54), correlation 
with cancer stage (42), and cancer cell differentiation 
status (37, 46, 54)

Sialyl Lewisa Transforming growth factor-β (TGF-β) (95), MUC1 (107),  
MUC5AC (107), Apo-B-100 (107), Apo-E (107), and  
kininogen (107)

Epithelial cancers Decreased survival (72, 73), metastasis (72, 107) and 
cancer biomarker (72, 73)

Sialyl Lewisx TGF-β (95), cancer antigen 15.3 (78), α-1 acid glycoprotein  
(107), and ceruloplasmin (107)

Epithelial cancers and 
leukemias

Decreased survival (36) and metastasis (45, 107)

TAbLe 1 | Overview of Lewis antigen-synthesizing fucosyltransferases (FUTs) and their known implications in cancer.

enzyme enzyme activity Synthesized antigen Cancer-related features

FUT1 α1-2 Fucosyltransferase H antigen, Lewisb/y Cell proliferation (80–85), endothelial to mesenchymal transition (EMT)/tissue invasion (96),  
metastasis (47), angiogenesis (113, 114), and resistance to chemotherapy (139)

FUT2 α1-2 Fucosyltransferase H antigen, Lewisb/y Still under investigation

FUT3 α1-3/4 Fucosyltransferase Lewisa/b/x/y

Sialyl Lewisa/x

Cell proliferation (90), EMT/tissue invasion (94, 95), metastasis (90), and cancer stemness (150)

FUT4 α1-3 Fucosyltransferase Lewisx

Sialyl Lewisx

Cell proliferation (86, 87), EMT/tissue invasion (97–99), resistance to chemotherapy (138, 140, 141),  
and potential cancer biomarker (78)

FUT5 α1-3 Fucosyltransferase Sialyl Lewisx Cell proliferation (88)

FUT6 α1-3 Fucosyltransferase Sialyl Lewisx Cell proliferation (88), EMT/tissue invasion (95), resistance to chemotherapy (138), and cancer  
stemness (150)

FUT7 α1-3 Fucosyltransferase Sialyl Lewisx Cell proliferation (88)

FUT8 α1-6 Fucosyltransferase Core fucosylation Tissue invasion (17) and metastasis (18)

FUT9 α1-3 Fucosyltransferase Lewisx Still under investigation

FUTs1–7 and FUT9 display differential substrate specificity regarding the synthesis of terminally fucosylated antigens and are involved in various aspects of cancer progression. In 
contrast, FUT8 is responsible for core fucosylation only; however, its expression is also associated with tumor-promoting characteristics.
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(CLR) dendritic cell-specific ICAM-3 grabbing non-integrin 
(DC-SIGN) (31, 32). Sialyl Lewisx is commonly found on the 
surface of neutrophils and monocytes, facilitating extravasation 
of these cells to sites of inflammation through the interaction with 
E-selectin expressed by endothelial cells (11). Finally, granulo-
cytes are the only peripheral blood immune cells that weakly 
express the Lewisy antigen (33).

LewiS ANTiGeN eXPReSSiON iN 
CANCeR

Overexpression of Lewis antigens, along with the respective FUT 
proteins, has been reported in many different types of cancers 
(24). Here, we summarize evidence of increased fucosylation 
compared to healthy tissues, as well as the known association of 
terminal fucosylated epitopes with each type of cancer and the 
tumor microenvironment (for overview see Table 2).

Lung Cancer
According to the cancer statistics of 2016, lung cancer is the most 
prevalent malignant disease in both sexes worldwide, ranking 
first in cancer mortality (34). Lung cancer can be divided into 

two types: small cell lung cancer and non-small cell lung can-
cer. The latter one accounts for almost 85% of all the cases and 
includes adenocarcinoma, squamous cell carcinoma, and large 
cell carcinoma (35). Lewisx expression in lung cancer is higher 
in adenocarcinomas and squamous cell carcinomas, compared 
to small cell carcinomas. Also, overexpression of both Lewisx 
and sialyl Lewisx antigens is associated with a shortened survival 
time of patients (36). Besides Lewisx and its sialylated isoform, 
the Lewisy antigen is also overexpressed in non-small cell lung 
cancer patients and is considered as a valuable marker of cancer 
cell differentiation (37).

breast Cancer
Overexpression of fucosylated epitopes in breast cancer patients 
has an important prognostic value. Lewisx expression is an 
independent prognostic factor for survival in young (<50 years) 
patients with triple-negative breast cancer (stages I, II, and III) 
and is correlated with poor recurrence-free and overall survival 
(38). A close association between expression of Lewisx and the 
leading edge of the invading tumor has been reported, pinpoint-
ing to a possible role of this antigen in breast cancer metastasis 
(39). Furthermore, overexpression of the Lewisy antigen in lymph 
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node-negative breast cancer patients is associated with poor 
prognosis and a substantial decrease in survival (40).

Colorectal Cancer
In colorectal cancer, Lewisx expression on the surface of both 
infiltrating inflammatory cells and cancer cells increases during 
disease progression. Specifically, Lewisx+-infiltrating immune 
cells (predominantly neutrophils) are identified in the invasive 
front of the tumor mass, whereas Lewisx+ tumor cells are mostly 
located in the center (41). Lewisy is highly expressed in gastroin-
testinal carcinomas, including colorectal cancer. It is detected in 
40–50% of total cases with either gastric or colorectal malignancy, 
and its overexpression is correlated with increased tumor staging, 
especially stage IV (42).

Hepatocellular Carcinoma (HCC)
Hepatocellular carcinoma is the primary malignant disease of 
the liver, whereby intrahepatic metastasis is a poor prognostic 
indicator of HCC (43). There is a correlation between Lewisx 
expression and histologic intrahepatic metastasis, although 
the difference between Lewisx+ and Lewisx− HCC samples in 
terms of patient survival are not statistically significant (44). 
The involvement of α1-3 fucosyltransferases and type II Lewis 
antigens, such as Lewisx and sialyl Lewisx, in human liver cancer 
progression and metastasis has been confirmed by other stud-
ies (45). Also, a close correlation between Lewisy expression in 
HCC cells and the degree of de-differentiation as well as the 
increased proliferative and metastatic potential of the whole 
tumor has been described (46, 47).

Other Types of Cancers
Lewisx and sialyl Lewisx are also highly expressed in renal and 
bladder carcinomas (48). Lewisx overexpression has been 
detected in more than 60% of the human renal cancer specimens 
tested and is proposed as a potential therapeutic target for renal 
cancer metastasis (49). In the bladder, Lewisx is considered as a 
marker of malignant transformation (50), and its expression has 
been correlated with the stage, grade, and metastatic potential of 
the transitional cell carcinoma of the bladder (51).

The presence of both Lewisx and Lewisy has been reported in 
pancreatic cancer, too (52). Although Lewisx is not expressed in 
normal pancreas (except for some cases of chronic pancreatitis), 
Lewisx overexpression has been identified in 50–70% of pancre-
atic cancer tissues (53). In prostate cancer, high Lewisy expression 
has been detected in localized and metastatic adenocarcinomas 
(54). Overall, high Lewisy expression is correlated with the poor 
differentiation status and the metastatic potential of tumor lesions 
in the prostate.

Strikingly, overexpression of Lewis determinants is not merely 
restricted to solid tumors (55). Ball et al. used a flow cytometric 
analysis to assess the Lewisx expression in normal and acute 
myeloid leukemia (AML) cells (56). In this study, AML cells dis-
played the highest binding with the anti-Lewisx antibody PM-81. 
In some cases, enhanced binding was detected after neuramini-
dase treatment, implying that sialyl Lewisx is also expressed in 
AML. In addition, expression of Lewisx has been associated with a 
high risk of relapse in children with acute lymphoblastic leukemia 

(57). Finally, the Lewisx determinant is expressed on Hodgkin’s 
Reed–Sternberg cells (often carried by CD98 and ICAM-1) and 
is an established diagnostic marker for patients with Hodgkin’s 
lymphoma (58, 59).

LewiS ANTiGeNS AS CANCeR 
biOMARKeRS

Given that fucosylated epitopes are overexpressed in several types 
of cancers, a general interest in the development and further use 
of glycan-based tumor biomarkers exists (60). The term cancer 
biomarker refers to any biological molecule that is present in 
the blood, other body fluids, or tissues that discloses signs of 
malignant cell transformation. The discovery and validation of 
cancer-specific biomarkers are of utmost importance, since they 
can be exploited for the early prognosis and diagnosis of cancer 
patients. Also, they can be used for monitoring the tumor grade, 
the disease stage, and the response to treatment or estimate the 
risk of disease recurrence. Nonetheless, the gap between the 
initial development of emerging cancer biomarkers and their 
subsequent clinical implementation is still a big challenge in 
terms of sensitivity and specificity (61).

So far, a number of gene- or protein-based cancer biomarkers 
have been applied to the clinical management of cancer patients 
with BRCA1/BRCA2 (breast/ovarian cancer) (62), HER-2 (breast 
cancer) (63), PSA (prostate cancer) (64), and S100 (melanoma) 
(65) as a few representative examples. Interestingly, other 
established cancer biomarkers, such as carbohydrate antigen 
125 (CA-125) (66), carbohydrate antigen 19.9 (CA19.9 or sialyl 
Lewisa) (67), and carcinoembryonic antigen (CEA) (68), are all 
strongly associated with an aberrant glycosylation profile during 
cancer progression and more specifically, with increased levels of 
fucosylation.

Carbohydrate antigen 125 or mucin 16 (MUC16) is a glycopro-
tein that is overexpressed in different types of cancers, although it 
is mainly used as a biomarker for the early prognosis of ovarian 
cancer (69). The detection of increased CA-125 serum levels 
combined with increased expression of fucosylated epitopes on 
it, such as Lewisy, is associated with worse prognosis and survival 
(70, 71). Moreover, CA19.9 or sialyl Lewisa is the most validated 
serum biomarker used for the management of pancreatic cancer 
patients to date (72). Of note, it has been shown that CA19.9 has 
the highest predictive value as a stand-alone marker, although in 
combination with other biomarkers (such as CA-125 and CEA) it 
is better able to predict the outcome of patients after surgery and 
chemotherapy (73).

Carcinoembryonic antigen and the carcinoembryonic 
antigen cell adhesion molecule (CEACAM) family represent 
a group of glycoproteins found in high levels in the serum of 
patients with a wide range of tumors. They are currently used as 
biomarkers for the early detection among other colorectal, pan-
creatic, and lung cancers (74). A continuous increase in serum 
CEA is typically correlated with disease progression (75). Also, 
analytical glycoprofiling of circulating cancer-associated CEA 
has revealed significantly increased expression of type I and type 
II Lewis antigens compared to CEA from healthy individuals 
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(76). This may possibly explain the current focus on the glyco-
sylation status of various cancer-related protein biomarkers and 
on the implementation of more fucosylated epitopes (e.g., type 
II Lewis antigens) in the field of cancer biomarker research. For 
instance, increased antennarity/branching (glycan structures 
that are not linear and have two or more branches) combined 
with higher levels of the Lewisx motif have been detected in 
serum N-glycoproteins derived from epithelial ovarian cancer 
patients (77). More specifically, tetra-antennary N-linked gly-
cans bearing three Lewisx moieties and tri-antennary N-linked 
glycans bearing one Lewisx moiety can be found in the serum of 
patients, but not in the control sera, suggesting a possible role of 
these epitopes as useful biomarkers for ovarian cancer.

In addition, expression of FUT4, whose synthetic epitopes 
are Lewisx, Lewisy, and sialyl Lewisx, is higher in breast cancer 
tissues and serums compared to normal tissues and control 
serums, respectively. Since induction of FUT4 expression is 
also correlated with expression of another cancer-associated 
marker, the cancer antigen 15.3 (CA15.3), FUT4 has been 
proposed as a novel biomarker for the early prognosis of breast 
cancer (78). However, it is still unknown whether any of these 
Lewis antigens (or FUTs) can be further exploited as valuable 
cancer biomarkers, independent of their respective carrier 
molecules.

CeLL SURvivAL AND PROLiFeRATiON

In general, each type of cancer is characterized by its own com-
plexity and idiopathy. Increased expression of Lewis antigens (due 
to upregulation of related FUT proteins) affects several functional 
aspects of cancer cell biology, including EMT, the interaction with 
immune and endothelial cells, and the induction of multidrug 
resistance and cancer stemness. Nevertheless, there are certain 
characteristics that are shared by every single neoplastic disease, 
such as deregulation of the normal cell growth and proliferation 
via the induction of pro-survival and/or anti-apoptotic signaling 
pathways (79).

Overexpression of different FUTs and their synthesized 
fucosylated antigens during malignant cell transformation are 
correlated with the acquisition of an increased proliferative 
capacity and a pro-survival phenotype. For instance, transfection 
of the ovarian cancer cell line RMG-1 with a cDNA encoding 
the human Fut1 gene results in a high cell surface expression 
of the di-fucosylated Lewisy epitope and in a more aggressive 
phenotype (80). Specifically, RMG-1-hFUT1+ cells exhibited 
increased proliferation and cell cycle regulation compared to the 
RMG-1 wild-type cells, due to activation of the PI3K/Akt (81), 
ERK/MAPK (82), EGFR (83), and transforming growth factor-β1 
(TGF-β1) (84) signaling pathways and stimulation of IGF-R1 
expression (85).

Similarly, induction of FUT4 expression in the breast 
cancer cell line A431 leads to increased cell cycle progression 
and skews the balance toward the S-phase of the cell division 
process. The underlying mechanism includes activation and 
cross talk of the PI3K/Akt and MAPK signaling pathways (86). 
Overexpression of FUT4 in the breast cancer cell lines MCF-7 
and MDA-MB-231 is regulated by certain transcription factors 

(heat-shock factor 1 and Sp1) and micro-RNAs (miR-224-3p 
and miR-493-5p), all of which have a direct effect on breast 
cancer cell proliferation and invasion again through the PI3K/
Akt and ERK/MAPK pathways (87).

Besides FUT1 and FUT4, overexpression of other FUTs is 
also associated with the induction of the abovementioned signal-
ing cascades. In colorectal cancer, miR-125a-3p influences cell 
proliferation mediated by the PI3K/Akt pathway by regulating 
the expression levels of FUT5 and FUT6 (88). Moreover, upregu-
lation of FUT7 is associated with increased proliferation of the 
lung cancer A549 cell line through activation of the EGFR/AKT/
mTOR pathway (89). Finally, knockdown of the Fut3 gene in the 
prostate cancer cell line MDA PCa2b results in decreased cell 
growth in vitro; however, the exact signaling pathways involved 
have not been determined yet (90).

Clearly, cancer-related overexpression of different FUTs results 
in the induction of common pro-survival signals. Therefore, 
potent drugs/inhibitors of these specific signaling cascades need 
to be considered for future development of effective treatment of 
cancer patients.

ePiTHeLiAL TO MeSeNCHYMAL 
TRANSiTiON

Another important feature that cancer cells have in common 
is the increased tissue invasiveness and metastatic potential 
due to genetic or epigenetic alterations (91). EMT is a type 
of cellular transdifferentiation that is strongly associated with 
both invasion and metastasis, and it is currently an active 
field of cancer research (92). During this complex biological 
process, cancer cells of epithelial origin lose their polarity and 
cell–cell adhesion/interactions. They become more motile and 
are eventually capable of invading neighboring healthy tissues 
before spreading to other parts of the body. A number of differ-
ent molecules regulate this transition state, such as transcrip-
tion factors, cytoskeletal or cell-surface proteins, extracellular 
matrix enzymes, and micro-RNAs (93). Briefly, cancer-induced 
EMT is characterized by the downregulation of the epithelial 
cell marker E-cadherin together with concomitant upregulation 
of mesenchymal protein markers, such as N-cadherin, vimen-
tin, and fibronectin. In parallel, transcription factors such as 
Snail 1/2, Twist, ZEB1/2, and matrix metalloproteinases such 
as MMP-2 and MMP-9 are all overexpressed in malignant cells 
undergoing EMT. In most cases, TGF-β signaling is involved 
in the establishment of the aforementioned EMT molecular 
signature; however, the convergence of other cancer-associated 
signaling cascades (Wnt, Notch, EGF, PI3k/Akt, and MEK/
ERK) has proven to be essential.

Remarkably, the expression levels of different FUTs are strongly 
associated with the establishment of a robust EMT phenotype. 
First of all, treatment of the HT-29 and DLD-1 colon cancer 
cells with the EMT-inducing factors EGF or b-FGF results in 
transcriptional downregulation of FUT2, however, pronounced 
upregulation of FUT3 and increased cell surface expression of 
the sialyl Lewisa/x epitopes in vitro (94). In this case, enhanced 
binding of E-selectin to colon cancer cells undergoing EMT 
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could be observed, hinting to an increased metastatic potential 
of the cells.

Similar to EGF and b-FGF, TGF-β-induced upregulation of 
FUT3 and FUT6 also leads to overexpression of sialylated Lewis 
antigens in colorectal cancer cell lines and subsequently to an 
increased migratory phenotype (95). The ovarian cancer cell 
line RMG1, which overexpresses FUT1, exhibits elevated protein 
levels of the integrin adhesion receptor α5β1, upregulation of the 
matrix metalloproteases MMP-2 and MMP-9 and a concomitant 
downregulation of the tissue inhibitors of metalloproteinases 
TIMP-1 and TIMP-2 (96). Together, these findings may partially 
explain the invasive properties that have been observed in this 
cell line.

Furthermore, overexpression of FUT4 in the human non-small 
cell lung cancer cell lines A549, H1299, and H358 is associated 
with increased tissue invasiveness, metastasis, and induction of 
EMT (97). Treatment of these cells with the ginsenoside com-
pound Rg3 or with short-hairpin RNA targeting FUT4 (shFUT4) 
reverts the mesenchymal phenotype through increased levels of 
E-cadherin and decreased levels of N-cadherin, vimentin, and 
Snail. Importantly, administration of Rg3 or treatment with 
shFUT4 of non-small cell lung cancer cells leads to significant 
inhibition of the migratory and invasive properties of the cells 
in vitro. Besides that, Rg3 administration results in a remarkable 
inhibition of EMT characteristics and in a decreased growth and 
metastatic potential of the non-small lung cancer cell tumors in a 
xenograft setting. Similar effects of Rg3 have also been described 
in melanoma, where Rg3 affects FUT4 expression and inhibits 
the FUT4-associated EGFR/MAPK signaling pathway (98, 99).

Finally, elevated expression levels of FUT4 in breast cancer 
cells are associated with the acquisition of a mesenchymal 
phenotype and a greater cell motility (100). More specifically, 
FUT4-mediated activation of the PI3K/Akt and NF-κB pathways 
resulted in EMT, defined in this case by the induction of Snail and 
MMP-9 expression. Taken together, a common, cancer-specific 
axis of fucosylation appears to exist, where overexpression of 
FUT genes is associated with the induction of pro-survival signals 
and increased tissue invasiveness, represented mainly by higher 
cell proliferation rates (as mentioned in the previous section) and 
by the establishment of a generalized EMT phenotype.

iNTeRACTiON wiTH eNDOTHeLiAL 
CeLLS AND TUMOR ANGiOGeNeSiS

The development of new blood vessels from a pre-existing 
vascular network is called angiogenesis and has a pivotal role 
during cancer progression (101). Tumor cells generally require 
enhanced blood supply in order to maintain the necessary oxygen 
and nutrient levels for their rapid growth. Intratumoral hypoxia is 
a well-established driver of tumor angiogenesis (102). Moreover, 
immune cells (macrophages, neutrophils, mast cells, eosinophils, 
T cells, B cells, and NK cells) along with stromal cells (pericytes, 
adipocytes, and fibroblasts) reside within the tumor microenvi-
ronment and exert potential pro-angiogenic effects through their 
bioactive products such as cytokines, growth factors, and secreted 
microvesicles (103).

During angiogenesis increased growth, migration, and dif-
ferentiation of endothelial cells lining the inner wall of the newly 
formed blood vessels can be observed. Today, a large number 
of anti-angiogenic cancer therapies focus on targeting these 
endothelial cells (104). Interestingly, endothelial cells express 
Lewis antigen-binding proteins such as E-selectin (CD62E), 
P-selectin (CD62P), and the scavenger receptor C-type lectin 
(SRCL), supporting the idea that during cancer angiogenesis 
potential interactions between these receptors and their fuco-
sylated ligands expressed by tumor cells exist (105).

Selectins are cell adhesion molecules that recognize and bind 
carbohydrate structures in a Ca2+-dependent manner. E-Selectin 
is constitutively expressed by venous endothelial cells in the 
bone marrow and the skin, whereas in other organs it can only 
be expressed upon stimulation with LPS or pro-inflammatory 
cytokines such as TNF-α and IL1-β. P-Selectin is expressed by 
both platelets and activated endothelial cells, where it is stored 
in the α-granules and within the Weibel–Palade bodies, respec-
tively (106). The cancer-related epitopes sialyl Lewisa and sialyl 
Lewisx are major selectin ligands (carried by different glycopro-
teins, Table 2). Tumor cells expressing these antigens interact 
with endothelial cells expressing E/P-selectin, a process that 
eventually leads to cancer cell extravasation, which is crucial 
during metastasis (107). Besides the aforementioned determi-
nants, Lewisx expressed by malignant cells can also interact 
with E-selectin. For example, Lewisx expressed by non-small 
cell lung cancer cells interacts with TNFα-induced CD62E on 
brain endothelial cells, facilitating the adhesion between these 
two cell types and promoting CNS metastasis similar to sialyl-
Lewisx (108, 109).

Lewisx can also be recognized by endothelial cells through 
the SRCL (110). This receptor not only shares structural and 
functional similarities with type A scavenger receptors (whose 
main function is the removal of oxidized lipoproteins) but also 
has a Ca2+-dependent carbohydrate recognition domain. It binds 
the Lewisx trisaccharide with high affinity, such as DC-SIGN; 
however, SRCL recognizes the galactose residue of Lewisx instead 
of the fucose residue that is bound by DC-SIGN (111). This 
receptor is responsible for the endocytosis and degradation of 
glycoprotein ligands, and it is the linking component between 
the interaction of Lewisx-bearing cells and endothelial cells both 
in humans and mice (112). Unfortunately, the role of SRCL in 
cancer is not fully explored. Yet, the specificity for Lewisx together 
with the distribution of this receptor on the vascular endothelium 
might indicate its involvement during cancer-induced angiogen-
esis or metastasis.

Finally, Lewisy expressed by endothelial cells contributes 
to tumor-associated vascularization. Induction of endothelial 
FUT1 expression and increased levels of endothelial cell-surface 
expression of Lewisy have been observed in the capillaries of 
tumor-infiltrated tissues (113). Also, the use of a designed Lewisy-
saccharide mimetic has been shown to interfere with normal 
endothelial function and to inhibit angiogenesis in vitro (114). 
Whether Lewisy overexpression by tumor cells has a direct effect 
on the vasculature during metastasis is not known yet. Therefore, 
the potential interaction of Lewisy+ cancer cells with endothelial 
cells, as well as the underlying mechanisms of such interaction, 
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requires further investigation. Besides Lewisy, the implications 
of tumor-associated Lewisa and Lewisb antigens during cancer 
angiogenesis are still unknown.

iNTeRACTiON wiTH THe iMMUNe 
SYSTeM

The immune system plays a fundamental role during cancer 
progression. Innate and adaptive immune cells reside within the 
tumor microenvironment and determine the rate of the tumor 
growth (115). According to the immunoediting hypothesis, 
the relationship between the host organism and the developing 
tumor consists of three distinct phases: elimination of tumor 
cells by the immune system, an equilibrium phase between the 
tumor and the immune system, and tumor escape from immune 
destruction (116).

Although full activation of the adaptive immune system seems 
to be mandatory for successful tumor eradication, paradoxically, 
chronic activation of different types of innate immune cells within 
or close to the tumor site lead, inevitably, to cancer progression 
(117). Therefore, greater emphasis should be given to the cancer-
innate immune cell axis in the context of future cancer immu-
notherapy (118). This will probably assist in the identification of 
more effective ways to manipulate and subsequently activate the 
adaptive immune system, thereby greatly increasing the possibil-
ity of tumor destruction.

Dendritic cells are key regulators of the anti-cancer immune 
response (119). DCs are capable of recognizing tumor-specific 
antigens and activating effector T  cells, which in turn proceed 
to eradicate malignant cells. Altered tumor glycosylation can be 
sensed by DCs via certain glycan-binding proteins, such as the 
CLRs (120). Interestingly, CLRs expressed by DCs can capture 
tumor antigens and modulate the induction of anti-tumor 
immune responses through the regulation of T cell polarization 
(121). In fact, the molecular build-up of the antigen proves to 
be of utmost importance in determining the subsequent skewing 
toward immunity or tolerance.

Dendritic cell-specific ICAM-3 grabbing non-integrin 
(CD209) is a multifunctional Ca2+-dependent lectin receptor 
expressed in humans on the surface of antigen-presenting cells, 
such as immature DCs and macrophages (122). It specifically 
recognizes all the non-sialylated Lewis antigens (Lewisa, Lewisb, 
Lewisx, and Lewisy), and its main functions are related to cell 
adhesion, cell migration, antigen uptake, and subsequent antigen 
presentation.

In colorectal cancer, DC-SIGN on DCs recognizes the Lewisx 
and Lewisy epitopes carried by either the tumor-associated CEA 
or the CEACAM1 (123). Remarkably, DC-SIGN specifically 
binds only to CEA isolated from primary colorectal cancer cells 
and colon cancer cell lines and not to CEA originating from the 
normal colon epithelium. This can be explained by the enhanced 
expression of these glycan structures in malignant cells of the 
colon. Likewise, Lewisa and Lewisb epitopes displayed on CEA 
and CEACAM1 from colorectal cancer cells can also be rec-
ognized by DC-SIGN (124). Coculture of the colon cancer cell 
line SW1116 bearing Lewisa/b with LPS-stimulated monocyte-
derived DCs resulted in a significant increase in the well-known 

immunoregulatory cytokines IL-6 and IL-10, implying the 
acquisition of an immunosuppressive phenotype.

The exact contribution of DC-SIGN in the induction of an 
immunosuppressive tumor microenvironment is not fully under-
stood yet. However, there is evidence of carbohydrate-specific 
signaling through DC-SIGN on DCs leading to tolerance against 
invading extracellular pathogens expressing Lewis epitopes (125). 
Specifically, DCs that interact with the fucose-expressing parasite 
Schistosoma mansoni and bacterium Helicobacter pylori produce 
high levels of IL-10 and Th2-attracting chemokines, leading to a 
remarkable skewing from Th1 to Th2 immune cell polarization. 
The underlying mechanism of this switch involves activation of 
the IKKε- and CYLD-dependent BCL3 signaling pathways. In 
analogy, recognition of tumor-specific glycosylation patterns 
by DC-SIGN on DCs might also play a crucial role in the sup-
pression of anti-tumor immune responses against cancer-related 
fucosylated antigens.

Furthermore, mouse MGL1 (CD301) is a murine CLR exhibit-
ing a similar glycan specificity to DC-SIGN, with specific recog-
nition of the Lewisa and Lewisx glycan structures (126). MGL1 
is expressed by murine innate immune cells, such as immature 
conventional DCs, plasmacytoid DCs, and macrophages. 
Although MGL1 is considered to be a marker of alternatively 
activated macrophages (127), its biological role in the recognition 
of cancer cell-derived Lewisa and Lewisx antigens, as well as in 
the induction of potential anti-tumor immune responses, needs 
further elucidation.

Langerin (CD207) is a CLR expressed by human Langerhans 
cells (LCs). LCs constitute a DC subset in the skin and in the 
epithelium of mucosal tissues (128), where they act as key modu-
lators in the induction of immune responses against invading 
pathogens (129). Langerin specifically binds the terminal fucose 
of Lewisb and Lewisy antigens, while, in contrast to DC-SIGN, it 
cannot interact efficiently with the internal fucose that is present 
in the Lewisa and Lewisx trisaccharides (130, 131).

Immature LCs are potent inducers of immune tolerance; 
however, upon maturation these cells are capable of activating 
effective antigen-specific immune responses (132). Infiltration 
of immature CD207+/Langerin+ DCs in the peritumoral area of 
invasive cutaneous malignant melanoma (CMM) is correlated 
with increased tumor growth, a high mitotic rate, and CMM 
ulcer development, all leading to disease exacerbation and a 
worse prognosis (133). Also, the infiltration of Langerin+ cells 
in Hodgkin lymphomas and in nasopharyngeal carcinomas 
has been associated with the already well-characterized, strong 
immunosuppressive tumor microenvironment in these two 
types of cancers (134). Nevertheless, more research is required 
to determine the exact interactions that occur among infiltrat-
ing LCs and Lewisb/y-expressing tumor cells in the skin or other 
mucosal tissues.

ReSiSTANCe TO CHeMOTHeRAPY

One of the biggest challenges in the treatment of cancer is the 
development of multidrug resistance to chemotherapy (135). 
Malignant cells employ a number of different mechanisms in 
order to survive, evolve, and to become insensitive to anti-cancer 
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drugs. These mechanisms are mainly related to the drug uptake/
efflux ratio, activation of certain DNA repair mechanisms, and a 
successful escape from drug-induced apoptosis (136).

Aberrant glycosylation in cancer, including increased fucosyla-
tion, is associated with an EMT in combination with acquiring a 
multidrug resistance phenotype (137). For example, upregulation 
of the FUT4, FUT6, and FUT8 enzymes has been implicated 
in the drug resistance phenotype of the human HCC cell lines 
BEL7402 and BEL/FU both in vitro and in vivo. Moreover, it is 
linked to activation of the PI3K/Akt pathway as well as to the 
induction of the multidrug-resistance-associated protein 1 (138). 
In ovarian cancer patients, coexpression of Lewisy and MUC1 is 
considered as an independent risk factor of chemoresistance and 
poor prognosis (139).

Compared to the sensitive T47D cells, the drug-resistant breast 
cancer cell line T47D/ADR overexpresses the FUT4 enzyme. In 
this case, miR-224-3p acts as a negative regulator of FUT4 gene 
expression. Importantly, induction of miR-224-3p leads to drug 
sensitization of T47D/ADR cells in  vitro and impaired tumor 
growth of T47D/ADR xenografts in vivo (140).

Furthermore, transcriptional upregulation of FUT4, resulting 
in an increased cell-surface expression of the Lewisx antigen, 
remains a serious obstacle for the treatment of patients with meta-
static colorectal cancer. FUT4/Lewisx overexpression is induced 
by the RAF-MEK-ERK signaling pathway, and colon cancer cells 
that are FUT4+Lewisx+ seem to exhibit significant resistance to 
the anti-EGFR (cetuximab) and the anti-VEGF (bevacizumab) 
chemotherapeutical agents (141). Nevertheless, treatment with 
MEK inhibitors notably suppresses FUT4 expression in primary 
CRC cells and can be effective for preventing or overcoming 
primary resistance of patients to cetuximab and bevacizumab.

A better insight into the role of other FUTs or their respec-
tive fucosylated epitopes in the acquisition of a drug-resistant 
phenotype seems to be mandatory. Understanding the exact role 
of glycosylation-related alterations in the evasion of cancer cells 
from drug toxicity could lead to the development of novel and 
more targeted anti-cancer therapies able to fight multiple aspects 
of the disease simultaneously.

LewiS ANTiGeNS AND CANCeR 
STeMNeSS

Cancer stem cells or cancer-initiating cells are defined as a 
subpopulation of cells within the tumor, possessing the ability 
to self-renew and to give rise to heterogeneous lineages of cells. 
Moreover, cancer stem cells are able to regenerate new, continu-
ously growing tumors when injected in  vivo (142). Due to the 
aforementioned characteristics and their involvement in multid-
rug resistance and metastasis (143), cancer stem cells have been 
placed into high focus of anti-cancer therapy nowadays (144).

The identification of cancer stem cells has proven to be quite 
a big challenge, especially in the case of solid tumors where these 
cells are less accessible. In addition, the number of the stem cell 
isolation assays developed as well as the panel of established, 
cancer-specific stem cell markers are still quite limited (145). 
So far, cell surface markers such as CD44, CD133 (prominin-1), 

Sca-1 (stem cell antigen-1), CD24 (heat-stable antigen), CD29 
(integrin β1), CD49f (integrin α6), and ESA (epithelial-specific 
antigen) have been frequently used for the detection of breast, 
colorectal, pancreatic, and prostate cancer stem cells (146). 
Furthermore, high activity of aldehyde dehydrogenases (ALDHs) 
in stem cells make ALDH another valuable marker to establish 
cancer stemness (147).

Increased fucosylation has recently been associated with 
the known cancer stem cell phenotype and has thus been pro-
posed as a potential therapeutic target (148). Elevated levels of 
fucosylation, driven by the overexpression of pertinent FUTs, 
GDP-fucose synthetic enzymes, and GDP-fucose transporters, 
have been identified in pancreatic cancer stem-like (Panc-1-RG 
CD44+/CD24+) cells that are resistant to the chemotherapeutic 
agent gemcitabine (149). Also, upregulation of FUT3 and FUT6 
enzymes combined with increased sialyl Lewisx expression has 
been reported in stem-like (CD44+/ALDH+) cells derived from 
oral squamous cell carcinomas. Moreover, this phenotype is cor-
related with the increased metastatic potential of these cells (150).

Lewisx is highly expressed by gliomas, and a possible role of 
this epitope as a cancer stem cell selection marker in human 
glioblastoma (also known as glioblastoma multiforme) has been 
proposed (151). Lewisx+ cells were enriched in human glioma 
tumor-initiating cell populations in 23/24 of primary glioblastoma 
specimens examined, fulfilling all the criteria of cancer stem cells. 
More specifically, Lewisx+ cells were highly tumorigenic when 
injected in the brain of SCID mice and displayed self-renewal 
and multilineage differentiation properties, giving rise to both 
Lewisx+ and Lewisx− cells, thus, supporting a cellular hierarchy. 
Interestingly, Lewisx has also been identified as a marker for 
tumor propagating cells in a mouse model of medulloblastoma 
(the Patched mutant mouse) (152). However, its potential role as a 
stem cell marker in other types of human cancers is still unknown.

Significant coexpression of the H2 antigen (CD173) and 
the Lewisy antigen (CD174) with the cancer stem cell marker 
CD44 has been identified in breast cancer tissue sections and 
in breast cancer cell lines (153). Immunoprecipitation experi-
ments revealed that CD44 is the carrier molecule of these two 
fucosylated antigens, explaining the consistent coexpression 
observed. Coexpression of H2 and Lewisy with another well-
known cancer stem cell marker, CD133, was also reported in 
this study. These data suggest that the fucosylated H2 and Lewisy 
epitopes might be used as cancer stem cell enrichment markers 
in breast carcinomas.

Since fucosylated determinants are overexpressed in almost 
all types of solid or blood malignancies and their expression is 
correlated with increased incidence of tissue invasion, metasta-
sis, and multidrug resistance, a potential role of these epitopes 
in cancer stemness has been suggested. Yet, it is currently still 
unclear whether Lewis antigens are mere markers of malignant 
cell transformation or whether they have a direct biological/
functional contribution to the cancer stem cell phenotype.

FUTURe DiReCTiONS

In summary, Lewis antigens expressed by healthy tissues serve as 
important adhesion molecules involved in the communication 
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of different cell subtypes, such as epithelial cells, immune cells, 
and neurons, with their surrounding microenvironment during 
normal development. Tight regulation of their expression on 
the cell-surface seems to be necessary, since perturbations in 
this balance are greatly associated with cancer development and 
progression. Specifically, overexpression of Lewis epitopes occurs 
in malignant cells as a direct consequence of genetic or epigenetic 
alterations, resulting in upregulation of pertinent FUT genes. It 
is currently well accepted that this overexpression is not just a 
bystander effect observed during malignant cell transformation. 

Instead, the increased expression of FUT enzymes and their 
respective fucosylated determinants enables the acquisition of 
many functional features of cancer cells related to cell prolif-
eration, EMT/tissue invasion, metastatic potential, interaction 
with endothelial/immune cells, and resistance to chemotherapy 
and cancer stemness (Figure 2). These properties are all inter-
connected and eventually culminate in disease exacerbation. 
Therefore, high emphasis should be given to the identification 
of specific anti-cancer therapies that correct the fucosylation 
machinery within malignant cells and inhibit subsequent tumor 

FiGURe 2 | Involvement of fucosylated antigens in different aspects of cancer progression. Due to genetic or epigenetic alterations, overexpression of certain 
fucosyltransferases (FUTs) by cancer cells leads to increased cell-surface expression of fucosylated Lewis antigens. Aberrant regulation of the fucosylation machinery 
in cancer cells is causally associated with the acquisition of various tumorigenic properties, such as increased cell survival and proliferation, epithelial to mesenchymal 
transition, metastasis, resistance to chemotherapy, and cancer stemness. In parallel, interaction of cancer cells overexpressing Lewis antigens with endothelial or 
immune cells bearing Lewis antigen-specific receptors might also play a critical role during cancer-induced angiogenesis and immunosuppression, respectively.
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