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The tumor microenvironment (TME) is composed by cellular and non-cellular com-
ponents. Examples include the following: (i) bone marrow-derived inflammatory cells,  
(ii) fibroblasts, (iii) blood vessels, (iv) immune cells, and (v) extracellular matrix compo-
nents. In most cases, this combination of components may result in an inhospitable 
environment, in which a significant retrenchment in nutrients and oxygen considerably 
disturbs cell metabolism. Cancer cells are characterized by an enhanced uptake and 
utilization of glucose, a phenomenon described by Otto Warburg over 90 years ago. One 
of the main products of this reprogrammed cell metabolism is lactate. “Lactagenic” or 
lactate-producing cancer cells are characterized by their immunomodulatory properties, 
since lactate, the end product of the aerobic glycolysis, besides acting as an inducer 
of cellular signaling phenomena to influence cellular fate, might also play a role as an 
immunosuppressive metabolite. Over the last 10 years, it has been well accepted that in 
the TME, the lactate secreted by transformed cells is able to compromise the function 
and/or assembly of an effective immune response against tumors. Herein, we will dis-
cuss recent advances regarding the deleterious effect of high concentrations of lactate 
on the tumor-infiltrating immune cells, which might characterize an innovative way of 
understanding the tumor-immune privilege.

Keywords: cancer, metabolism, lactate, immune evasion, cytokines

inTRODUCTiOn

Cancer as a Metabolic Disease
Historically, cancer has been considered a product of multiple pathologies. In second century AD, 
the philosopher and physician Claudius Galenus was the first to employ the Greek word onco (swell-
ing) for all types of tumors, leaving Hippocrates’ term karkinos exclusively for malignant tumors. 
During his time, Galenus asserted that tumors were the result of “black bile” accumulation. It was 
only during the nineteenth century that this theory was revisited and cancer begun to be perceived as 
the result of acquired metabolic abnormalities (1). Nowadays, it is well accepted that cancer develop-
ment and progression is modulated by the disordered growth of cells featuring self-sufficiency of 
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growth signals, evasion of apoptosis, angiogenesis, invasiveness, 
and metastasis (2, 3). When cells break free from the restraints 
on cell division, they start assuming inappropriate proliferation 
rates and distinct metabolic profiles, becoming abnormal in their 
own way (4, 5). Cells originating from solid tumors may gain the 
ability to dissolve the extracellular matrix (ECM), invade nearby 
tissues, reaching the bloodstream or lymphatic vessels, or remain 
within the boundaries of the original tissue, being characterized 
as malignant or benign tumors, respectively. Several genomic 
changes lead normal cells through malignant transformation. 
These changes can be anything from point mutations and dele-
tions to chromosome rearrangements, as long as they result in 
irreversible changes affecting cell cycle (6). Any individual suffers 
several mutations in various cell types during its lifetime, due to 
diverse exogenous or endogenous factors. Most of these mutations 
are promptly corrected or lead to apoptosis. The accumulation 
of uncorrected mutations leads to the development of benign or 
malignant tumors (3). Loss of tumor suppressor factors, germ-
line mutations, and overexpression of oncogenes are some of 
the changes that may collaborate for the occurrence of somatic 
mutations that escape DNA repair processes (7, 8).

The tumor microenvironment (TME) comprises both cellular 
and non-cellular components (9–11). The acellular components 
include the ECM, as well as soluble signals secreted by trans-
formed and tumor-associated cancer cells. Several cell types 
associate with tumors, including fibroblasts, endothelial cells, and 
immune cells. Together, all components form an organ-like struc-
ture capable of interacting with the organism as a whole (12–14). 
To maintain tumor growth, several adaptations may be driven 
by neoplastic cells. A well-known mechanism is the formation of 
immature and abnormal vessels, in a phenomenon named neo-
angiogenesis (15, 16). In this context, both the platelet-derived 
growth factor and the vascular endothelial growth factor (VEGF) 
are recognized as the main proangiogenic signals upregulated by 
cancer cells during tumor growth (15, 17, 18).

The incredible proliferation rate of tumor cells can make a 
single mutated cell generate a tumor of ≈1 cm in diameter con-
taining over 109 cells. Such a high proliferation ratio demands 
effective metabolic pathways, capable of meeting the steep energy 
requirements while supplying the biosynthetic precursors that 
maintain cell anabolism and redox balance in the neoplastic cell 
(19). Reprogramming of cellular metabolism has been observed 
in several types of cancer and is considered a hallmark of this 
disease (3, 20). The elucidation of these atypical metabolic activi-
ties is a lively field in the study of cancer biology, showing great 
potential for the development of novel therapeutic approaches. 
Several studies have shown that inhibition of some metabolic 
pathways of cancer cells is able to prevent tumor growth and 
metastasis (21, 22).

MeTABOLiC SYMBiOSiS: A PROPOSeD 
COnCePT OF eneRGY MAnAGeMenT 
BeTween CAnCeR CeLLS in THe TMe

The impact of the acidosis induced by lactate and protons in 
the TME is a hot topic in cancer research (23–25). It is a well- 
established fact that a high enough lactate production can 

overcome the cellular proton buffering capability, resulting in 
a decrease of the cellular pH. Such condition, besides influenc-
ing the dynamics of waste and reuse of energy by cancer cells, 
modulates the function of distinct tumor-associated cell types 
as well (26–29). Several papers published over the last 10 years, 
demonstrated that when cancer cells experience low tension of 
oxygen, the hypoxia-inducible factor-1α (HIF-1α) transcription 
factor is stabilized, increasing glucose (Glc) uptake and secretion 
of substantial levels of lactate and protons out of cytoplasm by the 
monocarboxylated transporter 4 (MCT4) (Figure 1B), promot-
ing a biochemical event termed lactic acidosis. By contrast, when 
cancer cells are adjacent to blood vessels and oxygen availability 
is sufficient, the transformed cells preferably use lactate as energy 
source (29–33). For this reason, lactate should not be considered 
a waste metabolite. In fact, it is reused by different cell subpopula-
tions in a tumor (28, 29). Recently, Lee and colleagues (34) showed 
that an oxygen-regulated protein (NDGR3), which is usually 
degraded under normoxia via the prolyl hydroxylase 2/Von 
Hippel–Lindau (PDH2/VHL) system, becomes protected from 
degradation when bound to lactate. The authors demonstrated 
that when stable, NDRG3 is able to bind the proto-oncogene 
c-Raf, a serine/threonine-protein kinase, and induce activation 
of the Raf–ERK pathway, thus promoting cell growth and angio-
genesis. However, inhibition of lactate production compromises 
NDRG3-mediated hypoxia responses (34).

This metabolic model of lactate reuse in the TME has been 
described as a metabolic symbiosis, where lactate works as 
a medium to convey energy from highly glycolytic/hypoxic 
transformed cells to more oxidative cancer cells (35, 36). In the 
TME, the uptake of lactate and protons by oxygenated cancer 
cells occurs in a dynamic way through the monocarboxylated 
transporter 1 (MCT1) (Figure 1B), which has been previously 
identified as gatekeeper of this metabolic symbiosis (29). In the 
same study, the authors demonstrated that cells with inhibited 
or silenced MCT1 became more sensitive to cell death, which 
may support lactate management within the TME as a valid 
therapeutic strategy. Therefore, it would plausible to speculate 
that the high-lactate concentration at the intercellular space 
might affect the functionality of diverse tumor-associated cells, 
including those of the innate and adaptive immune system (see 
sections below).

THe eFFeCT OF LACTATe in THe TMe

In normal cell metabolism, the consumed Glc is catabolized into 
pyruvate, which is then transported to the mitochondria to fuel 
the tricarboxylic acid cycle in a series of redox reactions. The 
resulting free electrons go through the electron transport chain 
(ETC), beginning the oxidative phosphorylation (OXPHOS) and 
ultimately leading to a high production of ATP (37) (Figure 1A). 
In the early 1920s, Otto Warburg observed that tumor cells remain 
in glycolytic state, constitutively absorbing Glc and converting 
pyruvate to lactate, in the presence of oxygen (Figure 1A). Lactate 
production is 40-fold greater in tumor cells, so the transport of 
lactate to the ECM by MCTs (38–41) is essential for the glycolytic 
switch. This metabolic behavior is named “Warburg Effect,” or 
aerobic glycolysis, one of the main characteristics studied in 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


FiGURe 1 | Scheme summarizing metabolic differences between normal and cancer cells and metabolic symbiosis. In normal cells, glucose (Glc) is initially 
metabolized to pyruvate and further to carbon dioxide (CO2) through tricarboxylic acid cycle and oxidative phosphorylation (OXPHOS) processes in the mitochondria, 
generating 36 ATP molecules per Glc molecule consumed (A). In this process, O2 is indispensable, since it is used as the final electron acceptor (A). However, in 
cancer cells undergoing aerobic glycolysis (Warburg effect), Glc is broken down into pyruvate and finally converted into lactate, deviating Glc metabolites from 
energy production to anabolic process. This event generates two ATP molecules per Glc molecule. The panel (B) illustrates an event named metabolic symbiosis.  
It has been well documented that when cancer cells are near or distant of blood vessels, they are well or poorly oxygenated, respectively. It is also known that when 
cancer cells are subject to low oxygen tension (↓O2) hypoxia-inducible factor-1α (HIF-1α) is stabilized, increasing the transcriptional activation of genes encoding 
glucose transporters (GLUTs), lactate dehydrogenase A (LDHA), as well as the uptake of Glc and secretion of lactate and protons out of cytoplasm through the 
monocarboxylated transporter 4 (MCT4). However, when transformed cells are close to blood vessels and the availability of O2 is enough, lactate is taken by 
monocarboxylated transporter 1 (MCT1) and utilized as energy source after conversion into pyruvate by lactate dehydrogenase B (LDHB). In this way, lactate may 
not be pointed out as a waste metabolite, since it is reused by different cell subpopulations in a tumor.
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cancer metabolism (19) (Figure  1B). Glycolysis produces ATP 
faster yet less efficiently than OXPHOS, forcing the tumor cell to 
consume much more Glc than a normal cell to produce enough 
energy to maintain its high proliferative status. Therefore, the 
glycolysis is an advantage for the tumor cell only when Glc supply 
is not limited. The importance of Glc for the metabolism of cancer 
cells is so evident that low-carbohydrate diet as a therapeutic 
approach for cancer patients, aiming to starve tumor cells, was 
described to limit the growth of incurable cancers in a pilot trial 
with 10 patients (42). In that regard, the uptake of a radioactive 
Glc analog, [18F]fluorodeoxyGlc, is used as a diagnostic tool for 
the positron emission tomography (FDG-PET) imaging of highly 
proliferative tumor regions (43, 44). Currently we know that 

tumor cells primarily fulfill their energetic needs by the oxidation 
of Glc, glutamine and other nutrients coupled to the ETC, using 
oxygen as the final acceptor of electrons (45, 46). In cancer cells, 
the anaerobic respiration is optional, and there is no mitochon-
drial defect (47); in fact, tumor cells still retain OXPHOS and 
mitochondrial activity (39). The reduced mitochondrial activity 
is a direct result either of oxygen deprivation or activation of 
HIF-1α (48, 49), which is able to promote the transcriptional acti-
vation of genes encoding glucose transporters (GLUTs), as well 
as glycolytic enzymes, such as lactate dehydrogenase A (LDHA) 
(50). When the supply of oxygen is low, LDHA is essential to 
sustain glycolysis and the production of ATP by regenerating 
NAD+ form NADH. In this way, HIF-1α regulates the production 
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FiGURe 2 | Overview of immunosuppressive effects of lactate in the tumor microenvironment (TME). In a hypoxic environment, Glc enters the cell via glucose 
transporter (GLUT) 1 and is broken down into pyruvate and then in lactate, which is transported out of the cell via monocarboxylated transporter 4 (MCT4). The 
lactate produced by transformed cells culminates in an acidified TME. This phenomenon is able to suppress the anticancer immune responses, particularly through 
impaired T and natural killer (NK) cells activation, reduced antigen presentation, compromised dendritic cell (DC) differentiation and maturation. It also promotes the 
emergence of the M2 Mϕ, which secretes high levels of pro-carcinogenic cytokines, such as transforming growth factor-beta (TGF-β) and vascular endothelial 
growth factor (VEGF), involved in processes such as epithelial–mesenchymal transition (EMT) and angiogenesis, events implicated in metastasis and cancer 
progression.
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of lactate, the end by-product of this reaction, which consumes 
two ATP but generates four ATP, generating two net ATP per Glc 
molecule as seen in (Figures 1A,B) (50). Upstream of HIF-1α and 
the previously discussed Raf–ERK, the Ras oncogenic pathway 
seems to be critical for the metabolic reprogramming observed 
during carcinogenesis. Overexpression of oncogenic H-RasV12 
was able to drive immortalized fibroblasts to consume more Glc 
and to release more lactate (51). Conversely, Ras inhibition in a 
model of glioblastoma (GBM) effectively shuts down Glc uptake 
and glycolysis itself, leading to the downregulation of 12 genes 
from the glycolytic pathway and increased extracellular pH due 
to reduced lactate efflux (52). The role of PDH2 is prominent in 
this, since oncogenic H-Ras signaling, as well as hypoxia, triggers 
oxidative stress, PDH2 dimerization, and inactivation, leading to 
HIF-1α stabilization and ultimately the OXPHOS to glycolysis 
shift (53).

An immediate consequence of the Warburg effect is the accu-
mulation of lactate and protons in the TME (23, 54). It has been 
shown that in patients diagnosed with different stages of cervical 
cancer, primary tumors exhibiting high-lactate levels often lead to 
the manifestation of metastatic foci (55). The same group, using 
human larynx squamous carcinoma cells, showed that increased 
lactate concentration can augment cell motility and migration, 
corroborating the data observed in patients (56). In addition, 

the use of siRNA to inhibit the expression of LDHA, whose 
expression can be induced by lactate itself, is able to inhibit the 
migration of glioma cells as well as downregulate active matrix 
metalloproteinase-2 (57). Increased lactic acid is also responsible 
for the overexpression of factors related to tumor progression, 
such as CD44, hyaluronic acid and transforming growth factor-
beta (TGF-β) (58) (Figure 2), a pro-carcinogenic cytokine able to 
activate the epithelial–mesenchymal transition process, an event 
that permits dissemination of tumor cells from the primary site 
into the surrounding stroma, setting the stage for metastatic 
spread (59–61). In addition, due to its antioxidant properties, 
increased lactate concentrations may offer a degree or resistance 
against any therapy relying on the production of oxygen reactive 
species, such as radiotherapy (62). As it stands, further studies on 
the production of lactate by solid tumors represent an important 
step toward the understanding of tumor progression and malig-
nancy, as well as for therapy development.

The TME is characterized by acidity and low oxygen tension 
(63, 64), events capable of modulating not only the growth and 
survival of tumor cells but also the recruitment of inflammatory 
cells that are reeducated in the microenvironment to favor tumor 
spread and metastasis. In this scenario, various inflammatory 
cells, such as T lymphocytes, dendritic cells (DCs), natural killer 
(NK) cells, and macrophages (Mϕ), acquire pro-carcinogenic 
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properties (Figure 2) (65–69). Recruitment and accumulation of 
those cells in the TME is an essential phenomenon to sustain the 
tumor growth (70). The immune system’s role in the first phases 
of tumor establishment is well described, being capable of detect-
ing and destroying cancer cells, halting their growth and spread, 
in a phenomenon termed immunosurveillance (71, 72), which 
was initially proposed by Paul Ehrlich and later developed by Sir 
Frank Macfarlane Burnet and Lewis Thomas (13, 73). Defects in 
this event might favor tumor progression and, consequently, the 
acquisition of a malignant phenotype. Any cancer cell that man-
ages to escape death triggered by immune response could still have 
their proliferation hindered by immune mechanisms, reaching an 
equilibrium. On the other hand, the immunogenicity is molded 
through selective pressure exerted by the immune system, in 
an event termed immunoediting (74–77). Consequently, novel 
tumor variants emerge, bearing more mutations, making them 
more likely to evade detection and elimination by immune effec-
tor cells like NK and CD8+ T cells (74, 78). The immunoediting 
stage is the longest phase, and it is characterized by the dynamic 
coevolution of cancer and immune cells (78–80). Ultimately, cells 
reach an escape phase, where the accumulation of edited cells 
drives tumor growth and the manifestation of clinical symptoms 
(74). The presence of the immune system in the TME undoubtedly 
compromises tumor growth and, in fact, correlates with favorable 
prognosis in some cancer types, such as renal, ovarian, colorectal, 
and breast cancers (74, 81). The expression of molecules able to 
compromise cell-to-cell interaction (3, 82–84), as well as soluble 
factors such as VEGF (85), cytokines (86–88), prostaglandin 
E2 (PGE2) (89), soluble Fas and FasL (90), and soluble MICA 
(91), all contribute to the appearance of multifaceted local and 
regional immunosuppressive networks (92–94). For example, the 
occurrence of the IL-4, TGF-β, IL-13, and IL-10 cytokines in the 
TME induces the emergence of M2 instead of M1 Mϕ (86, 87). 
In addition, secretion of nitric oxide, IL-10, arginase-1, IL-6, and 
VEGF promotes cell death and avoids the antitumor function of 
immune cells (95–99).

As stated earlier, the TME is rich in lactate (38–41), an immu-
nosuppressive soluble factor that promotes cancer development 
(54, 74, 100). Particularly, several studies have shown that tumor-
derived lactate is capable of inhibiting the activation of immune 
cells such as monocytes, Mϕ and T  lymphocytes (101–103). It 
has been demonstrated that high LDHA levels are deeply cor-
related with tumor size, as well as with the clinical stages of the 
disease (104, 105). Accordingly, the infiltration of immune cells 
in the TME correlates with high LDHA expression and/or activity 
(106). Besides lactate accumulation in the primary tumor site, 
its immunosuppressive properties can outspread to distant sites, 
thus stimulating invasion and metastasis in a paracrine fashion 
(107) (Figure 2).

Despite being mainly produced by skeletal muscle, various 
tissues generate lactate, and its elimination in healthy conditions 
is handled primarily through the liver and secondarily through 
the kidneys (108). The citric acid cycle is also a source of lactate, 
as pyruvate can be diverted to lactate and NAD+ generation 
through LDH activity (109, 110). The high amounts of lactate in 
the extracellular microenvironment contribute to lowering the 
extracellular pH, which can be as low as 6.0–6.5 (111), producing 

acidosis and inducing angiogenesis and a reduction in efficacy of 
the immune system (101, 112, 113). Tumor-associated immune 
cells from myeloid and lymphoid origin can be modulated by 
hypoxic conditions as well as high levels of lactate, then favoring 
the acquisition of malignant phenotypes (23, 64, 114–116).

LACTATe AnD MYeLOiD CeLLS

Over the last 15 years, several studies demonstrated that tumor-
derived lactate modulates the functionality of immune cells, 
contributing to the establishment of an immunosuppressive 
microenvironment, which favors the developing of tumors (106, 
117–119). Lactate promotes the development of myeloid-derived 
suppressor cells (MDSCs), the most prominent bone marrow-
derived cell population that exerts broadly immunosuppressive 
functions (106). In the TME, MDSCs potently suppress both 
innate and adaptive immunity by preventing the maturation 
of DCs, suppressing NK-cell cytotoxicity, inhibiting T-cell 
activation, and favoring the differentiation of regulatory T cells 
(Figure 2) (117).

In addition, lactate suppresses monocytes’ LPS-induced 
activation by influencing their gene expression. Particularly, the 
expression of most LPS-induced genes was significantly delayed 
in the presence of lactate, including TNF, IL-23, CCL2, and 
CCL17. These effects are mediated by delayed LPS-induced phos-
phorylation of protein kinase B (AKT) and degradation of IkB, 
with reduced nuclear accumulation of NFκB (119). Furthermore, 
lactate stabilizes the transcription factor HIF-1α in monocytes, 
which ultimately promote the expression of PGE2 and the growth 
of human colon cancer HCT116 cells (120).

Another suppressive function of lactate is to impair the dif-
ferentiation of monocytes into Mϕ or DCs in the TME (118, 
121–123) and in non-tumor conditions (103, 124) (Figure 2). It 
was reported that lactate blocks LPS activation of bone marrow-
derived Mϕ (BMDMs) (123), and also, in hypoxia or normoxia, 
lactate drives tumor-associated Mϕ polarization to the “tumor 
friendly” M2 profile (Figure 2) (125, 126). Mechanistically, lactate 
stabilizes HIF-1α, which leads to the transcription of a broader set 
of M2-associated genes, including VEGF, TGF-β and arginase-1, 
as well as Fizz1, Mgl1, and Mgl2 (Figure 2) (98, 125–128). The 
role of PDH2 as a regulator of the metabolic reprogramming in 
Mϕ was observed in both RAW264 cells and in primary BMDM, 
since transfection with shRNA targeting PDH2 or conditional 
PDH2 knocking out led to decreased ATP levels along and 
increased lactate release into the medium (129). M2 Mϕ and 
their products favor tumor growth and metastasis by suppress-
ing antitumor immune responses, activating and enhancing 
angiogenesis. Particularly, VEGF triggers the development of 
neovascularization of the tumor. Similarly, arginase-1 plays an 
indirect role in angiogenesis through reorganization of the tumor 
ECM and contributes for the generation of essential metabolites 
during cell division, such as polyamines, supporting cancer 
cells growth (130–133). The importance of arginase-1 in tumor 
development was demonstrated by the use of arginase-1 KO mice, 
which presented tumors 50% smaller than tumors from wild type 
mice (125, 134). Finally, distinct studies have shown that when 
present in high levels, lactate inhibits antigen presentation and 
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IL-12 production by DCs (54, 135) (Figure 2) and enhances IL-10 
production as well, generating an immunosuppressive profile in 
the TME (136, 137).

LACTATe AnD LYMPHOiD CeLLS

The immunobiological effects of lactate on immune cells from 
lymphoid origin have been mainly investigated in NK and T cells. 
The cytotoxic effect mediated by both cell types is of fundamental 
importance in immunological surveillance against the emergence 
and spread of malignant disease. NK cells represent large granular 
lymphocytes that induce their antitumor responses through the 
ligation of particular cell-surface receptors (138), such as the 
natural killer group 2, member D receptor (NKG2D), which 
induces the release of cytotoxic granules that promote the lysis of 
cancer cells (139, 140).

An elegant study developed by Husain and colleagues (106) 
revealed that the low production of lactate in LDHA-depleted 
tumors was able to improve the cytolytic functions of NK cells. 
However, when NK cells where pretreated with lactate in vitro, 
its cytolytic property was compromised and/or abrogated. The 
molecular mechanism responsible for such effect was inves-
tigated, and the authors demonstrated that the decline of NK 
cytotoxic activity was promoted by the lower expression of gran-
zyme and perforin in lactate-treated cells (106). Furthermore, it 
was described that lactate works as a potent inhibitor of histone 
deacetylases, suggesting that lactate might be able to regulate 
(at transcriptional level) several genes involved not only in 
cell metabolism but also in immune responses, such as NCR1/
NKp46, an activating NK cell receptor (141, 142).

In 2014, Crane and coworkers demonstrated that GBM cells 
secrete LDH-5, an enzymatically active isoform of LDH (143), 
that besides catalyzing the conversion of pyruvate to lactate in 
an efficient way (144), is also capable to upregulate HIF-related 
pathways (145) and induce the expression of NKG2D ligands 
on healthy monocytes, thus subverting antitumor immune 
responses (143). In a previous study realized by the same group, it 
was demonstrated that TGF-β downregulates NKG2D expression 
in NK cells in vitro (146), supporting the idea that the elevated 
production/concentration of TGF-β in acidic TME is one of the 
main evasion mechanisms adopted by cancer cells (146).

It is well accepted that a robust presence of T cells in the TME is 
associated with good clinical outcome in distinct types of cancers 
(147–149). It is important to notice that new progresses in cancer 
immunotherapy are allied to the use of monoclonal antibodies 
directed against T  cell-immune checkpoints. Examples include 
CTLA4 (149–151) and PD-1 (152, 153). These outstanding 
findings undoubtedly confirm the necessity of an effective T cell 
activation to control tumor growth and spread (147). As with 
other types of immune cells, cancer cells limit T cell immunity 
by distinct ways. In this regard, the acidification of the TME 
is a clear example, and several papers have demonstrated that 
lactate plays a pivotal role in this process (54, 154–156). As with 
transformed cells, activated T cells may generate energy through 
aerobic glycolysis (157–159). The upregulation of glycolytic 
enzymes intensifies the uptake of Glc and glycolytic rate, favor-
ing the secretion of lactate into the microenvironment (157). 

It is possible to imagine that when together in the TME, both 
cancer cells and activated T  lymphocytes significantly increase 
the production/secretion of lactate. As it stands, it has been 
demonstrated that the very acidic microenvironment suppresses 
the proliferation and cytokine production by activated T  cells 
(101). A recent study developed by Brand and colleagues revealed 
that pathophysiological concentrations of lactic acid repeal the 
upregulation of the nuclear factor of activated T cells in both NK 
and T cells, which significantly reduced the production of IFN-γ 
(160). These results corroborate previous findings that lactic acid 
is able to downmodulate the function of cells from lymphoid 
origin, then contributing to tumor escape from immune attack.

COnCLUDinG ReMARKS AnD 
PeRSPeCTiveS

This review presents a snapshot of metabolic changes in cancer 
cells, describing how, even in aerobic conditions, transformed 
cells opt for glycolysis instead of OXPHOS to sustain their energy 
demand, high proliferation and biosynthesis rates, a process 
named “Warburg effect.” This metabolic reprogramming culmi-
nates in a high-lactate and protons output, which is also exported 
to the extracellular environment by MCT4, generating acidosis, 
neoangiogenesis, and immunosuppression, directly modulating 
the TME. Although several genetic, biochemical, and pathophysi-
ologic mechanisms have been identified as causes of malignancy 
in high-lactate tumors, it remains unclear why seemingly identi-
cal tumors may exhibit extreme differences in their lactate levels. 
Although it is certainly another challenge for future research in this 
field, several reports point out that high-lactate amounts help in 
generating a hostile microenvironment for normal cells, affecting 
the activation and differentiation of effector immune cells as well 
as antigen presentation and the production of cytokines. Future 
studies, particularly in solid tumors characterized by highly 
acidic environments, are needed to better understand the effect 
of lactate and other “waste” metabolites on cancer progression. 
The participation of lactate in TME and its immunosuppressive 
actions not only make it crucial for tumor survival and growth 
but also turns it into an interesting and promising candidate to 
therapeutic target in cancer chemotherapy. Following this rea-
soning, classic and novel drugs that modulate TME pH might be 
useful as potential immunomodulatory tools in cancer patients, 
particularly in combination with immunotherapeutic strategies.
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