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Among all the adaptations of cancer cells, their ability to change metabolism from the 
oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on 
tumor metabolism show that improved glycolysis and glutaminolysis are necessary to 
maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid 
neoplasms are common endocrine tumors that are more prevalent in women and elderly 
individuals. The incidence of thyroid cancer has increased in the Past decades, and recent 
findings describing the metabolic profiles of thyroid tumors have emerged. Currently, 
several drugs are in development or clinical trials that target the altered metabolic path-
ways of tumors are undergoing. We present a review of the metabolic reprogramming in 
cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis 
and the possible identification of promising metabolic targets in thyroid cancer.

Keywords: glycolysis, glutaminolysis, warburg effect, thyroid cancer, hypoxia-inducible factor, hexokinase, AMP 
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iNTRODUCTiON

Thyroid cancers are the most common endocrine tumors and are more prevalent in women and 
elderly individuals (1, 2). Although the incidence of thyroid tumors can be high in a population (1), 
epidemiological studies indicate that only a small fraction of tumors are malignant (1, 3). Some rare 
thyroid malignancies that derive from the follicular thyroid epithelia are poorly differentiated and 
frequently metastasize early (4). In contrast, differentiated thyroid carcinomas (DTCs) generally 
exhibit a good prognosis and excellent outcomes (3, 5, 6).

The therapy for intermediate and high-risk DTCs, includes a combination of surgery, radioio-
dine ablation, and thyroid stimulating hormone (TSH) suppressive therapy. However, although 
DTCs are slow-growing tumors, disease recurrence can occur (4–6). In approximately 10% of DTC 
recurrence cases, tumor progression leads to a more aggressive phenotype, metastatic spread, and 
further loss of iodide uptake ability (4–6).

In the past several years, targeted therapeutic approaches have been developed as an option 
to control disease progression. Unfortunately, multikinase inhibitors that target angiogenesis and 
oncogenic pathways have deleterious side effects and do not result in a cure. Although a significant 
increase in the progression-free survival rate has been observed with the use of multikinase inhibi-
tors, the diversity of tumor types, and tumor resistance that develops during progression impede this 
unique therapeutic strategy (5, 6). However, tumor metabolic behavior is known to become quite 
different as cells to transform into malignant cells. Interestingly, some metabolic feature changes are 
observed in several tumor types. Although the physiological function of the thyroid gland is very 
well described, its metabolic control and adaptations remain elusive, especially in thyroid cancer. 
In this review, we discuss some metabolic adaptations identified in thyroid carcinoma that could 
be used as future therapeutic targets in this disease.
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MAiN MOLeCULAR eveNTS ReLATeD  
TO THYROiD CARCiNOGeNeSiS

The incidence of thyroid cancer has increased in many countries 
compared to that of other human cancers (7). Approximately 
90% of non-medullary thyroid malignancies that originate from 
thyroid follicular cells are classified as well-DTCs. DTCs are 
subdivided into follicular thyroid carcinoma (FTC) and papillary 
thyroid carcinoma (PTC), the latter of which is more prevalent, 
accounting for approximately 80% of DTCs (8, 9). The oncocytic 
or Hurthle cell tumors represent approximately 3–5% of follicular 
thyroid neoplasms (10), and they may be benign (variant of fol-
licular adenoma) or malignant (variant of follicular carcinoma 
and variant of papillary carcinoma). The main characteristic 
of Hurthle cell carcinomas is the presence of at least 75% large 
oxyphilic cells that are characterized by abundant mitochondria 
(11), and previous exposure to radiation might be a risk factor for 
the development of Hurthle cell carcinoma and some subtypes of 
papillary thyroid cancers (8–16).

Undifferentiated thyroid carcinomas represent less than 
5% of thyroid malignancies and are frequently associated with 
disease recurrence and death (4, 8, 9). Finally, medullary thyroid 
carcinoma, which derives from parafollicular C cells, produces 
calcitonin and accounts for approximately 5% of thyroid carci-
nomas (9).

The different morphologic subtypes of DTC are due to spe-
cific genetic alterations. RAS is a proto-oncogene that encodes 
a family of GTPases that are activated through tyrosine kinase 
receptor pathways involved in the regulation of cell differentia-
tion and proliferation. RAS mutations can be found in 20–25% 
of all human tumors and in up to 90% of pancreatic cancers (17). 
Regarding thyroid cancer, RAS mutations are found in approxi-
mately 10% of thyroid cancer cases, mainly the follicular variant 
(18–20). Mutations of the proto-oncogene RAS induce changes in 
Ras protein, leading to its constitutive activation inside the cell. 
Although the prevalence of RAS mutations in the thyroid is low, 
they are associated with aggressive behavior in several other types 
of cancer (21–23).

Another human gene involved in thyroid carcinogenesis is 
BRAF. The B-Raf protein is a serine/threonine kinase that is acti-
vated downstream of Ras and is involved in cell growth control 
(24). Mutations in B-Raf induce its constitutive activation, sub-
sequently activating the downstream mitogen-activated protein 
kinase (MAPK) signaling pathway (20, 24). Although other muta-
tions have been described, BRAFV600E (the substitution of valine 
for glutamic acid in residue 600) is the most frequent mutation 
(24). In PTC, BRAF is the predominant mutation (30–40%) and is 
considered an initiating event in papillary thyroid carcinogenesis 
(18, 25–27).

Genetic alterations in the RET gene have also been found in 
several types of cancers (28). RET encodes a transmembrane 
protein receptor with an intracellular portion containing a 
tyrosine kinase that triggers its autophosphorylation, initiating 
intracellular signaling related to the stimulation of the RAS/
ERK and PI3 kinase/AKT cascades (25, 28, 29). In addition to 
BRAF, RET mutations are also responsible for thyroid cancers 
(9, 16, 25). Somatic point mutations in RET are associated with 

familiar or sporadic medullary thyroid cancer, since RET is 
normally expressed in C cells, but not in follicular thyroid cells 
(29). In PTC, RET translocations (RET/PTC) can be identified in 
approximately 20% of the cases (9).

In some tumors, PAX-8, which encodes a transcription factor 
associated with thyroid development, has been implicated in 
carcinogenesis (30). Tacha et al. (30) found that mutated PAX8 
is expressed in some follicular thyroid cancers due to somatic 
rearrangement leading to the fusion of PAX-8 with PPARγ1 
(peroxisome proliferator-activated receptor gamma 1) (30).  
In FTC, the frequency of PAX8/PPARγ1 rearrangement is esti-
mated to be approximately 30%, but this is not observed in PTCs. 
RAS mutations are also found in FTC (9, 20, 21).

The therapeutic approach for thyroid cancer may depend not 
only on the tumor initial mutational status, which leads to dif-
ferent cell biology characteristics, but also to hallmarks related 
to tumor progression. Some of these molecular changes result in 
specific metabolic alterations that might contribute to metastasis 
and a worst prognosis.

CANCeR CeLL MeTABOLiSM

In the past several years, there has been significant interest in the 
metabolic reprogramming of cancer cells. In general, non-tumor 
cells use energy substrates, such as glucose and fatty acids, to 
generate energy under aerobic conditions. Glucose metabolism 
is initiated by glycolysis, the pathway that converts one glucose 
molecule into two molecules of pyruvate, which are transported 
to the mitochondria for oxidation. The glycolytic pathway is 
generally coupled with the mitochondrial tricarboxylic acid 
(TCA) cycle due to the action of the pyruvate dehydrogenase 
(PDH) protein complex that converts pyruvate into acetyl-CoA. 
The TCA cycle consists of successive reactions that lead to the 
transfer of electrons to NAD+/FAD+ for the generation of NADH/
FADH2, forming a wide range of metabolic intermediaries that 
are involved in various biosynthetic routes. The TCA cycle allows 
electron transfer to oxygen and generates a proton gradient across 
the inner mitochondrial membrane that is necessary for ATP syn-
thesis in a process called oxidative phosphorylation (OXPHOS), 
a metabolic strategy that enables the cellular production of a 
greater amount of ATP (Figure 1).

Under physiological stress conditions, such as hypoxia or 
rapid intracellular ATP decreases, the cell increases its anaerobic 
metabolism, producing higher amounts of lactate from pyru-
vate. Interestingly, most cancer cells show a constitutive stress 
metabolic phenotype due to their high proliferation rates, which 
induces an elevated ATP demand compared to non-tumor cells. 
Therefore, cancer cells show variable energy substrate selection 
and a metabolic shift occurs to maintain cell proliferation and 
survival (31–35). Figure  1 summarizes the major metabolic 
modulation on energy flux in tumor cells.

Decades ago, Otto Warburg described the first tumor-specific 
metabolic characteristic, the so-called Warburg effect or aerobic 
glycolysis, which is considered the key metabolic hallmark 
of cancer (31). The Warburg effect is an alteration of cellular 
metabolism in which the glycolysis pathway is upregulated even 
in the presence of normal or high oxygen tension, resulting in 
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FiGURe 1 | Metabolic profile of cancer cells. Schema describing the metabolic reprogramming of tumor cells with increased glucose uptake and glycolysis that is 
uncoupled from oxidative phosphorylation. Cancer cell metabolism is characterized by enhanced glycolysis and the phosphate pentose pathway. This aerobic 
glycolytic phenotype, however, confers the generation of high amounts of lactate. Abbreviations: TCA, tricarboxylic acid; ETC, electron transport chain.
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the phenomenon of aerobic glycolysis. However, such metabolic 
reprogramming in cancer cells represents an energy compensa-
tion strategy, since the efficiency of ATP production by glycolysis 
is much lower than that by OXPHOS (36). Part of this strategy 
is the upregulation of plasma membrane glucose transporters 
(GLUTs), a feature that is relatively common in many tumor 
types and is easily identified by non-invasive imaging positron 
emission tomography (PET) using fluorodeoxyglucose (34–37). 
In addition to increased glucose uptake, changes in key enzymes 
involved in glucose utilization can also be observed (34, 35). 
Some tumors show increased expression and activity levels 
of hexokinase (HK) isoforms, phosphofructokinase (PFK1), 
6-phophofructo-2-kinase/fructose-2,6-biphosphatase (PFK2), 
aldolase (ADO), phosphoglycerate kinase (PGK), enolase (ENO), 
and pyruvate kinase (PK) (37). All these changes can increase 
pyruvate production from glucose breakdown.

The higher glycolytic flux observed in cancer cells, is not 
accompanied by increased rates of pyruvate oxidation, but 
lactate fermentation seems to be higher (Figure  1). Although 
this phenomenon is not fully understood, in recent years, 
significant progress has been made regarding the underlying 
molecular mechanisms related to neoplastic transformation 
and the Warburg effect (32–39). First, the lactate dehydroge-
nase enzyme (LDH) consumes part of the pyruvate formed by 
glycolysis to regenerate NAD+ from the NADH produced by 
glucose breakdown, allowing a higher rate of glycolysis. Second, 

the LDH is a reversible enzyme that can generate NADH and 
pyruvate, thus contributing to mitochondrial OXPHOS. Third, 
both lactate and pyruvate can be transported from the cytosol to 
the mitochondria, or they can be secreted out of the cell. Lactate 
transport is mainly executed by monocarboxylate transporters 
(MCTs), a family of more than 14 types of transporters (38). 
Secreted lactate and pyruvate can be taken up by adjacent cancer 
cells and provide a feedforward mechanism for tumor growth, a 
phenomenon that is called as the reverse Warburg effect (39–41).

In adverse conditions, such as fluctuating oxygen ten-
sion, which is observed in solid tumors in the setting of poor 
blood vessel irrigation, glycolysis allows cancer cells to live in 
hypoxic conditions. However, survival at a lower oxygen ten-
sion has consequences, such as excessive lactate production and 
decreased extracellular pH, which leads to a microenvironment 
that favors the extrusion of tumor cells from primary tissues 
(33, 36, 40, 41). Therefore, aerobic glycolysis can generate 
lactate, an important metabolite that favors tumor invasion 
and progression, which is advantageous for proliferating cells  
(33, 35, 36, 39). Consequently, the idea that the Warburg effect is 
due to mitochondrial dysfunction has changed. In many tumor 
models, OXPHOS changes are important to maintain growth 
and progression, indicating that OXPHOS may be an important 
metabolic target in cancer treatment (42–46).

During the process of tumor metabolic reprogramming, many 
cancer cells show greater glutamine dependence for their survival 
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FiGURe 2 | Glutaminolysis and glucose metabolism in cancer cells. The higher glycolytic pathway contributes not only to the production of ATP per glucose 
consumed, but also feeds other biosynthetic pathways. Deviation of glyceraldehyde-3P to glycerol-3P is important for lipogenesis. Glucose-6P can also shift toward 
the phosphate pentose pathway that provides ribulose-5-phosphate and NADPH to nucleotide synthesis. On the other hand, glutamine uptake maintains the 
anaplerotic process in the TCA cycle. Glutamine is taken up via the transporter ASCT and is converted into glutamate. Glutamate together with pyruvate can be 
metabolized by GPT producing α-ketoglutarate and alanine; glutamate is metabolized producing α-ketoglutarate and aspartate by GOT; or glutamate is metabolized 
by glutamate dehydrogenase (GLUTD) forming α-ketoglutarate. All these reactions contribute to support the TCA cycle. Citrate outside mitochondria contributes to 
the de novo formation of fatty acids and aminoacids. Cancer cell metabolism is also characterized by the upregulation of lactate dehydrogenase to facilitate the 
conversion of pyruvate to lactate, which is then secreted to the tumor microenvironment via the MCT. Abbreviations: ASCT, Asc-type amino acid transporter; ETC, 
electron transport chain; GLUT1/3, glucose transporter 1 or 3; TCA, tricarboxylic acid; GOT, glutamate-oxaloacetate transaminase; GPT, glutamate–pyruvate 
transaminase; MCT, monocarboxylate transporter.
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and proliferation (47–49). The elevated consumption of glutamine, 
a non-essential amino acid, has been documented in some tumors 
by assays that evaluate the uptake of two radionuclides, 18F or 11C 
(49). High 18F-glutamine uptake was related to increased sodium-
dependent neutral amino acid transporter type 2 (SLA1A5) 
expression and by upregulated glutaminase (GLS) in several 
tumor models (47–49). GLS initiates glutaminolysis by convert-
ing glutamine to glutamate. The destination of glutamate depends 
on divergent routes. Interestingly, this pathway is involved in the 
maintenance of the TCA cycle and anabolic processes through the 
synthesis of non-essential amino acids through transamination, 
nucleotides (purines and pyrimidines), and fatty acids. Glutamate 
formed in the cytosol is transported into mitochondria, where it 
can be converted into α-ketoglutarate by distinct reactions cata-
lyzed by: (a) glutamate–pyruvate transaminase, producing alanine 
and α-ketoglutarate; (b) glutamate–oxaloacetate transaminase 
(GOT), which transfers the amino group from glutamate to 
oxaloacetate producing aspartate and α-ketoglutarate; and finally 

(c) glutamate dehydrogenase (GLUTD). Together, these reactions 
represent the major anaplerotic pathways for the synthesis of 
TCA cycle intermediaries secondary to glutamine metabolism. 
Glutamine consumption allows the cyclic resynthesis of citrate, 
which is directed to the formation of fatty acids or the synthesis 
of amino acids (Figure  2). Moreover, glutamine metabolism 
participates in the generation of antioxidant agents and can also 
act in cell signaling (47, 49).

All these alterations of glucose and glutamine metabolism 
observed in cancer cells are synergic. The high glucose uptake 
linked to energy generation and lactate production reduces oxy-
gen consumption. Furthermore, mitochondrial function is main-
tained by glutaminolysis and can support biosynthetic processes. 
Several studies have provided evidence that oncogenic alterations 
in cancer cells reprogrammed glucose and glutamine metabolism, 
leading to energy stress that sustains anabolic processes, which 
are crucial to cancer cell proliferation and progression (31–36, 
40, 41, 44, 47, 49).

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


5

Coelho et al. Thyroid Cancer and Glycolysis

Frontiers in Oncology | www.frontiersin.org March 2018 | Volume 8 | Article 82

THYROiD CANCeR AND MeTABOLiSM

Extensive documentation is available describing TSH as the 
main regulator of the function, proliferation, and metabolism 
of normal thyroid follicular cells, and well-differentiated thyroid 
cancer (50–56). In thyrocytes, the signaling network of TSH 
involves intermediates, such as protein kinase A, protein kinase 
C (PKC), phosphatidylinositol 3-kinase (PI3K), and MAPK. TSH 
activation increases glucose metabolism and oxygen consump-
tion to support iodide transport and thyroid hormone (T3 and 
T4) synthesis (50–54).

Despite the importance of aerobic glycolysis, it is estimated 
that the ATP content produced by normal thyroid cells is 
mainly derived from mitochondrial respiration with low glucose 
consumption (55, 56). Moreover, Mulvey et al. (56) showed that 
glycolysis seems to be more important to sustain the pentose 
phosphate pathway (PPP) than ATP production in thyroid cells. 
The deviation of glycolysis to the PPP in the thyroid could be 
important to maintain the balance of NADH/NADPH generated, 
which is crucial for thyroid hormone synthesis.

Regarding thyroid tumors and cellular metabolism, a major 
aspect is the effect of oncogenes on cell metabolic shift (32). 
Mutated RAS induces constitutive PI3K/AKT pathway activation 
independently of TSH stimulation (21, 57). In many tumors, the 
constitutive PI3K activation results in increased glycolysis flux 
(58, 59), and the PI3K/AKT pathway is crucial to translocate 
GLUT1 from the cytoplasm to the plasma membrane in thyroid 
cells (53). Recently, significant increases in glycolysis, the PPP, 
glutamine metabolism, and the phosphoserine biosynthetic path-
way were identified in colorectal cancers with the KRAS point 
mutation compared to wild-type cells (59).

Guo et al. (23) showed the impact of RAS mutations on the 
oxidative profile, which can lead to autophagy induction in vitro 
and in  vivo in tumors. The autophagy process is characterized 
by catabolic cellular self-degradation in response to periods 
of nutrient limitations through macromolecular intracellular 
recycling (60). According to Guo et al. (23), in addition to pro-
viding energy substrates, the autophagy process also preserves 
the mitochondrial function required for cell growth, especially 
in models of aggressive cancers. Several years ago, it was demon-
strated that in TRβ PV/PV mice, which spontaneously develop 
well-differentiated FTC, synergism between the KRASG12D muta-
tion and TRβ PV occurs, leading to MYC oncogene activation 
and the development of the UTC phenotype (61). Interestingly, a 
prior study showed that in 40% of all human cancers, deregulated 
MYC expression could be involved in metabolic reprogramming 
(62). This gene encodes the Myc transcription factor (c-Myc), a 
multifunctional protein that plays a role in cell-cycle progression, 
apoptosis, and cellular transformation (62–64). Recently, Qu 
et al. (64) showed that BRAFV600E signaling also increases c-Myc 
expression in the human PTC cell lineage.

In addition to thyroid cancer, c-Myc overexpression has been 
identified in various cancers (62–64) and it upregulates the 
expression of genes involved in glucose metabolism (Figure 3). 
The first link found between c-Myc and glycolysis was the positive 
regulation of lactate dehydrogenase A (LDHA), the enzyme that 
converts pyruvate from glycolysis to lactate (65). Subsequently, 

GLUT-1, HK2, PFKM, and ENO1 were also identified as c-MYC 
targets (66–69).

Furthermore, mutated c-MYC also increases the anaerobic 
status of tumors, probably due to higher glycolytic flux and down-
regulation of OXPHOS (62, 69, 70). Pyruvate dehydrogenase 
kinase (PDK) is the main regulatory enzyme of mitochondrial 
pyruvate consumption. This protein can phosphorylate and 
inactivate PDH, blocking the conversion of pyruvate into acetyl-
CoA and its subsequent oxidation in the TCA cycle. In hypoxic 
conditions, a decrease in oxidative metabolism occurs due to the 
inhibition of PDH by PDK. This process is modulated by hypoxia-
inducible factor-1 (HIF-1), a transcription factor that promotes 
many cell changes in response to oxygen deprivation (66). 
Interestingly, cancers that harbor mutated c-Myc also increase the 
activity of PDK under normoxic conditions (62, 66, 69). Together, 
these effects contribute to increased glycolysis dependence and 
the development of the Warburg effect (64, 66–70). Figure 3 sum-
marizes HIF and MYC targets on glycolytic metabolism.

The ability of tumor cells to maintain growth under hypoxic 
conditions is crucial to tumor progression, and the crosstalk 
between HIF-1 and c-Myc has been well documented (63, 66, 69).  
As a tumor grows, cells that can shift their metabolism in 
response to differences in blood supply are selected. Low 
oxygen tension increases HIF-1 expression and stabilization 
(70). Furthermore, HIF-1 is also activated by inflammatory 
processes, energy deprivation, and oxidative stress (71–75). 
Acting together, HIF-1 and c-Myc regulate several adaptations 
to hypoxic environments (70). As one compelling concept of 
the Warburg phenotype, HIF-1 enhances glycolysis not only by 
increasing the transcription of all glycolytic enzymes, but also 
by increasing their affinity for substrates (73). Moreover, HIF-1 
also increases glucose transporter expression and stimulates the 
inhibitors of mitochondrial metabolism (71–74). In PTC, MTC, 
and FTC, HIF-1 expression level has been associated with a poor 
prognosis and metastasis (74).

The upregulation of GLUT1, HK1, HK2, PFK1, PFK2, ENO, 
PKM2, LDHA, and MCTs is highlighted as the most important 
action of HIF-1 to increase glycolysis (72, 74–76). Furthermore, 
HIF-1 also inhibits the PDH complex through PDK 1 overex-
pression, compromising the synthesis of electron donors (NADH 
and FADH2) for the respiratory chain complex and promoting 
the accumulation of TCA cycle intermediates (77). Therefore, 
HIF-1 impairs OXPHOS, reinforcing the Warburg effect (74–77). 
Finally, HIF-1 also cooperates with the c-Myc oncogene by reduc-
ing mitochondrial biogenesis (77, 78). For this reason, HIF-1 
has been described as a central agent that promotes metabolic 
reprogramming in many cancer cells (73, 75–78).

In addition to its metabolic effects, HIF-1 also stimulates the 
formation of new blood vessels, a process called angiogenesis 
(70–74). The steps of tumor angiogenesis induced by HIF-1 are 
distinct. One possible explanation for tumor HIF-1 overexpres-
sion is the loss of von Hippel–Lindau protein activity, which is a 
tumor-suppressor ubiquitin ligase complex responsible for HIF-1 
proteasome degradation (70, 73). In this case, HIF-1 would be 
able to stimulate anaerobic metabolism even under conditions 
with minimal fluctuations in oxygen or under normoxia (70). 
Gatenby and Gilles (34) suggested that the blood vessels recruited 
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FiGURe 3 | MYC and HIF-1 regulate glucose metabolism. MYC and HIF-1 are described as important regulators of key genes (in white) involved in glucose uptake 
and glycolysis pathway control. Abbrevations: Glut1/3, glucose transporter 1 or 3; HK, hexokinase; GPI, glucose phosphate isomerase; PFK-1, 
phosphofructokinase 1; ALD, aldolase; TI, triose phosphate isomerase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; 
PGAM, phosphoglycerate mutase; ENO, enolase; PKM1/2, pyruvate kinase isoforms 1 and 2; LDHA, lactate dehydrogenase A; G6PDH, glucose 6-phosphate 
dehydrogenase; GNL, gluconolactonase; 6PDG, 6-phosphogluconate dehydrogenase; MCT1, monocarboxylate transporter-1; HIF-1, hypoxia-inducible factor-1.
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to the tumor microenvironment are disorganized and may 
not result in efficient cell delivery of oxygen. HIF-1 stimulates 
angiogenesis predominantly through the increased expression of 
vascular endothelial growth factor (VEGF). VEGF recruits new 
microvessels that allow the delivery of nutrients and expansion of 
the tumor mass. Some previous studies have indicated that VEGF 
as a risk factor of developing PTC or tumor progression (79, 80).

MeTABOLiC MARKeRS iN THYROiD 
CANCeR

GLUT1
The molecular mechanisms related to the upregulation of glucose 
metabolism in thyroid cancer are not yet completely understood. 
It has been demonstrated that 18F-FDG uptake can be stimulated 
by TSH in thyroid cancer tissue in vivo (81–84). However, some 
works have shown that, depending on the thyroid cancer sub-
type, 18F-FDG uptake can increase through a TSH-independent 
pathway (85, 86). In a non-tumor thyroid cell model, the action 
of TSH includes the activation of adenylate cyclase and PI3K 
(50–55). In the presence of RAS mutations, PI3K is constitutively 
activated, which may be partially responsible for the increased 
glucose uptake (57). Haber et al. (86) analyzed GLUT1 protein 
expression in 38 benign thyroid lesions, including follicular 

adenomas, Hurthle cell adenomas, nodular goiters, Hashimoto’s 
thyroiditis, Graves’ disease, and 28 cases of papillary, follicular, 
Hurthle cell, anaplastic, and medullary thyroid cancers. The 
authors showed that GLUT expression is frequently upregulated 
in thyroid cancers, but it is weakly expressed in benign nodules 
and in normal thyroid tissue. In addition, the localization of 
GLUT1 among thyroid cancers shows distinct patterns: (a) a 
circumferential plasma membrane focally present within the 
tumor in papillary carcinomas, (b) asymmetric distribution in 
the basilar membrane of tumor cells adjacent to the stroma and 
capillary blood supply, or (c) focally in the center of a tumor in 
metastatic or anaplastic carcinomas. Therefore, the degree and 
the localization of GLUT1 expression in thyroid cancers may 
have prognostic significance. Matsuzu et  al. (87) studied the 
differential expression of GLUT genes in normal and pathologic 
thyroid tissues and demonstrated that the mRNA expression of 
GLUT 1, 3, 4, and 10 was evident in all thyroid tissues, but no 
differences were found between normal tissues and those from 
benign diseases. Recently, we demonstrated that GLUT1 is the 
predominant glucose transporter expressed in two non-tumor 
cell lines, PCCL3 (rat origin) and NTHY-ori (human origin) (88). 
In addition, the PTC cell line showed higher GLUT1 mRNA lev-
els and protein expression compared to non-tumor cells, which 
may contribute to the elevated glucose uptake found in these cells 
(88). Recently, Naham et al. (89) analyzed 566 thyroid cancers, 
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including PTC BRAFV600E and ATC, and showed that PTC not 
only exhibited higher GLUT1 expression, but also higher GLUT3 
expression. Moreover, the highest levels of GLUT1 expression 
were found in ATC, indicating that GLUT expression levels may 
be related to tumor aggressiveness.

Hexokinase
In addition to the expression of GLUTs, HK expression and 
activity are altered in many cancers, contributing to the 
increased glycolytic flux (32–34, 88–92). HK catalyzes the first 
irreversible reaction of glycolysis and its enzymatic product is 
glucose-6-phosphate (G6P), which is a substrate for glycolysis 
or the PPP. Although there are four HK isoforms, the isoforms 
HK1 and HK2 seem to be overexpressed in cancer cells (92, 93).  
Some biochemical characteristics of HK2 are advantageous 
to cancer cells. First, HK2 does not have a negative regulatory 
site, which allows greater activity (94). Second, HK2 can bind to 
outer mitochondrial membrane porins and voltage-gated anion 
channels (VDAC), facilitating its access to newly synthesized 
ATP and decreasing the negative feedback of G6P for glucose 
phosphorylation (94–98). Third, the binding of HK2 to the 
mitochondria increases its activity, enhancing ATP production 
through the glycolysis pathway (94–97). Fourth, the binding of 
HK2 to VDAC improves the stabilization of the mitochondrial 
membrane, leading to decreased reactive oxygen species (ROS) 
generation (96, 97). Finally, the binding of HK2/VDAC prevents 
Bax/Bak unbinding from the mitochondria and apoptosis  
(97, 98). Therefore, HK2 seems to be important for sustained 
cancer growth and has been suggested to be a marker of progres-
sion and tumor aggressiveness (91–103).

The earliest studies documenting the relationship between 
HK activity and thyroid carcinogenesis date back to the 1980s  
(99, 103). Rijksen et  al. (103) showed no differences in HK 
biochemical characteristics when comparing MTC and ATC. 
Only the affinity of HK for its substrate was higher in ATC than 
in MTC. Nahm et al. (89) studied 342 PTC samples and found 
higher HK2 levels in 50% of PTC samples harboring the BRAFV600E 
mutation. Recently, we demonstrated that HK activity is higher 
in the BCPAP and TPC1 cell lines than in non-tumor cells (88). 
Interestingly, HK activity in the cytosolic and mitochondrial frac-
tions was significantly different between the two thyroid cancer 
cell lines. TPC1 cells that have RET/PTC translocation, showed 
equally distributed HK activity in the two subcellular fractions, 
while BCPAP (BRAF mutated) cells had higher HK activity 
in the mitochondrial fraction (88). According to Hooft et  al.  
(100, 101), HK expression is similar between metastatic and 
primary DTC tumors, and positive 18FDG uptake on PET is 
associated with higher HK1 expression, however, mitochondria-
bound HK was not evaluated in this study.

Pyruvate Kinase
The PK enzyme catalyzes the last reaction of the glycolytic path-
way. It is responsible for the conversion of phosphoenolpyruvate 
and ADP into pyruvate and ATP, respectively. PK monomer is 
composed of one active site, three main domains (denominated 
A, B and C), and a small N-terminal domain (104, 105). The C 
domain is the dimerization interface of the enzyme, and enzyme 

dimers can interact in a dimer–dimer configuration forming a 
tetrameric protein (104).

The PK isoform M1 (PKM1) is a constitutive tetramer exhib-
iting the highest activity that is expressed in tissues with high 
metabolic demand, such as brain, heart, and skeletal muscle  
(106, 107). PK isoform M2 (PKM2) is found in normal prolif-
erating cells, but it is predominantly expressed in tumor cells 
and seems to be important for cancer cell metabolic adaptation  
(104, 108–110). The PKM2 isoform, in contrast to PKM1, 
can occur as dimers or tetramers, depending on the pres-
ence or absence of allosteric regulators (104, 105). The main 
positive allosteric regulator of PKM2 is fructose-1,6-biphosphate 
(Fructose-1,6-P2) that stabilizes the active tetrameric form of 
the enzyme (104, 105). PKM2 activity is negatively regulated 
by acetylation, phosphorylation, and oxidation. The phospho-
rylation of PKM2 at tyrosine 105 interferes with fructose-1,6-P2 
binding and induces transformation from tetrameric to dimeric 
state. Also, the acetylation of PKM2 at lysine 305, or its oxida-
tion at cysteine 358 decreases PKM2 activity (104, 105, 110). 
Decreased PKM2 activity leads to the accumulation of upstream 
glycolysis intermediates and consequently results in the deviation 
of metabolites to the PPP biosynthetic pathway and improved 
hexamine formation, nucleotide synthesis, and NADPH/NADP+ 
formation, contributing to the maintenance of redox homeostasis 
(110, 111). Therefore, when dimeric PKM2 is present in a tumor, 
less pyruvate is produced, limiting the mitochondrial substrate, 
what contributes to the metabolic shift from OXPHOS to aerobic 
glycolysis (104, 110).

Our group has shown that the human PTC cell lines, BCPAP 
and TPC1, express higher PKM2 mRNA levels compared to 
non-tumor cells, but no differences were found in PKM1 mRNA 
levels. However, the total activity of PK in PTC cells carrying 
the BRAF mutation (BCPAP) was higher than that in both non-
tumor (NTHY-ori) and TPC1 (RET/PTC) cell lines, indicating 
that PKM2 enzymatic responses depend on the PTC driver 
mutation (88). It is believed that PKM isoform expression and 
activity change with tumor progression are linked to an increased 
tumor growth rate (112, 113). Feng et al. (113) showed that PKM2 
expression in human PTC was associated with advanced tumor 
stages and lymph node metastasis. In addition, more intensive 
immunostaining of PKM2 was detected in PTCs harboring the 
BRAF mutation (113). Recently, Bikas et  al. (114) showed that 
some thyroid cancer cells (FTC133 and BCPAP) characterized 
by glycolysis dependency overexpress PKM2. Although there are 
few studies in the literature, higher PKM2 expression in thyroid 
carcinomas appears to be significantly associated with the BRAF 
mutation, suggesting that this enzyme may be a potential thera-
peutic target in this type of cancer.

The relationship between dimeric and tetrameric PKM2 states 
has been described as a key factor for cell proliferation (111, 112, 
115, 116). Several studies have shown that dimeric PKM2 can 
be translocated to the cell nucleus, where it directly interacts 
with multiple transcriptional factors and acts as a transcriptional 
coactivator involved in the upregulation of glycolytic genes, cell 
migration, and adhesion. The STAT3 signaling pathway seems to 
be involved in these effects of PKM2, which could be responsible 
for metastatic progression (112, 115, 117–119).
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Lactate Dehydrogenase (LDH)
Lactate production plays a critical role in tumor biology. Due to 
their high glucose consumption, cancer cells display increased 
lactate production regardless of oxygen availability (31–36). 
Lactate is formed by the conversion of pyruvate and NADH in 
a reversible reaction catalyzed by lactate dehydrogenase (LDH). 
Although the isoforms of LDH are expressed in several tissues, 
LDHA is upregulated in a wide range of tumor tissues (120, 121).  
The LDHA converts pyruvate into lactate preferentially, while 
the lactate dehydrogenase B (LDHB) acts in opposite way (120). 
When PKM2 activity decreases, a change in the cytosolic NAD+/
NADH ratio occurs (104), what negatively impacts on the 
pyruvate to lactate conversion by LDHA. The downregulation of 
LDHA produces energy imbalance and oxidative stress leading 
to cell death (121, 122). Mirebeau-Prunier et al. (123) showed a 
lower LDHA/LDHB ratio in thyroid oncocytomas and follicular 
thyroid tumors. The downregulation of LDHA expression is 
related to the upregulation of estrogen-related receptor alpha, 
leading to changes in the oxidative metabolic profile of the tumor 
(123). In contrast, Kachel et al. (124) showed that LDHA is over-
expressed in FTC and PTC compared to non-tumor tissues and 
its levels were even higher in UTC, suggesting that LDHA could 
be used as a biomarker of tumor aggressiveness. Comparing two 
PTC cell lineages, BCPAP and TPC1, we did not find differences 
in LDHA mRNA expression when compared to non-tumor cells. 
However, both tumor cell lineages had higher LDH activity and 
lactate production rates (88).

Monocarboxylate Transporter (MCT)
New evidence has identified MCT as an essential factor in thyroid 
cancer phenotype (38). MCTs are part of a family of transporters 
with more than 14 defined members. In the thyroid, MCT10 and 
MCT8 have been characterized. However, only MCTs 1–4 act in 
the transport of monocarboxylates, such as lactate, pyruvate, and 
ketone bodies (38). MCT isoform 1 (MCT1) is a bidirectional 
lactate transporter present in the plasma membrane that mediates 
the influx of lactate into the cell. MCT1 is also found in the outer 
mitochondrial membrane, transporting lactate from the cytosol 
to the mitochondrial matrix, which increases ATP production via 
OXPHOS (38). MCT isoform 4 (MCT4) is a low-affinity lactate 
transporter that mediates lactate efflux from cells. In tumor cells, 
these transporters are important for the maintenance of glycolysis 
under hypoxic conditions or in normoxia so that tumor cells 
can utilize lactate and other high-energy substrates produced  
(38, 121, 124). The lower lactate levels found in the media of some 
cancer cells in culture suggest a higher lactate uptake via MCTs, 
allowing them to generate large amounts of ATP via OXPHOS 
(121, 124, 125). On the other hand, higher lactate levels outside 
of cells indicate that MCT4 is responsible for the export of lactate 
in some cancer cells (38, 125). Therefore, according to Curry et al. 
(125), MCT1 could be used as an indicator of higher OXPHOS, 
and MCT4 can be used as a marker of glycolytic metabolism.  
In head and neck cancers, the expression of MCT4 has been asso-
ciated with a higher tumor stage and poorer clinical outcomes 
(125). Curry et al. (125) also described crosstalk between PTC 
thyrocytes and adjacent fibroblasts with a glycolytic phenotype, 
resulting in the production of high amounts of lactate, which is 

transported outside the cell by MCT4. On the other hand, PTC 
cells showed greater MCT1 staining, which allows lactate intake 
and consumption by mitochondrial oxidation. From these adjust-
ments, PTC cells may obtain the energy to survive, proliferate, 
and metastasize (126).

ROLe OF ROS iN THYROiD CANCeR 
MeTABOLiSM

During the process of tumor progression, some metabolic changes 
are associated with high levels of ROS (126, 127). High levels of 
ROS can generate oxidative stress due to an imbalance between 
ROS production and antioxidant defenses. The major source  
of ROS seems to be the mitochondria where they are produced as 
a consequence of OXPHOS. Therefore, decreased mitochondrial 
metabolism may be important for decreasing ROS production  
and protecting cancer cells from death. However, improved anti-
oxidant defenses have been observed as a compensatory mecha-
nism in response to ROS generation, which is often increased in 
several tumors, including thyroid carcinomas (126, 127).

The NADPH oxidase/dual oxidase enzymes, also called NOXs 
and DUOXs, are specialized sources of ROS that are widely 
expressed in a variety of tissues, including the thyroid gland  
(128, 129). In the thyroid, DUOX1 and DUOX2 are the main 
producers of H2O2, although thyrocytes also express NADPH 
oxidase 4 (NOX4) that is prominently expressed in PTC and cor-
responds to an important source of ROS (128–130). In fact, there 
is a significant positive association between BRAF oncogene 
activation and NOX4 expression (130).

The oncocytic tumor cells are characterized by the presence 
of a high number of mitochondria probably due to an imbalance 
between mitochondria biogenesis and destruction; these cells 
depend on OXPHOS for energy conservation and produce high 
ROS levels (131). According to Maximo and Sobrinho-Simoes 
(132), the increased ROS production of oncocytic cells could be 
secondary to the decreased activities of complexes I and III of the 
electron transport chain (133). In fact, the oncocytic phenotype is 
associated with disruptive mutations in complex I subunits genes 
encoded by mitochondrial DNA (134), which might be involved 
in tumor cell death due to inefficient metabolic adaptation, since 
the induction of the Warburg phenotype through the stabiliza-
tion of HIF-1 alpha depends on normal complex I function that 
sustains tumor growth (135).

Interestingly, Paik et al. (136) showed that ROS can also increase 
glucose metabolism through HIF-1 activation. Using endothelial 
cells, they showed that increased ROS levels are accompanied by 
higher glucose uptake and lactate production when these cells are 
subjected to hypoxia. However, the glycolytic phenotype is blocked 
by HIF-1 stabilization, suggesting that ROS-driven HIF-1α  
accumulation accelerates glycolysis in endothelial cells (136).

Reactive oxygen species also change cell metabolism through 
AMP kinase (AMPK) protein activation (137). Intracellular ROS 
can stimulate AMPK, a metabolic stress-sensing cytosolic enzyme 
that regulates energy consumption and production processes 
(137). Although controversy remains in the literature relative 
to AMPK pathway involvement in tumorigenesis and cancer 
progression, several studies have demonstrated that activated 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


9

Coelho et al. Thyroid Cancer and Glycolysis

Frontiers in Oncology | www.frontiersin.org March 2018 | Volume 8 | Article 82

AMPK causes cell-cycle arrest and has a strong antiproliferative 
effect in different cancer cell lines (137–139). AMPK activation 
also increases GLUT-1 protein expression, glucose uptake, and 
utilization of the glycolytic pathway in both non-tumor models 
and in tumor models, including PTC models (137–139). Some 
studies have shown that disruption of AMPK activity induces 
the Warburg effect in tumor cells (137, 140, 141). In an AMPK-
deficient mouse model of Peutz–Jeghers syndrome, mammalian 
target of rapamycin protein (mTOR) is upregulated and HIF-1 
promotes higher HK2 and Glut1 expression and increased glu-
cose utilization by tumors (142). According to Bikas et al. (114), 
AMPK activation seems to be involved in the glucose metabolism 
dependence that is observed in some PTC cells. We described 
greater expression of the active phosphorylated form of AMPK 
in PTC tissue samples and in PTC tumor cell lineages in culture 
compared to that in non-tumor tissues (139, 143). However, new 
studies are necessary to understand the role of AMPK in human 
thyroid cancer, especially in terms of metabolic control, cell 
growth, apoptosis, and survival.

TARGeTiNG MeTABOLiSM iN THYROiD 
CANCeR

Considering the diversity of thyroid tumors and their distinct 
metabolic requirements, establishing a unique strategy for can-
cer therapy is not an easy task. However, some drugs for cancer 
therapy that target the tyrosine kinase receptors signaling cascade 
are currently being used. These proteins constitute a group of 
enzymes involved in the control of mitogen signals, energy status, 
cell survival, and angiogenesis (144, 145). Several tyrosine kinase 
inhibitors (TKIs) have been developed for thyroid carcinoma 
treatment, but not all of them have received approval from inter-
national health agencies (145). Many TKIs are still in the initial 
clinical phase of study. Sorafenib, lenvatinib, vandetanib, and 
cabozantinib are multikinase inhibitors approved by the Food 
and Drug Administration and the European Medical Agency 
(EMA) for use in patients with advanced thyroid carcinomas.  
In fact, these patients had significantly increased progression-free 
survival rates with the use of these agents (145).

In addition to TKIs, other downstream targets can regulate 
metabolic pathways (Figure 4). PI3K was described as a compo-
nent of the insulin receptor intracellular signaling pathway and its 
main substrate is AKT. Once activated, AKT increases phospho-
rylation events in both the cytoplasm and the nucleus, stimulat-
ing glucose uptake; glycolytic flux; inhibition of apoptosis; and 
activation of mTOR, an important regulator of metabolism and 
cancer growth (145, 146). PI3K/AKT signaling is inhibited by 
the tumor suppressor phosphatase and tensin homolog (PTEN), 
which is often mutated in many types of tumors. Therefore, the 
loss of PTEN activity allows PI3K/AKT constitutive activation 
(145, 146). LY294002 is a classic molecule that inhibits PI3K and 
has already been tested in some carcinomas, including thyroid 
cancer. Currently, other new drugs targeting PI3K/AKT have 
been tested in several carcinomas and are in different clinical trial 
phases of study (144, 145).

Mammalian target of rapamycin protein is the main down-
stream effector of PI3K/AKT, and its upregulation is involved 

in tumorigenesis (144–146). Our group demonstrated that the 
activation of PI3K/AKT/mTOR inhibits iodide uptake by dimin-
ishing sodium/iodide symporter transporter (NIS) expression in 
non-tumor cells (149). Loss of iodide uptake is a negative process 
in the course of disease evolution, since thyroid cancer treatment 
depends on the administration of radioactive iodine (145). Several 
mTOR inhibitors (rapamycin analog), such as everolimus, have 
been studied in preclinical and clinical trials, including thyroid 
carcinomas (144, 145). Recently, phase II studies using everolimus 
in patients with advanced thyroid cancer have reported a partial 
response and sustained stable disease in a small proportion of 
patients (5–45%, respectively), with progression-free survival 
rates of approximately 11–16 months (150). The use of everolimus 
as monotherapy shows moderate effects, but its clinical relevance 
mainly derives from its relatively low toxicity profile (144, 151). 
The combination of another mTOR inhibitor (temsirolimus) and 
other drugs (MEK inhibitors) has shown synergic effects in vitro 
and is being tested in clinical trials (152, 153).

AMP kinase is a potent physiological mTOR inhibitor. Under 
low ATP/AMP ratio conditions, AMPK is activated, leading to 
metabolic adaptations, such as increased catabolism and decreased 
anabolism that are partially mediated by mTOR inhibition. The 
crosstalk between mTOR and AMPK has been extensively stud-
ied (137, 138, 140). The first evidence associating AMPK with 
cancer development was the discovery of liver kinase B1 (LKB1). 
LKB1 is a serine/threonine kinase and the major upstream kinase 
responsible for AMPK activation through phosphorylation (138). 
LKB1 is recognized as a tumor suppressor that associates bioen-
ergetics with cell growth control and downregulation of mTOR 
activity through AMPK activation (138, 142). We have studied 
the effects of a pharmacological AMPK activator (AICAR) on 
PTC cell lines and observed decreased cell proliferation and the 
induction of apoptosis (139). These results suggest that AMPK 
may be a good target for thyroid cancer therapy (Figure  4). 
Epidemiological studies reported that in thyroid cancer patients 
who are also diabetic, metformin, an oral anti-diabetic drug, can 
activate AMPK, resulting in a reduced tumor size and higher 
remission rates (154). Interestingly, our group showed that the 
expression and activity of AMPK are increased in human PTC 
and in PTC cell lines (BCPAP and TPC1) compared to those 
in non-tumor tissues and non-tumor cell lines (139, 143). As 
PTCs are well-differentiated and slow-growing carcinomas, it 
is believed that increased AMPK activation could impair tumor 
growth.

Although tumor energy metabolism has common character-
istics, most molecular targets that may be used for tumor treat-
ment are ubiquitously expressed and function in the entire body. 
Therefore, it is difficult to produce specific effects only in tumor 
cells. Glycolytic inhibitors, such as 2-deoxyglucose (2DOG) and 
3-bromopyruvate (3-BP), can be used as adjuvant agents to sensi-
tize tumors. Unlike 2DOG, 3-BP acts in many targets and inhibits 
HK, GAPDH, and MCT activities, thus leading to decreased 
aerobic glycolysis (155). Furthermore, inhibition of PFK1 
activity, a rate-limiting step of glycolysis, is also an interesting 
strategy in cancer therapy. This protein is activated by fructose-
2,6-bisphosphate (F2,6BP), which is produced by PFKFBs. A 
small molecule, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one, 
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has been found to inhibit PFKFB3, leading to decreased glycolytic 
flux and slower tumor growth (Figure 4) (156).

Other attractive targets for cancer therapy include the inhibi-
tion of lactate production. Some previous studies have shown 
that loss of LDHA function by dichloroacetate (DCA) results 
in dramatically diminished cellular transformation or xenograft 
tumor growth in breast cancer (157). Glutaminolysis and amino 
acid metabolism are very important for tumors. Glutamine is 
the most abundant amino acid in the plasma and is heavily con-
sumed by tumor cells. Therapies that decrease plasma glutamine 
concentrations induce tumor regression and prevent muscular 
catabolism, an endogenous source of glutamine. Phenyl acetate 
is a promising drug that can reduce the availability of glutamine 
in the blood and shows low toxicity (158).

Finally, another strategy targeting metabolism in tumors is 
diet restriction, fasting, or a ketogenic diet (a low-carbohydrate 

and high-fat diet) (159–162). The hypothesis is based on the 
glucose dependency of many tumor types. Interestingly, these 
diets do not increase plasma glucose levels, but produce ketone 
bodies that can be used as a carbon source for energy produc-
tion in oxidative processes, altering the Warburg phenotype 
(159–162).

CONCLUSiON

In summary, although thyroid cancer studies are emerging, the 
mechanism of tumor progression remains unclear. As described 
previously, metabolic reprogramming is the hallmark of cancer 
cells. Recent molecular studies in thyroid cancer revealed that 
oncogenes and tumor suppressor genes not only control growth 
and apoptotic phenotypes of thyroid carcinomas, but also 
directly affect cellular energy metabolism and are implicated 
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in the Warburg phenotype. The higher glucose and glutamine 
consumption associated with the disruption of mitochondrial 
OXPHOS create a favorable environment for tumor progression.
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