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Hematopoietic stem cells (HSCs) that give rise to all kinds of hematopoietic lineage cells 
on various demands throughout life are maintained in a specialized microenvironment 
called “niche” in the bone marrow (BM). Defining niche cells and unveiling its function 
have been the subject of intense study, and it is becoming increasingly clear how niche 
cells regulate HSCs in normal hematopoiesis. Leukemia stem cells (LSCs), which are 
able to produce leukemic cells and maintain leukemic clones, are assumed to share 
common features with healthy HSCs. Accumulating evidence suggests that LSCs reside 
in a specialized BM microenvironment; moreover, LSCs could control and rebuild the 
microenvironment to enhance their progression and survival. This article discusses the 
recent advances in our knowledge of the microenvironment supporting malignant hema-
topoiesis, including LSC niche.

Keywords: bone marrow microenvironment, niche, leukemia stem cells, hematopoietic stem cells, myelodysplastic 
syndrome, MPD

inTRODUCTiOn

Hematopoiesis needs to be maintained throughout life to supply blood cells on various demands, 
such as infection, inflammation, blood loss, or hypoxia. Hematopoietic stem cells (HSCs) that reside 
at the top of hierarchy differentiate into multiple lineage hematopoietic cells through a fine-tuned 
differentiation process. Each step of differentiation is guided by various extrinsic factors as well as 
cell-autonomous intrinsic master gene regulations. In adult mammals, HSCs are known to locate in 
a specific microenvironment termed “niche” that orchestrates HSC function, including self-renewal 
and differentiation in both physiological and pathological conditions (1). Accumulating evidence 
reveals that various types of cells in and around the bone marrow (BM) participate in HSC function 
and its niche regulation (Figure 1) (2, 3).

Cell-intrinsic genetic alterations, such as gene mutations, deletions, amplifications, or translo-
cations and epigenetic changes have been postulated mainly as the pathogenesis of hematologic 
malignancies, including leukemia, myelodysplastic syndrome (MDS), and myeloproliferative neo-
plasms (MPNs). It is rare, however, that donor cell-derived leukemia (DCL) is a well recognized and 
vital entity in understanding the process of malignant transformation of hematopoietic cells (5, 6).  
The possible pathological mechanism of DCL is diverse, such as preleukemic changes in donor 
cells, oncogene transformation from residual leukemic cells, and impaired immune surveillance. 
Defects in the BM microenvironment (BMM) in recipient BM have also been assumed as one of the 
mechanisms, suggesting vital roles of cell-extrinsic factors for malignant clone emergence (1, 7, 8).  
Recent studies using genetically modified animals indicates that alterations in the BMM could also 
support the survival of malignant clones or can even be the cause of the evolution of malignant 
clones (9, 10). In this review, we will summarize the recent achievements uncovering the roles of 
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FigURe 1 | Niche cells for healthy hematopoietic stem cells (HSCs). Various 
cell types have been identified as niche cells for HSCs in steady-state bone 
marrow. Perivascular stromal cells such as NG2+ periarteriolar cells and 
LepR+ perisinusoidal stromal cells differentially regulate HSCs. 
Nonmyelinating Schwann cells maintain HSC quiescence by activating 
transforming growth factor-β (TGF-β). Adopted and modified from Ref. (4).
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the BMM for the emergence of hematological malignancies and 
discuss the possibility of therapeutic options targeting the BMM.

KeY PLAYeRS in HSC niCHe in  
STeADY-STATe BM

Osteolineage Cells
Since Schofield proposed the concept of the existence of a specific 
environment for HSCs in the BM, various cell types in the BM 
have been identified as niche comprising cells. Osteolineage cells, 
a friendly neighbor of the BM, have been assumed as niche com-
prising cells for healthy HSCs. Initial in vitro studies indicated 
that bone-forming osteoblasts have the ability to support hemat-
opoietic stem/progenitor cell (HSPC) function (11, 12). In 2003, 
two reports from different groups showed that osteoblast activa-
tion in vivo increased the number of HSCs in the BM. One group 
pharmacologically activated osteoblasts and the other increased 
the number of osteoblasts by genetic manipulations, and both 
led to the expansion of HSCs in the BM (13, 14). Conversely, 
it is reported that osteopontin, a matrix glycoprotein mainly 
produced by osteoblasts, negatively regulates HSC number in the 
BM (15). Recent studies using transgenic mouse models in which 
the major niche factor, such as C-X-C motif chemokine ligand 
12 (CXCL12) and stem cell factor (SCF), was deleted specifically 
in osteoblasts indicated that osteoblasts did not contribute to the 
maintenance of HSCs at least by producing these niche factors 
(16–18). The role of bone-embedded osteocytes for hematopoiesis 

had remained unknown for a long time. The extrinsic adminis-
tration of granulocyte-colony-stimulating factor (G-CSF), a key 
cytokine promoting granulopoiesis, facilitates the translocation 
of HSPC from the BM to peripheral blood. This process is called 
the “mobilization” of HSPC and mobilized HSPC is collected by 
apheresis and used for HSC transplantation for the treatment of 
hematological disorders. A recent study revealed that osteocytes 
have critical roles in regulating HSPC mobilization by G-CSF. 
The depletion of osteocytes using transgenic mice in which diph-
theria toxin receptor was expressed under the control of dentin 
matrix protein-1 (Dmp-1) promoter led to a suppression of 
osteoblasts, resulting in a defect of HSPC mobilization by G-CSF.

endothelial Cells
In mammals, definitive HSCs emerge from the hemogenic endo-
thelium within the aorta-gonado-mesonephros region during 
embryonic development (19, 20). Like the intimate relationship 
between endothelium and HSCs during development, endothelial 
cells lining the BM vasculature support HSC maintenance and 
regeneration in the BM. In vitro coculture experiments indicate 
that BM endothelial cells expand HSPCs by producing a variety 
of angiocrine factors, such as insulin growth factor binding 
protein 2, bone morphogenic protein (BMP) 2 and BMP4, Notch 
ligands, SCF, CXCL12, and wingless-type MMTV integration 
site (Wnt) 5a (19–22). In vivo evidence in which the functional 
deletion of niche factors was achieved specifically in endothelial 
cells revealed that SCF or CXCL12 derived from endothelial 
cells play an indispensable role for HSC maintenance in the BM  
(16, 18). Endothelial cells have also been shown to integrate HSC 
quiescence through surface E-selectin expression (23).

Recent studies in mice identified a distinct subset of BM 
endothelial cells crucial for HSC function. Endothelial cells with 
high expression of CD31 and endomucin, referred to as type 
H endothelium, which distributes in end-terminal arterioles, 
expressed a higher level of SCF than sinusoid endothelial cells 
(24). A study done by another group found that endoglin-
expressing endothelial cells, referred to as human regeneration-
associated endothelial cells (hRECs), are associated with BM 
regeneration after myelosuppression and support a subset of 
hematopoietic progenitors through interleukin (IL)-33. Intere-
stingly, gene expression analysis revealed similarities between 
hRECs and murine type H endothelium (25). A difference of 
vascular permeability observed between arterioles and sinusoids 
provides different effects to HSC activities. Arterial vessels are 
less permeable and maintain HSCs in a low reactive oxygen 
species (ROS), keeping HSCs quiescent. On the contrary, blood 
plasma permeabilized from leaky sinusoids promotes a high 
level of ROS in HSCs, augmenting the ability of differentiation 
and migration (26).

Stromal Cell-Associated vasculature
A study defining the location of HSCs in the BM by staining 
phenotypic endogenous HSCs revealed that HSCs are closely 
associated with BM vasculature (27). These findings shed light 
on the vasculature area as HSC niche. Stromal cells that have a 
potency to differentiate into trilineage mesenchymal cells have 
been shown to function as HSC niche and are mainly associated 
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with sinusoids in the BM. Several studies identified different 
stromal cell types around sinusoids characterized by distinct sur-
face markers or gene expression as niche comprising cells. These 
cells include CXCL12-abundant reticular (CAR) cells (28–30), 
which are cells marked by green fluorescent protein (GFP) under 
the elements of the nestin promoter (Nes-GFP+) (31), leptin 
receptor (LepR)-expressing cells (16, 17), CD144−CD146−Sca-1+ 
mesenchymal stromal progenitors (32), and the stromal cells 
targeted by Cre recombinase promoted by transcription factor 
osterix (Osx) (18), neural/glial antigen 2 (NG2) (33), or paired 
related homeobox-1 (17, 18). It has been shown that these cells 
expressed a high amount of niche factors supporting HSC func-
tions, such as CXCL12, SCF, and VCAM-1, and they exhibit a 
significant overlap among each other (17, 18, 33, 34). Because 
the BM is a highly vascularized organ, as a matter of course, they 
have plenty of arteries and arterioles. A recent study in which 
the spatial distribution of endogenous HSCs in the BM was 
analyzed revealed that HSCs are closely and significantly associ-
ated with BM arterioles (35). The depletion of NG2-expressing 
pericytes in vivo led to a loss of quiescence and a reduction of 
HSCs and suggested the roles of periarteriolar stromal cells for 
HSC maintenance and quiescence. Other studies have argued 
that HSCs marked by α-catulin GFP and c-kit expression are 
randomly distributed in the BM and closely associated with 
sinusoids rather than arterioles (36). Another study has argued 
the differential contributions of sinusoids and arterioles to HSPC 
functions (26). Therefore, the contributions of each perivascular 
stromal cells to HSC niche had been controversial. To delineate 
the roles of perisinusoidal and periarteriolar stromal cells in 
HSC niche, we analyzed transgenic mice in which major niche 
factors, CXCL12 or SCF, were deleted specifically in either 
perisinusoidal or periarteriolar stromal cells. Whereas CXCL12 
deletion in periarteriolar stromal cells led to a reduction of HSC 
number and alteration of distribution from arterioles, the dele-
tion of CXCL12 in perisinusoidal stromal cells mobilized HSC 
to peripheral blood and spleen but had no impact on the HSC 
number or location in the BM. On the contrary, SCF deletion in 
perisinusoidal but not periarteriolar stromal cells impaired HSC 
maintenance in the BM (33). These results showed an intriguing 
mechanism of how different cytokines from distinct perivascular 
stromal cells contribute to HSC functions.

nervous System
Bone and BM are extensively innervated by the nervous system. 
Catecholamine signals released from sympathetic nerve endings 
finely tune HSC niche functions, integrating HSC mobilization 
induced by cytokine G-CSF or release of HSCs under the circa-
dian rhythm (37–39). Nonmyelinating Schwann cells wrapping 
the sympathetic nerves and closely associated with arterioles 
in the BM have been reported to maintain HSC quiescence by 
converting transforming growth factor-β (TGF)-β into the active 
form (40).

Regulatory T (Treg) Cells
It has been well known that HSCs in the BM are resistant to cyto-
toxic stress and recent studies revealed that Treg cells that suppress 
the function of effector T cells provide immunoprivileged sites to 

HSCs in the niche (41, 42). Intravenously transplanted HSCs in 
the allogeneic mouse transplantation model persisted for 1 month 
without immunosuppression and most of the HSCs colocalized 
with Treg cells in the BM. The depletion of Treg cells led to the 
reduction in the number of surviving donor HSCs after allogeneic 
transplantation, suggesting a protective function of Treg cells from 
immune attack to allogeneic HSCs (41). A subsequent study from 
the same group reported that a distinct fraction of Treg cells that 
highly expressed CD150 play vital roles for the maintenance of 
HSC quiescence and engraftment through adenosine (42).

ROLeS OF THe BMM FOR MPn

The clinical entity of MPNs is heterogeneous and includes four 
classic MPNs: polycythemia vera, essential thrombocytopenia, 
primary myelofibrosis, and chronic myeloid leukemia. As recent 
studies showed that most cases of MPNs have somatic mutations 
in the tyrosine kinase Janus kinase 2 (JAK2) (43–46), calreticulin 
gene (CALR) (47, 48), or thrombopoietin receptor (49), the 
pathogenesis of these neoplasms appears mostly cell intrinsic. 
Although the BMM originally regulates differentiation and pro-
liferation of HSCs or immature progenitor cells without aberrant 
proliferation, recent evidence from mice work suggests that the 
defect of the BMM can be the cause of abnormal myeloprolifera-
tion. The lost of one of the major receptors for vitamin A, RARγ, 
in the BMM results in increased mature myeloid cells resembling 
MPNs, which partially depend on tumor necrosis factor-α (TNF-α)  
production from the BMM (50). Another report showed that 
the perturbation of interaction between myeloid-derived cells 
and the BMM by the defect of retinoblastoma protein (Rb), a 
vital regulator of the cell cycle, led to myeloid cell proliferation 
(51). The deficiency of Mindbomb-1, an essential component for 
Notch ligand endocytosis, in the BMM is also shown to cause 
enhanced myelopoiesis corresponding to MPNs through Notch 
signaling defects in the BMM (52). All these evidences clearly 
indicate that nonhematopoietic BMM cells play significant roles 
in promoting aberrant myelopoiesis; however, the specific cell 
types contributing to the enhanced myelopoiesis remain largely 
unknown.

Osteolineage Cells
A recent study by Fulzele et al. reported that osteocytes, which 
are terminally differentiated osteolineage cells embedded in the 
calcified bone, participate in myelopoiesis. They found that the 
specific deletion of Gsα in osteocytes enhanced G-CSF produc-
tion, leading to the expansion of myeloid-committed cells in the 
BM (53). As osteocytes are also shown to regulate the BMM and 
control HSPC activities (54), it might be possible that osteoline-
age cells participate in the pathogenesis of MPNs.

Stromal Cell-Associated vasculature and 
Sympathetic nerve
A recent study done by Arranz et al. reported that, in both human 
MPN patients and mice expressing human JAK2 (V617F) muta-
tion in HSCs, the number of sympathetic nerves and Schwann 
cells ensheathing sympathetic nerves was decreased. In the mice 
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MPN model, the depletion of Nes-GFP+ perivascular stromal 
cells accelerated MPN progression. They found that abnormal 
HSC-derived proinflammatory cytokine IL-1β caused local 
neuropathy and damaged Nes-GFP+ perivascular stromal cells, 
leading to the progression of MPN (55). These results suggest 
that aberrant HSCs in the MPNs rebuild the BMM beneficial for 
their survival.

Cytokine Milieu
In addition to the cellular players of the BMM, non-cellular 
components of the BMM have significant contributions to the 
development or sustainment of MPNs. The increased level of 
various inflammatory cytokines, including IL-6, IL-8, basic 
fibroblast growth factor, platelet-derived growth factor, TNF-α, 
TGF-β, and oncostatin M, has been reported in MPNs (56–58), 
and these cytokines play a role in the establishment of the dis-
ease manifestations. In particular, TGF-β1 mostly produced by 
megakaryocytes has been implicated in the development of BM 
fibrosis, a major unfavorable alteration of the BMM in patients 
with MPNs (59, 60). JAK kinase inhibitors, including ruxolitinib, 
ameliorate systemic symptoms and splenomegaly in MPN 
patients (61–63). The reduction of proinflammatory cytokines by 
the inhibition of JAK-STAT signaling has been identified as one 
of the mechanisms of ruxolitinib (64). Moreover, a recent study 
identified a constitutive activation of nuclear factor-κB (NF-κB) 
signaling in addition to JAK-STAT pathways as a key signaling 
pathway leading to chronic inflammation in MPNs. Intriguingly, 
the combined blockade of JAK-STAT and NF-κB pathways with 
ruxolitinib and JQ1, the bromodomain and extra-terminal motif 
(BET) bromodomain inhibitor, reduced aberrant cytokine pro-
duction and improved BM fibrosis in the mice MF model (65).

ROLeS OF THe BMM FOR THe 
PATHOgeneSiS OF MDS

By definition, MDS are a heterogeneous group of clonal HSC 
diseases characterized by cytopenia, dysplasia in one or more of 
the major myeloid lineages, ineffective hematopoiesis, recurrent 
genetic abnormalities, and increased risk of developing acute 
myeloid leukemia (AML) (66, 67). As various types of recurrent 
cytogenetic abnormalities in hematopoietic aberrant clone have 
been identified, it is broadly accepted that the pathogenesis of 
MDS is mainly cell intrinsic. Some studies indicated that cultured 
BM stromal cells isolated from MDS patients harbor cytogenetic 
abnormalities distinct from hematopoietic cells (68–70). Because 
stromal cells analyzed in these studies were cultured in vitro and 
most of them were analyzed after several passages, observed 
abnormalities could be acquired in vitro rather than originating 
from primary stromal cells. Emerging evidence from sophisti-
cated mice studies strongly suggests that defects in the BMM 
could promote at least a partial initiation of malignant clone or 
advance the disease progression.

Stromal Cell-Associated vasculature
Genetically engineered mice in which Dicer 1, the RNase III 
endonuclease essential for microRNA biogenesis and RNA 

processing, was deleted explicitly in osteoprogenitor cells 
were marked by Osx-Cre-developed MDS accompanied by 
osteoblastic dysfunction (9). In addition to Dicer 1, the dele-
tion of Shwachman–Diamond–Bodian syndrome (Sbds) gene 
in osteoprogenitor cells resulted in cytopenia and dysplastic 
changes in neutrophils and megakaryocytes. A subsequent 
study using the same mouse model done by the same group 
demonstrated that S100A8/9 protein, proinflammatory mol-
ecules referred to as damage-associated molecular pattern or 
alarmins, secreted by osteoprogenitor cells in Sbds-deficient 
mice induces genotoxic stress mediated by mitochondrial 
dysfunction, oxidative stress, and DNA damage response 
activation in HSPCs (71). Although Osx is one of the master 
regulator genes that lead mesenchymal progenitors to osteo-
blast lineage differentiation (72), stromal cells marked by Cre 
promoted by Osx showed a significant overlapping with other 
stromal cells that are closely associated with sinusoids, such 
as CAR cells (18), Nes-GFP+, or LepR-expressing stromal cells 
(34). Collectively, these results indicate that the dysfunction 
of perisinusoidal stromal cells that have osteoblastic differ-
entiation potential might induce dysplasia in hematopoiesis 
through undefined mechanisms.

Cytokines and immune Cells
It has been well recognized that both cellular and non-cellular 
immune systems are perturbed in MDS patients (73). The 
increased levels of various proinflammatory cytokines, such as 
IL-6, IL-8, TNF-α, TGF-β, and interferon-γ in MDS patients have 
been reported and implicated in the pathogenesis of MDS (74).

With regard to the roles of immune cells, immunoregulatory 
Treg cells might be involved in the pathogenesis of MDS. The 
increased number of Treg cells has been reported to correlate with 
unfavorable factors, such as high percentage of BM blasts, high 
International Prognostic Scoring System score, and disease pro-
gression (75). A recent study identified that high numbers of effec-
tor memory Treg cells that have more potent immunosuppressive 
function are associated with higher risk disease, increased blast 
percentage, and reduced overall survival (76). Although these 
evidences indicate crucial roles of Treg cells in the pathogenesis 
or the mechanism of disease progression in MDS, further studies 
will be necessary to determine whether Treg cells participate in 
the pathogenesis of MDS or a merely reactive consequence of 
hematological dysregulation.

ROLeS OF THe BMM FOR THe 
PATHOgeneSiS OF LeUKeMiA

Similar to the normal hematopoietic system, stem or progenitor 
cells reside at the top of the hierarchy and produce descendant 
leukemic cells and self-renew to propagate leukemia and sustain 
clonal tumor burden (77, 78). Although leukemia stem cell 
(LSC) seems to be less dependent on their niche than normal 
HSCs, the leukemogenic process does not completely abrogate 
niche dependence for LSCs. Cumulative evidence suggests that 
BMM influences LSC behavior in many ways similar to normal 
hematopoiesis (73).
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FigURe 2 | Roles of the BM microenvironment in leukemia pathogenesis. 
Constitutive activation of β-catenin in osteoblast-induced leukemia 
transformation in mice model. Leukemic cells induce loss of osteoblasts, 
vascular endothelial cells, and periarteriolar NG2+ stromal cells, leading  
to healthy hematopoietic stem cell (HSC) loss. CXCL12 and E-selectin 
expressed by vascular endothelial cells function as inducers of leukemia stem 
cell (LSC) homing to the bone marrow, and CXCL12 secreted by endothelial 
cells also contributes to LSC maintenance and the propagation of leukemia.
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non-Cellular Component
It is shown that human AML stem cells (LSCs) expressed CXCR4, 
a counter-receptor for CXCL12 that is a potent chemoattractant 
for HSCs secreted from BM stromal cells, and the blockade of 
CXCR4–CXCL12 axis abrogated the homing of LSCs and propa-
gation of leukemic cells in a xenotransplantation murine model 
(79). Another study reported that the level of CXCL12 in the 
BM with chronic myelogenous leukemia (CML) was decreased, 
which impaired the homing efficacy of both exogenous trans-
planted LSCs and healthy HSCs. Plasma isolated from the BM of 
CML mice BM impeded the growth of healthy HSCs but not LSCs 
in vitro culture, leading to a growth advantage for the leukemic 
clone (80). AMD3100 (plerixafor), a small-molecule inhibitor of 
CXCR4, have been tested in a phase 1/2 study combined with 
chemotherapy for relapsed/refractory AML with encouraging 
response rates (81). However, a subsequent trial testing the addi-
tive effect of G-CSF on AMD3100 combined with chemotherapy 
in AML patients failed to improve the response rate (82). More 
potent CXCR4 inhibitors have been developed and in vitro stud-
ies revealed that they could induce the apoptosis of AML, which 
is favorable to eradicate LSCs (83, 84).

In addition to CXCR4–CXCL12 interaction, the adhesion 
molecule CD44 on LSCs also has been documented to be involved 
in the crosstalk between LSCs and BMM. The ligation of CD44 
by the monoclonal antibody specifically prevented LSCs to home 
and engraft to the BM without disturbing normal HSC function 
(85). The phase I study of an anti-CD44 antibody that blocks the 
interaction between LSCs and BMM revealed that the drug was 
safe and well tolerated but had limited activity to leukemia (86). 
These series of evidences highlighted the significant roles of the 
BMM for leukemia pathogenesis and LSC biology. Defining the 
exact cell types of LSC niche and the mechanism how niche cells 
regulate LSCs have been under intense study (Figure 2).

endothelial Cells
Ample evidence suggests the indispensable roles for vascular 
endothelial cells in supporting LSCs and leukemia cell progres-
sion. Although most of the leukemia are disseminated diseases 
when they cause clinical symptoms, the initial clonal evolution 
should occur at a certain site in the BM. After the initial pro-
liferation of aberrant clones, leukemic cells extravasate from 
the original BM to the bloodstream and spread to other BMs 
throughout the body. Similar to healthy HSCs, LSCs are required 
to have the ability to home and engraft to the BM for their expan-
sion. Sipkins et  al. analyzed the spatial distribution pattern of 
externally transplanted mice leukemic cells and revealed that leu-
kemic cells homed and colonized around E-selectin and CXCL12 
expressing BM endothelial cells, suggesting the importance of 
distinct vascular endothelial cells as a supporter of leukemic cell 
expansion (87). The deletion of CXCL12 specific from vascular 
endothelial cells impeded T-cell acute lymphoblastic leukemia 
(T-ALL) growth in both mice leukemia model and human T-ALL 
xenografts (88). A recent study showed that LSCs expressed a 
high level of CD98, an integrin binding glycoprotein, mediated 
adhesion of LSCs to vascular endothelial cells where LSCs were 
maintained. Moreover, the blockade of CD98 by monoclonal 
antibodies abolished leukemia engraftment and proliferation in 

the mice AML model, suggesting a therapeutic potential of the 
agents targeting CD98 (89). The antileukemic effect of anti-CD98 
antibody in relapsed or refractory AML patients has also cur-
rently been under investigation.

In terms of the number of the vasculature in leukemia, the 
increased density of BM vasculature has been observed both in 
murine aggressive AML model and in leukemia patients (90, 91). 
However, it seems that we should take into consideration the 
location of vasculature rather than the magnitude of the increase 
of endothelial cells. Duarte et  al. demonstrated that endosteal 
vascular endothelial cells were depleted in MLL-AF9-driven 
mouse AML model, which was associated with healthy HSC 
loss through the increase of transendothelial migration of HSCs. 
The prevention of endosteal endothelium impairment with a 
small-molecule deferoxamine or a genetic approach rescued 
HSC loss and prolonged the survival of the mice treated with 
chemotherapy (92).

Osteolineage Cells
In the human acute leukemia xenograft model, residual leukemic 
cells were located in the vicinity of the endosteal area after chemo-
therapy, implying the existence of a distinct microenvironment 
for chemotherapy-resistant dormant leukemic stem cells around 
osteolineage cells (93). Reduced numbers of mature osteoblasts 
and osteocalcin in the blood, one of the surrogate markers 
of osteoblast function, were reported in both AML patients 
and the MLL-AF9 mouse aggressive AML model, resulting in 
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reduced healthy hematopoiesis (94, 95). Targeted ablation of 
mature osteoblasts in the mouse transgenic leukemia model 
representing human chronic phase CML accelerated leukemia 
progression possibly due to the loss of quiescence of LSCs and 
led to a deterioration of LSC ability to generate leukemia in the 
recipient mice (96). These results suggest that osteoblasts have 
indispensable roles to inhibit leukemia expansion and to sustain 
stemness of LSCs in mouse CML (96). Consistent with this idea, 
osteoblast activation by the treatment of parathyroid hormone 
decreased LSC proliferation in a transduction-transplantation 
model of CML (97).

A recent study by Kode et  al. showed that osteoblasts are 
involved in not only the regulation of established leukemic cells 
but also the evolution of leukemia. In this study, the authors 
showed that the constitutive activation of β-catenin in mature 
osteoblasts stimulated the expression of Notch ligand jagged 1 in 
osteoblasts, which in turn led to the activation of Notch signaling 
in HSPCs, and induced malignant transformation of HSPCs to 
leukemic cells (10).

Perivascular Stromal Cells
As discussed in the niche cells for healthy HSCs, perivascular 
stromal cells in the BM have attracted much attention as a vital 
niche player. However, it remains elusive whether these cell types 
contribute to the evolution or growth of leukemia. One study 
showed in a transduced mouse T-ALL model that perivascular 
stromal cells did not contribute to leukemia propagation at least 
through CXCL12–CXCR4 signals between BMM and leukemia 
cells (88). A more recent study analyzing the dynamic interac-
tion of T-ALL leukemic cells with the niche component across 
the leukemia progression demonstrated that leukemic cells had 
any spatial preference with any niche component including 
perivascular stromal cells represented by Nes-GFP+ stromal cells 
(98). In the BM with advanced T-ALL, the number of Nes-GFP+ 
cells was maintained, whereas mature osteoblasts and osteo-
progenitor were completely lost (98). In contrast to the T-ALL 
model, the robust expansion of Nes-GFP+ cells with impaired 
niche factor expression for healthy HSCs has been observed in 
mice with transduced MLL-AF9 aggressive AML cells (91). NG2+ 
perivascular stromal cells closely associated with arterioles that 
have been shown to maintain healthy HSCs were reduced, which 
was consistent with the diminished number of healthy HSCs. 
Intriguingly, these dramatic alterations of niche components 
induced by AML were mediated by the disruption of sympathetic 
nerves in the BM induced by leukemic cells, and treatment of 
β2-adrenergic receptor agonist led to the reduction of LSCs in the 

BM and prolonged the survival of leukemic mice (91). Altogether, 
these evidences suggest that the roles of perivascular stromal 
cells in leukemia pathogenesis may vary among the subtypes of 
leukemia, and further studies are necessary.

In the context of leukemia evolution, although transgenic 
mice in which Dicer 1 or Sbds was abrogated in perivascular 
stromal cells presented myelodysplastic changes and subsequent 
evolution to leukemia (9, 71), there is, so far, no evidence clearly 
demonstrating that dysfunction in perivascular stromal cells 
causes de novo leukemia in vivo.

immune Cells
As is the case in normal hematopoiesis, immune cells modulate 
BMM in leukemia. In the mice AML model, immunosuppressive 
Treg cells presented at the AML site and impaired the function of 
adoptively transferred cytotoxic T cells (CTLs). The depletion of 
Treg cells in turn restored CTL function and reduced leukemia 
progression in the mice model (99).

COnCLUDing ReMARKS

Over the past decade, a significant advancement in understand-
ing the roles of the BMM in the pathogenesis of hematologic 
malignancies has been achieved. Because even the mechanisms 
by which niche cells orchestrate healthy HSCs or hematopoiesis 
are not completely understood, the involvement of the BMM to 
malignant hematopoiesis must be diverse and complicated. For 
instance, the results gained thus far from murine studies indicated 
that a different type of leukemia interacts with a distinct BMM 
differently. Further studies clarifying the detailed mechanisms 
that underlie each type of hematopoietic malignancy will lead us 
to our final goal to improve therapeutic strategies and conquer 
hematopoietic malignancies.
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