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The standard cancer treatments include chemotherapy, radiotherapy, or their com-
bination, which are generally associated with a multitude of side effects ranging from 
discomfort to the development of secondary tumors and severe toxicity to multiple 
systems including immune system. Mounting evidence has highlighted that the fine- 
tuning of nutrients may selectively sensitize cancer cells to conventional cancer therapies, 
while simultaneously protecting normal cells from their side effects. Nutrient modulation 
through diet also improves cancer immunesurveillance in a way that severe immuno-
suppression could be avoided or even the immune response or immune-based cancer 
therapies be potentiated also through patient microbiota remodeling. Here, we review 
recent advances in cancer therapy focusing on the effects of adjuvant dietary interven-
tions (e.g., ketogenic diets, fasting) on the metabolic pathways within cancer cells and 
tumor environment (e.g., microbiota, immune system, tumor microenvironment) that are 
involved in cancer progression and resistance as well as cancer cell death. Finally, based 
on the overall literature data, we designed a nutritional intervention consisting in a plant-
based moderate ketogenic diet that could be exploited for future preclinical research in 
cancer therapy.
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an oVerVieW on tHe ControL oF tUMor proGression 
By dietary interVentions

A plethora of epidemiological and experimental data demonstrated the efficacy of geroprotective 
dietary regimens (e.g., fasting, calorie, proteins, or single amino acids restrictions) in cancer preven-
tion (1–3). Furthermore, such dietary patterns are emerging to be effective in selectively killing 
cancer cells, whereas increasing resistance of normal cells to the toxic effects of the anticancer 
therapeutics.

Calorie restriction (CR), defined as 30–60% less of daily calorie requirement without malnutri-
tion, is known to extend healthy life span from yeast to mammals (4). The anticancer effects of CR 
are known since several years (5). CR is particularly effective in reducing the incidence, mass, and 
metastasis of breast cancer cells (6, 7). Remarkably, applying CR in combination with radiotherapy 
enhanced the radiotherapy efficacy inducing a more pronounced apoptosis of breast cancer cells 
than radiotherapy alone (7). In human, however, CR requires high compliance challenges to be 
maintained for adequate therapeutic period. For these reasons, short period of fasting without 
malnutrition have been proposed as potentially safe interventions to be associated with cancer 
treatments (8).

Fasting is commonly defined as a time-controlled deprivation of all kinds of foods and dietary 
nutrients. Differently to nocturnal fasting, time-controlled fasting leads to a profound metabolic 
reprogramming building up adaptive stress responses that are involved in life and health span 
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extension (9–13). However, the adaptive stress responses induced 
by fasting occurring in normal cells differ from those activated 
by cancer cells because oncogenes might limit the activation 
of nutrient-sensing pathways while increasing chemotherapy 
vulnerability (8). Notably, proto-oncogenes such as IGF1R, 
PI3K, and AKT activate growth signaling and addict cancer 
cells to nutrient such as glucose and amino acids to meet their 
high proliferative rate (8). It has been shown that different cycles 
of fasting are effective in limiting tumor progression in several 
murine cancer models (14–17). However, the greatest effects 
were observed when fasting was combined with the conventional 
chemotherapy or radiotherapy (14–18). Interestingly, in these 
studies, fasting interventions alone do not cause clear signs of dis-
comfort, but rather improve the animal condition. When fasting 
was combined with conventional therapies (e.g., temozolomide), 
most of the mice appeared healthy with the tumor-size below 
the controls, indicating that the combination of both treatments 
is well tolerated and improve tumor-bearing survival (14). The 
protective role of fasting against the side effects of anticancer 
therapy was confirmed in another study in which fasting was 
able to improve the overall cardiac response (maintenance of 
diastolic/systolic volumes and left ventricle wall thickness) to 
high-dose of doxorubicin (19). Fasting also exerted a significant 
protection against reduced mobility, ruffled hair, and hunched 
back posture caused by high dose of etoposide in mice (20). The 
anticancer effects of fasting might also rely on ketone bodies 
increase (21, 22). In support of this assumption, meta-analysis 
on ketogenic diets (KD), low in carbohydrates and high in fats, 
suggested a salutary impact on survival in animal models, with 
benefits prospectively linked to the magnitude of ketosis, time 
of diet initiation, and tumor location (23). Other evidence also 
demonstrated that KD might be safely used as adjuvant therapies 
to conventional radiation and chemotherapies (24). In particular, 
KD together with conventional radiotherapy led to increased 
radiation sensitivity in pancreatic cancer xenografts in mice 
(25). Similar results were obtained in mice bearing lung cancer 
xenografts (26). However, patients have demonstrated difficulty 
to comply with a KD while receiving concurrent radiation and 
chemotherapy in advanced lung and pancreatic cancer (25). 
Therefore, as better tolerated with respect to CR and KD, fasting 
appears to be more promising as adjuvant treatment in cancer 
therapy. Finally, it has been demonstrated that fasting could be 
replaced by the administration of CR mimetics, which showed 
the capability to improve the efficacy of chemotherapy as well. 
However, the objective response rates with metformin (27–30) 
or rapalogs (31) in clinical trials are still unclear and comparative 
analyses delineating a selective effectiveness of these drugs in 
cancer treatment and patient tolerability have to be more deeply 
elucidated.

nUtrient ModULation in 
proLiFeratinG/resiLient CanCer 
CeLLs: a MoLeCULar VieW

The reduced levels of nutrients and growth factors observed 
during fasting led to hypothesize their mandatory role in 

governing the differential stress responses in normal and can-
cer cells (10, 14, 16, 18). The different responses of normal and 
cancer cells to fasting shed light on their different sensitivity to 
nutrients and growth factors (18).

IGF-1/IGF-1R signaling is strongly dependent on nutrient 
availability and involves intensification of cancer cell proliferation, 
through the direct effects on PI3K/Akt signaling, and resistance 
to cell death imposed by chemotherapeutics and radiotherapy 
(Figure 1) (32). Indeed, fasting reduces circulating IGF-1 levels 
and this event protects mice deficient in the liver production of 
IGF-1 against chemotherapy drugs (16). Accordingly, restoration 
of IGF-1 was sufficient to reverse the protective effect of fasting 
(16). Reducing IGF-1 protects primary glia, but not glioma 
cells, against cyclophosphamide and mouse embryonic fibro-
blasts against doxorubicin (16). In the opposite manner, IGF-1 
supplementation in starved breast cancer cells reversed drug 
sensitization. Overall, these findings strongly indicate that the 
fasting-mediated sensitization of cancer cells to chemotherapeu-
tic drugs is conferred by the decrease of IGF-1 levels (15).

Nutrient shortage per  se is able to increase mitochondrial 
reactive oxygen species (ROS) production in cancer cells arguing 
that limiting nutrient availability could enhance the effectiveness 
of redox-based cancer therapeutics (Figure 1) (33, 34). Actually, 
in breast cancer and melanoma cells, nutrient starvation was 
found to increase superoxide levels and aggravate oxidative 
stress caused by cyclophosphamide and cisplatin (15, 35). When 
applied in combination, fasting and chemotherapy act in synergy 
in elevating ROS levels and triggering DNA damage also in in vivo 
models of cancer (36). Micro-PET analyses in murine models of 
colon cancer cells revealed that fasting is effective as oxaliplatin 
(OXP) in reducing the average tumor glucose consumption and 
the lowest values were achieved by coupling fasting with OXP. 
In colon cancer cells, nutrient starvation upregulates oxidative 
phosphorylation with a significant production in mitochondrial 
superoxide caused by electron leakage. Consequently, starvation 
or OXP alone markedly increased ROS generation and their 
combination (starvation plus OXP) exacerbated ROS produc-
tion in colon cancer cells (36). The hypothesis that cytotoxicity 
induced by glucose deprivation in cancer cells is mediated by 
mitochondrial superoxide and H2O2 was confirmed by exposing 
glucose-deprived transformed human fibroblasts to electron 
transport chain blockers (ETCBs), known to increase mitochon-
drial superoxide and H2O2 production (37). Glucose deprivation 
in the presence of ETCBs enhanced oxidative stress as well as cell 
death in several different human cancer cell lines (PC-3, DU145, 
MDA-MB231, and HT-29). In addition, human osteosarcoma 
cells lacking functional mitochondrial electron transport chain 
[rho(0)] were resistant to glucose deprivation-induced cytotoxic-
ity and oxidative stress in the presence of antimycin A (complex 
III inhibitor), thus highlighting the role of mitochondrial ROS as 
mediators of cancer cell death (37).

The mechanisms by which KDs act as adjuvants in cancer 
therapy also seem to be associated with increased oxidative 
stress within cancer cells (24). Indeed, upon KD, the high level 
of circulating fatty acids limits the availability of glucose for 
glycolysis (Randle’s Cycle) (38). This reduces the formation of 
pyruvate and glucose-6-phosphate and in turn the synthesis of 
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FiGUre 1 | Dietary strategy to promote a hostile metabolism in proliferating/resilient cancer cells. Dietary patterns low in proteins, starch, and sugars promote an 
environment poor in sulfur amino acids (i.e., methionine, cysteine), glucose, and growth factors (insulin/IGF-1) that could limit NADPH/GSH production (1) and GPX4 
activity (2). The diminished levels of glucose and glucagon/insulin ratio switch-off lipid synthesis and switch-on AMPK-driven lipid oxidation pathways in proliferating 
cancer cells (3). Under such metabolic conditions, cancer cells build-up their membranes by using extracellular dietary-derived and/or white adipose tissues-
released fatty acids (4). The concomitant activation of OxPHOS metabolism and reduction in GSH levels are causative of oxidative stress (5) culminating in a massive 
lipid peroxidation (LOOH) (6) and ferroptosis in cancer cells (7). Diet low in starch, sugars, and proteins but rich in fatty acids also increases ketone bodies and 
modulates gut microbiota features by producing short-chain fatty acids (SCFAs). Ketone bodies and SCFAs affect PD-L1, nuclear factor-kb, and DNA repair 
enzymes genes transcription (8) promoting the chemo/radiotherapy vulnerability of cancer cells (9).
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NADPH through the pentose phosphate pathway (PPP) (39). 
NADPH is necessary for buffering hydroperoxides (LOOH) 
production via the NADPH-dependent glutathione/glutathione 
peroxidase (GSH/GPX) system (40, 41). As consequence, an 
increase of LOOH is likely elicited (24) (Figure 1). Accordingly, 
hyperketotic diabetic patients have a higher level of lipid peroxi-
dation in erythrocytes membrane and a significant decrease in 
cellular GSH levels than normal ketonic diabetic patients (42). 
Treatments with the ketone body acetoacetate elevated the levels 
of lipid peroxidation in human endothelial cells inhibiting their 
proliferation (42). This evidence suggests a direct role of ketone 
bodies in directly affecting GSH levels.

The main non-enzymatic cellular antioxidant GSH acts as an 
electron donor to reduce oxidized macromolecules, becoming 
itself oxidized in the process. Oxidized glutathione (GSSG) may 
then be restored in GSH through the action of the NADPH-
dependent glutathione reductase (43). This enzymatic process 
generates NADP+, which may be reconverted to NADPH using 
electrons obtained from different biochemical pathways (44). 
Thus, proliferating cancer cells develop a peculiar metabolic 
flexibility to maintain a functional redox threshold by regulat-
ing NADPH levels through glycolytic flux modulation (33). 
Indeed, glucose-addicted human cancer cells cultured in a 
low-glucose medium without serum and amino acids are able 
to reprogram their metabolism by shifting toward PPP, which 
sustains the production of NADPH to dampen oxidative stress 

(33). However, during the initial stages of solid tumor develop-
ment, when cells migrate to the lumen of lymphatic or blood 
vessels by loss of attachment (LOA) to the extracellular matrix, 
the glucose availability could not be sufficient to produce an 
adequate amount of NADPH and proliferation is inhibited (45). 
Upon such environmental stress, cancer cells induce adaptive 
responses consisting in the activation of AMPK signaling that 
inhibits fatty acid synthesis and triggers fatty acids oxidation 
to maintain energy production and NADPH levels (46, 47). 
Although cancer cells build up such adaptive responses, it has 
been observed that during LOA, cancer cells undergo ATP and 
NADPH drop and increase ROS production (48). Several papers 
demonstrated that cancer cells experiencing glucose shortage 
might maintain their proliferative capacity and membrane bio-
genesis by the uptake of extracellular lipids (49). Accordingly, 
extracellular saturated fatty acids supplementation supports the 
proliferative demand for biomass synthesis of proliferating cells 
(50, 51). Otherwise, supplementation with polyunsaturated fatty 
acids (PUFA) induced a significant cytotoxic effect on cancer 
cells either alone (52–54) or in combination with conventional 
anticancer therapies (55, 56). Differently to saturated fatty 
acids, PUFA are strongly susceptible to peroxidation (lipid 
peroxidation) in in vivo systems (57, 58). This appears to be a 
key mechanism triggering cancer cell death (59). With all this 
in mind, forcing the changes in the membrane lipids composi-
tion by dietary/nutrient enrichment in PUFA might promote an 
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intrinsic sensitivity toward lipid peroxidation (57, 58, 60) and 
cancer cell death (Figure 1).

nUtrient-Mediated CoMMitMent  
to Ferroptosis in CanCer CeLLs

By preserving NADPH levels, cancer cells sustain GPX/GSH 
activity during nutrient limitation, and this may confer resist-
ance to redox-based chemotherapeutics (61–63). Indeed, many 
rebel cancer cells use a common trick to evade annihilation; 
they enter into what is known as a mesenchymal state that is 
“epithelial-to-mesenchymal” transition, which provides cancer 
cell resistance to conventional therapeutic regimens (64). It has 
been demonstrated that high therapy-resistant mesenchymal 
cancer cells strictly rely on the selenium-dependent GPX4 for 
survival (65). By using the reducing power of GSH, GPX4 con-
verts potentially toxic L-OOH to non-toxic lipid alcohols (L-OH) 
(Figure 1) (66–68). Accordingly, inactivation of GPX4 through 
GSH depletion with erastin, or with a direct GPX4 inhibitor, 
ultimately results in lipid peroxidation in cancer cells (69). It is 
thus provocative to hypothesize that the evolutionary pressure 
to maintain the selenium protein GPX4 might correlate with an 
organism’s requirement for an increased PUFA content, which, in 
turn, renders complex biological activities possible (70).

Uncontrolled lipid peroxidation is causative of the onset of 
a metabolically regulated cell death called “ferroptosis,” which 
is characterized by the iron-dependent formation of LOOH 
leading to cell death (Figure 1) (71). Sulfur amino acids play 
a key role in ferroptosis. In particular, agents that inhibit cys-
tine uptake via the cystine/glutamate antiporter (XC system), 
such as sulfasalazine or erastin, arrest tumor growth and 
induce ferroptosis (72, 73). The uptake of cystine is followed 
by its NADPH-dependent conversion in cysteine, the rate-
limiting amino acid precursor for the GSH biosynthesis (74). 
Direct depletion of cystine from plasma using an engineered 
cystine-degrading enzyme conjugate arrests tumor growth 
and triggers cell death (75). Agents that conjugate to GSH, as 
well as chemical or genetic inhibition of GSH biosynthesis, 
disrupt tumor cell growth and induce a ferroptosis-like form 
of cell death (76). Ferroptosis appears to be an effective cell 
death mechanism in cancer cells, since lipophilic antioxidant 
α-tocopherol or iron chelators, such as deferoxamine, efficiently 
dampen it (77). Hence, the presence of extracellular cysteine 
and cystine are crucial for growth and proliferation of various 
types of cancer, as these amino acids maintain GSH levels and 
prevent oxidative stress (Figure  1) (78–80). Because cysteine 
is limiting in the biosynthesis of GSH, some cancer cells, 
under cysteine unavailability, make use of the transsulfuration 
pathway to biosynthesize cysteine from methionine (Met), a 
dietary essential sulfur amino acid (81, 82). The essentiality of 
Met in cancer is supported by the evidence that some cancer 
cells display a higher sensitivity to Met shortage with respect 
to normal cells (83–87). The first steps of the transsulfuration 
pathway are the conversion to S-adenosylmethionine (SAM) 
and transfer of the methyl group of SAM to a large variety of 
methyl acceptors with formation of S-adenosylhomocysteine 

(SAH) (88), which can be then converted to homocysteine 
(Hcy) by SAH hydrolase (AHCY) (89). Alternatively, Hcy 
is converted to cystathionine by cystathionine β-synthase 
(CBS). CBS catalyzes the condensation of Hcy and serine, 
thereby forming cystathionine, which is subsequently cleaved 
to cysteine. Furthermore, exogenous cysteine is also essential 
for several cancer types (glioma, prostate, and pancreatic), as 
blocking its uptake through the cystine/glutamate antiporter 
reduces viability due to the cell death caused by uncontrolled 
oxidative stress (90–92). Similarly, CBS blockage reduces can-
cer cell proliferation and attenuates growth of patient-derived 
colon cancer xenografts models (93). Although these findings 
suggest that fasting or selective nutrient modulation could 
trigger ferroptotic cell death in cancer cells, a clear evidence 
linking nutrient availability to ferroptosis is still lacking. Several 
works demonstrated that starved cancer cells (mainly in amino 
acids) as well as cells lacking the enzyme producing NADPH 
from glucose (glucose-6-phosphate dehydrogenase) experience 
massive ROS production and autophagy-dependent cell death 
(33, 94, 95). Autophagy is a process described as intracellular 
removal of damaged organelles by self-degradative process 
(96). Interestingly, a tight relationship between autophagic cell 
death and ferroptosis is emerging (97–99). Indeed, it seems that 
autophagy activation leads to a degradation of ferritin (ferritin-
ophagy) (97), thus increasing the intracellular free iron levels 
promoting ROS production and ferroptosis (Figure 1) (99).

dietary strateGies to Boost tHe 
iMMUnoMetaBoLiC responses in 
CanCer tHerapy

Short-term fasting has a beneficial impact on cancer immunosur-
veillance (100). In particular, Pietrocola and co-workers demon-
strated that fasting or CR-mimicking drugs, induce the depletion 
of regulatory T cells (which dampen anticancer immunity), thus 
igniting autophagic flux in murine models of KRAS-induced lung 
cancers. Accordingly, the inhibitory effect of fasting on tumor 
growth is lost in cancers that have been rendered autophagy defi-
cient (100). Recently, also, isocaloric diet with protein restriction 
has been demonstrated to induce an IRE1α-dependent UPR in 
cancer cells, enhancing cytotoxic CD8+ T cell (a type of effector 
T lymphocyte)-mediated response against tumors (101).

Similarly to what observed with prolonged fasting (102), 
cycles of a fasting-mimicking diet (FMD) are effective in increas-
ing hematopoietic cells proliferation and promoting immune 
system regeneration and modulation (103). Importantly, FMD 
has stimulatory effect on common lymphoid progenitor cells 
and CD8+ T  cell-dependent cytotoxicity on breast cancer and 
melanoma cells (Figure 2) (17, 102). The presence of cytotoxic 
CD8+ T cells in the tumor environment [tumor infiltrating lym-
phocytes (TIL)] is considered a positive outcome of the cancer 
treatment (104, 105).

CD8+ T  cells are influenced by nutrients and other sup-
portive signals that are generally available in their environment. 
Generally, tumor cells inactivate CD8+ T cells. The suppression 
of oxidative phosphorylation and an upregulated glycolytic flux 
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FiGUre 2 | Nutrient manipulation to boost immunometabolic phenotype of CD8+ tumor infiltrating lymphocytes (TILs). Naïve CD8+ T cells recognize the antigen  
of ferroptotic cancer cells on class I MHC on dendritic cells, thus becoming mature cytotoxic CD8+ T cells (1). After prolonged fasting or fasting-mimicking diet 
(FMD), an enhanced hematopoietic regeneration rate (2) and enrichment of common lymphoid progenitor cells (CLP) can occur (3). The in vitro adoptive T cells 
immunotherapy (ACI) (4) and in vivo nutrient changes (5) reset CD8+ TIL metabolism toward mitochondrial oxidative pathways, thus limiting substrate competition 
with cancer cells and enhancing CD8+ TIL-mediated immunosurveillance. Dietary strategies promoting functional gut microbiota changes (e.g., Akkermansia 
muciniphila enrichment) (6) might improve the immune-checkpoint inhibitors (anti PD1/PD-L1) efficacy (7).
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of proliferating cancer cells create an immunosuppressive micro-
environment (106). Indeed, the glucose-dependent CD8+ TIL 
could undergo a competitive disadvantage for nutrients, and this 
would negatively affect their immune function. The immunosup-
pressive metabolic environment could be further enhanced by 
tumor expression of inhibitory ligands for programmed death 1 
receptor (PD-1) which, when bound to their cognate receptors 
on T  cells, limits T  cell-intrinsic glucose uptake and glycolysis 
(107, 108). It has been reported that KD significantly reduces the 
expression of the inhibitory ligand PD-1 (PD-L1) on CD8+ TIL 
(109). Additionally, mice fed with KD have reduced expression of 
PD-L1 on the cancer cells that notoriously inhibits CD8+ T cells 
activity (109). This suggests that KD may alter tumor-mediated 
T  cell suppression by reducing the number of cells that are 
susceptible to inhibition through the PD-1 inhibitory pathway 
(Figure 2).

Nowadays, there has been intense interest in developing 
adoptive T cells immunotherapy (ACI), which consists in rein-
troducing into a patient T cells that are previously activated and 
expanded in vitro (110, 111). The success of the ACI depends on 

the replicative capacity of implanted T cells. A large amount of 
research has been directed in optimizing T  cell activation and 
using appropriate adjuvants for ACI. However, few experimental 
studies have been focused on manipulating metabolic pathways 
that could potentially enhance immunotherapy efficacy. When 
posed in culture, T  cells dispose of a high glucose availability, 
which is far from the glucose physiological levels especially in 
the tumor environment (112, 113). Thus, once reintroduced in 
patients, T cells suffer from low glucose levels and show a mod-
erate survival and replicative capacity. It has been reported that 
limiting glycolysis in cultured T cells can increase their longevity 
without inhibiting proliferative capacity (114, 115) (Figure  2). 
Another potential way to enhance the replicative capacity and 
longevity of ACI cells is promoting oxidative phosphorylation 
and mitochondrial biogenesis via the inhibition of glucose-related 
signaling pathway that ultimately leads to in vivo persistence and 
improved antitumor immunity (116). The metabolic reprogram-
ming of infiltrating glycolytic lymphocytes toward a catabolic 
state reliant on fatty acid oxidation appears to assure the success 
of immunotherapy (113). In line with this assumption, it was 
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FiGUre 3 | Improving metabolites and immunological anticancer profile by k-PBD. Evidence from prolonged fasting, fasting-mimicking diet (FMD), and ketogenic 
diet demonstrated a strong usefulness as adjuvants in cancer therapy (1). In this issue, we propose a moderate ketogenic plant-based diet (k-PBD), low in 
carbohydrates (starch and sugars in particular) and animal proteins (poor in sulfur amino acids and selenium) but rich in fats [mainly in vegetable polyunsaturated 
fatty acids (PUFA)] (2), which could strongly modulate circulating metabolites (3), immunological factors (4), and gut microbiota asset (5) that overall create a hostile 
environment to cancer cells.
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recently demonstrated that the enhancement of lipid catabolism 
in CD8+ T cells increases the efficacy of immunotherapy within 
a tumor microenvironment low in glucose (117). In a mouse 
model of malignant glioma, an enhanced cytolysis via tumor-
reactive CD8+ T cells was also achieved by ketogenic diet (109). 
The immunometabolic reprogramming necessary for CD8+ TIL 
could at least partially explain the mechanism by which KD or 
fasting enhances cytotoxic effect against cancer cells. Such diets 
are indeed powerful in inducing a cellular metabolic shift from 
glycolysis toward FAO.

It is now emerging that CD8+ TIL response to immune 
checkpoint blockade inhibitor PD1 can be also modulated by 
gut microbiota (118–120). A very recent paper has revealed 

that fecal microbiota from patients affected with metastatic 
melanoma and responsive to anti-PD1 therapy display increased 
abundance of Akkermansia muciniphila. A. muciniphila introduc-
tion into mice receiving human nonresponder fecal microbiota 
transplant improved antitumor immune CD8+ T cell infiltration 
and activity and increased anti-PD1 therapy efficacy (120, 121).  
Another intriguing observation is that Faecalibacterium and 
Bifidobacterium are associated with anti-inflammatory responses, 
a regulatory arm of the immune system that aims to prevent over-
activation of the immune response and restores host homeostasis 
(120). Given that changes in host metabolism and microbiota 
can occur in tandem, it was hypothesized that gut microbial 
diversity and composition are predictors of the response to 
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cancer therapy (121) (Figure  2). Accordingly, germ-free mice 
implanted with human tumor cells and transplanted with feces 
from chemotherapy responders showed an ameliorated response 
to chemotherapy than mice colonized with microbiota from 
nonresponder patients (119).

The diet has a strong capacity to rapidly and reproducibly 
reshape the gut microbiome (122). Indeed, fasting or plant-based 
diet remodels microbial community structure and overwhelms 
interindividual differences in microbial gene expression. The 
animal-based diets are known to increase the abundance of bile-
tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) 
and decrease the levels of the high fermentative Firmicutes  
that metabolize dietary plant polysaccharides (Roseburia, Eubac­
terium rectale, and Ruminococcus bromii) (122). More recently, 
it has been demonstrated that alternate day fasting shifts the gut 
microbiota composition from Bacteroides to Firmicutes leading to 
elevation of the fermentation products (123). Plant-based foods 
are mainly characterized by resistant starches and dietary fibers 
and promote their gut microbiota-mediated fermentation and 
decomposition. These processes provide additional amount of 
short chain fatty acids (SCFAs) to the host (124) (Figure 2). The 
major SCFAs, i.e., acetate, propionate, and butyrate, have different 
production ratios and physiological activities. Through 1H NMR-
based metabolomics, it was revealed that mice treated with alter-
nate day fasting increased acetate levels both in the cecum and 
sera (123). Acetate, when ligated to coenzyme A (acetyl-CoA), is 
among the most central and dynamic metabolites in intermedi-
ary metabolism. Under stressful circumstance (e.g., fasting-like 
conditions), cancer cells may convert extracellular acetate to 
acetyl-CoA, thus promoting the biogenesis of membrane build-
ing blocks that sustain the high proliferative rate. This adaptive 
response involves the cytosolic form of short-chain acyl-CoA 
synthetases (ACC2). Accordingly, increased ACC2 protein levels 

were detected in a subset of human triple negative breast cancer 
samples, and such an elevation correlates with poor survival  
(125). Differently to acetate, butyrate shows many regulatory 
properties including the inhibition of histone deacetylases. 
Histone deacetylase inhibitors (HDACi’s) are emerging as 
promising anticancer drugs when administered alone or in 
combination with chemotherapeutic agents or radiotherapy. 
Previous research suggests that HDACi’s have a high degree of 
selectivity for killing cancer cells. For instance, the HDACi sodium 
butyrate suppresses DNA double strand break repair induced by 
etoposide more efficiently in MCF-7 cells than in HEK293 cells 
(126). Sodium butyrate alone also resulted in accumulation of 
ROS, DNA double-strand breaks, and apoptosis in HCT-116 
colon cancer cell lines; when combined with mitomycin C or 
radiotherapy, sodium butyrate increases sensitivity of cancer cells 
to the drug (127, 128). In animal models of gastric carcinoma, 
sodium butyrate was found to inhibit tumor mass formation and 
increase tumor infiltration by CD8+ TIL (129). Finally, several 
studies also demonstrated a strong effectiveness of SCFA to 
inactivate nuclear factor-kb by downregulating the production of 
the pro-inflammatory cytokine TNFα (130–134), which is com-
monly activated to promote a pro-carcinogenic environmental 
milieu (135) (Figure 1).

ConCLUsion and perspeCtiVe

Despite recent advances have been made in cancer therapy, 
the prognosis for many cancer patients remains poor, and cur-
rent treatments still show severe adverse events. Thus, finding 
complementary treatments that have limited patient toxicity 
and simultaneously enhance therapy responses in cancer versus 
normal cells is urgent. Diet has a strong capacity to modulate cell 
responses to environmental stimuli and shows great potential in 

FiGUre 4 | Hypothetical cancer phenotypic responses to k-PBD. For the human dietary intervention studies, k-PBD (for 4 consecutive days; 5 servings each day) 
should provide about 1,100 kcal/die with 5% of calories from vegetable proteins, 25% from carbohydrates (non-starchy vegetables), and 70% from unprocessed 
vegetable oils (1). k-PBD proposed for murine cancer models should be reduced in total calories (40% reduction versus ad libitum diet), provide 7% calories from 
vegetable proteins, 45% from low starch carbohydrates, 48% in vegetable oils (2). The proposed dietary pattern should be started prior to conventional cancer 
therapies (3).
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