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Non-coding RNAs are important regulators of gene expression and transcription. It is 
well established that impaired non-coding RNA expression especially the one of long 
non-coding RNAs and microRNAs is involved in a number of pathological conditions 
including cancer. Non-coding RNAs are responsible for the development of resistance 
to anticancer treatments as they regulate drug resistance-related genes, affect intracel-
lular drug concentrations, induce alternative signaling pathways, alter drug efficiency 
via blocking cell cycle regulation, and DNA damage response. Furthermore, they can 
prevent therapeutic-induced cell death and promote epithelial–mesenchymal transition 
(EMT) and elicit non-cell autonomous mechanisms of resistance. In this review, we sum-
marize the role of non-coding RNAs for different mechanisms resulting in drug resistance  
(e.g., drug transport, drug metabolism, cell cycle regulation, regulation of apoptotic 
pathways, cancer stem cells, and EMT) in the context of gastrointestinal cancers.

Keywords: non-coding RNA, lncRNA, microRNA, anticancer drugs, gastrointestinal tumor, cancer therapy, 
resistance

iNTRODUCTiON

Gastrointestinal (GI) cancer encompasses a heterogeneous group of tumors that affect the digestive 
tract system (1). These include cancers of the esophagus, stomach, gallbladder, liver and biliary tract, 
pancreas, small intestine, colon, rectum, and anus. GI cancer is the most common form of cancer 
responsible for nearly 25% of all new cancer diagnosis and responsible for most of cancer-related 
death (around 30% of all cancer-related death) worldwide (2, 3).

Chemotherapy is, alongside with surgery and radiation therapy, one of the main treatments 
for cancer (4–12). Many chemotherapeutic agents have successfully prolonged overall and 
progression-free survival of GI cancer patients (13–17). In addition, a better understanding of 
the biology and mechanism underpinning GI cancer initiation and progression is leading to 
more personalized treatments. Indeed, identification of well-defined molecular subtypes and/or 
molecular profiling of somatic mutations offer the opportunity to further optimize the efficacy of 
treatments through tailored approaches (18–21).

Despite major improvements in the management of GI cancer patients, resistance to therapies 
arises almost inevitably at some point during the treatment and chemoresistance is one of the main 
challenges in cancer therapy (22). Drug resistance can be caused by gene mutations, abnormal DNA 
repair, alteration in cell cycle regulation, cell death inhibition (mostly caused by deregulated apop-
totic signaling pathways), reduced drug efficacy, and enhanced drug clearance (22, 23). Furthermore, 
the epithelial–mesenchymal transition (EMT) process and the presence of tumor stem cells have 
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TAble 1 | Overview about non-coding RNAs involved in resistance to anticancer drugs in gastrointestinal tumors.

Non-coding RNA Gi cancer type Causing drug resistance via Reference

lncRNA AK022798 Gastric cancer Increasing the expression of ABCB1 gene (28)

lncRNA ANRIL Gastric cancer Increasing the expression of MDR1 gene (29, 30)

lncRNA ARA Liver cancer Reduced G2/M cell-cycle arrest; reduced apoptosis rate; deregulation of MAPK-pathway (31, 32)

lncRNA-ATB Liver cancer Increased expression of ZEB1 and ZEB2; induced EMT (33)

lncRNA CCAL Colorectal cancer Increasing the expression of ABCB1 gene; increased activity of Wnt/β-catenin pathway (34)

lncRNA H19 Liver cancer
esophageal cancer

Upregulation of membrane glycoprotein p95; elevating the expression of MDR1 gene by  
increasing promoter methylation; increasing telomere length

(35–37)

lncRNA HOTAIR Liver cancer
Colorectal cancer
Pancreatic cancer
Gi stromal tumor

Increased expression of PRC2 complex members; genome-wide changes in transcription  
process due to epigenetic chromatin silencing; downregulation of p21(WAF/CIP1); repression  
of G1/S cell-cycle arrest; increased proliferation rate; reduced DNA-damage response

(38–41)

lncRNA HOTAIR Colon cancer
Pancreatic cancer
Gastric cancer
esophageal cancer

Transformation of stem cells into cancer stem cells due to activation of OCT4, RNF51, CD44, and 
CD133 gene expression; increased activity of Wnt/β-catenin pathway; modulation of chromatin 
organization leads to reduced efficiency of the mismatch repair system; increased MSI; reduced 
apoptosis rate; inhibition of the expression of miR-126 and activating the PI3K-AKT-mTOR  
pathway (in gastric cancer)

(42–48)

lncRNA HOTTTIP Pancreatic cancer Increased expression of transcription factor HOX13; cell cycle deregulation (49, 50)

lncRNA HULC Liver cancer Increased activity of Wnt-β-catenin; increased expression of USP22 and SIRT1; reduced  
expression of miR-6825-5p, miR-6845-5p, miR-6886-3p; increased autophagy pathway

(51)

lncRNA HULC Gastric cancer Induced EMT; suppressed apoptosis (52, 53)

lncRNA LEIGG Gastric cancer Induced EMT (54, 55)

lncRNA linc-ROR Pancreatic cancer Inhibition of p53; inhibition of the expression of miR-200 family; increased expression of the 
transcription factor ZEB1; induced EMT

(56, 57)

lncRNA linc-ROR Liver cancer Preventing the binding of miR-145 to pluripotent factors OKT-4, NANOG, and SOX2 resulting in 
increased expression of these transcription factors necessary for sustain stem cell character

(58, 59)

lncRNA LOC285194 esophageal cancer Cell-cycle deregulation; blocking non-apoptotic cell death pathway (60)

lncRNA MALAT-1 esophageal tumor Binds miR-107 and miR-217; reduced activity of the ATM-CHK2 signaling pathway; reduced  
cell-cycle arrest and cell death as response to DNA damage; increased expression of  
transcription factor B-Myb

(61–63)

lncRNA MALAT-1 Pancreatic cancer Increased expression of cancer stem cell marker CD133; increased expression of pluripotent  
factors OCT4, NANOG, and SOX2; induced EMT; repression of G2/M cell-cycle arrest; reduced 
apoptosis rate

(64–66)

lncRNA MALAT-1 Gastric cancer Sequestering of miR-23b-3p; increased expression of ATG12; increased autophagy (67)

lncRNA MIR100HG Colon cancer Increased activity of Wnt-β-catenin pathway (68)

lncRNA MRUL Gastric cancer Increasing the expression of MDR1 gene (69)

lncRNA PANDAR Gastric cancer
Colorectal cancer
Hepatocellular cancer 
cholangiocarcinoma

Interacts with the transcription factor NF-YA resulting in reduced translation of proapoptotic  
genes—leading to reduced apoptosis rate and increased proliferation

(70–74)

lncRNA PVT1 Gastric cancer
esophageal cancer
Pancreatic cancer
Colon cancer
Liver cancer

Induced EMT (75–77)

(Continued)
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been identified as causes of drug resistance (24–27). The complex 
molecular mechanisms of chemoresistance have not been fully 
elucidated yet and a better understanding of drivers of primary 
and secondary resistance to chemotherapy will likely result into 
improved patients’ survival. Increasing evidence points toward 
the role of non-coding RNAs as a central hub for treatment 
resistance. Therefore, this review outlines the role of non-coding 
RNAs for the different drug resistance mechanisms involved in 
GI cancer therapy failure. Table 1 summarized the non-coding 
RNAs discussed in this review; and in Figures 1–7, the role for 

each of these non-coding RNAs in the context of the different GI 
tumors is illustrated.

NON-CODiNG RNAs

In human tissues, the amount of non-coding RNAs is more than 
three times higher compared to the amount of protein-coding 
RNAs (189). Non-coding RNAs are a large family that includes 
more than 16 categories of long and short RNA molecules 
(Table 2); among them transfer RNAs (tRNAs), ribosomal RNAs 
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Non-coding RNA Gi cancer type Causing drug resistance via Reference

lncRNA PVT-1 Gastric cancer Increasing the expression of MDR1 gene (29, 30)

lncRNA TUC338 Hepatocellular cancer Inhibiting the RASAL-1 pathway (78)

lncRNA TUG1 esophageal cancer
Gastric cancer
Colorectal cancer
Hepatocellular cancer 
cholangiocarcinoma

Increasing the expression of Bc-2 gene; reducing the expression of cyclin-dependent protein  
kinase, caspase-3, caspase-9, and Bax; decreasing G0/G1 arrest during cell cycle; reducing 
apoptosis rate; inducing EMT

(79–85)

lncRNA UCA1 (identical 
with lncRNA CDUR)

Liver cancer
Colorectal cancer
Pancreatic cancer
Gastric cancer
esophageal cancer

Sequestering microRNAs (miR-216b in liver cancer; miR-204-5p in colorectal and esophageal  
cancer; miR-27 in gastric cancer); increase expression of lncRNAs (HULC; H19); increased  
activity of Wnt-β-catenin pathway; increased activity of PI3K-AKT-mTOR pathway; increased 
phosphorylation of tumor suppressor retinoblastoma; increased expression of c-myc; increased  
cell-cycle progression; increased expression of antiapoptotic protein Bcl-2; reduced expression  
of PARP (in gastric cancer); reduced apoptosis rate. In liver cancer, additional effects:  
transformation of stem cells into cancer stem cells due to increased c-myc expression;  
increasing telomere length

(35, 86–96)

lncRNA URHC Liver cancer Reduced expression of the tumor suppressor ZAK; increased proliferation rate; reduced apoptosis 
rate

(97)

lncRNA-34a Colon cancer Increased activity of Wnt-β-catenin pathway; increased activity of NOTCH pathway; increasing the 
self-renewal of cancer stem cells

(98, 99)

miR let-7 family Pancreatic cancer Induced EMT (100)

miR let-7a Pancreatic tumors Increased expression of RRM2 (101)

miR let-7g esophageal cancer Increased expression of ABCC10 (102)

miR let-7i esophageal cancer Increased expression of ABCC10 (102)

miR-100 Colon cancer Increased activity of Wnt-β-catenin pathway (68)

miR-101 Liver cancer Increased expression of EZH2; increased activity of Wnt-β-catenin pathway; increased  
expression of Mcl-1; reduced apoptosis rate

(103–105)

miR-10b Colorectal cancer Increased expression of antiapoptotic protein BIm (106)

miR-103/107 Gastric cancer Reduced expression of tumor-suppressor caveolin-1; activation of Ras-p42/p44 MAP pathway; 
reduced apoptosis rate

(107–109)

miR-106a Gastric cancer Reduced expression of FAS; reduced apoptosis rate (110, 111)

miR-1182 Gastric cancer Increased expression of hTERT (112)

miR-122 Liver cancer Increased expression of ABC proteins; increased expression of cyclin G1; reduced G2/M cell- 
cycle arrest; reduced DNA repair; reduced apoptosis rate

(113, 114)

miR-124 Pancreatic cancer
Liver cancer

Reduced expression of SLC16A1 (115)

miR-125b Colon cancer Increased activity of Wnt-β-catenin pathway (68)

miR-1246 Pancreatic cancer Reduced expression of cyclin-G2; deregulated cell-cycle (116)

miR-129 Colorectal cancer Increased expression of antiapoptotic protein Bcl-2 (117)

miR-1291 Pancreatic cancer Increased expression of ABCC1 (118)

miR-130b Liver cancer Reduce expression of tumor protein 53-induced nuclear protein 1 (119)

miR-1307 Pancreatic cancer Reduced apoptosis rate (120)

miR-133a esophageal cancer Increased expression of GSTP1 (121)

miR-145 Colon carcinoma Increased expression of ABCB1 (122)

miR-147 Colon cancer Induced EMT; increased phosphorylation of AKT; increased activity of PI3K-AKT-mtor pathway; 
increased activity of TGF-β pathway

(123)

miR-155 Colorectal cancer Inhibition of MSH2, MSH6, and MLH1 (124)

miR-15b Gastric cancer Increased expression of antiapoptotic protein Bcl-2 (125)

miR-16 Gastric cancer Increased expression of antiapoptotic protein Bcl-2 (125)

mir-17-5p Colorectal cancer Reduced expression of PTEN expression; activation of AKT-mtor pathways (126)

miR-17-5p Pancreatic cancer Reduced expression of BIM (127)

miR-1915 Colon cancer Increased expression of BCL-2 (128)

miR-192 Colon cancer Reduced expression of thymidylate synthase; altered cell-cycle control at multiple levels;  
prevent progression into the S-phase

(129)

miR-193b Hepatocellular cancer Increased expression of Mcl-1 (130)

miR-195 Colorectal cancer Increased expression of antiapoptotic protein Bcl-2L2 (131)

TAble 1 | Continued

(Continued)
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Non-coding RNA Gi cancer type Causing drug resistance via Reference

miR-199a-3p Liver cancer Reduced G1/S cell-cycle arrest; increased expression of mtor and c-Met; reduced  
apoptosis rate

(132, 133)

miR-19a Gastric cancer Reduced expression of PTEN expression; activation of AKT-mtor pathways (134)

miR-19b Gastric cancer Reduced expression of PTEN expression; activation of AKT-mtor pathways (134)

miR-200a Pancreatic cancer Induced EMT (100)

miR-200b Pancreatic cancer Induced EMT (100)

miR-200c Pancreatic cancer Induced EMT (100, 135)

miR-203 Colorectal cancer Reduced expression of ATM; impaired DNA repair; reduced apoptosis rate (136)

miR-205 Pancreatic cancer Increased expression of pluripotent factors OKT3, OKT8, and CD44 (137)

miR-21 Colorectal cancer Inhibition of MSH2 and MSH6; reduced G2/M cell-cycle arrest; reduced apoptosis rate;  
increasing the number of undifferentiated cancer stem cells

(138, 139)

miR-21 Pancreatic cancer Reduced cell-cycle arrest; reduced expression of PTEN; activation of AKT-mtor pathway;  
increased expression of antiapoptotic protein Bcl-2; increased cell proliferation; reduced  
apoptosis rate

(140, 141)

miR-21 Liver cancer
Gastric cancer

Reduced expression of PTEN expression; activation of AKT-mtor pathways (142–144)

Synergistic action of 
miR-21
miR-23a
miR-27a

Pancreatic cancer Reduced expression of the tumor suppressors PDCD4, BTG2, and NEDD4L; deregulated  
cell-cycle; reduced apoptosis rate

(145, 146)

miR-211 Pancreatic tumors Increased expression of RRM2 (147)

miR-215 Liver cancer Reduced expression of dihydrofolate reductase; reduced expression of thymidylate synthase (148)

miR-215 Colon cancer Reduced expression of thymidylate synthase; altered cell-cycle control at multiple levels;  
prevent progression into the S-phase

(129)

miR-215 Gastric cancer Reduced expression of retinoblastoma 1; altered cell-cycle control (149, 150)

miR-22 P53-mutated colon  
cancer

Reduced expression of PTEN expression; activation of AKT-mtor pathways

miR-221 esophageal cancer Reduced expression of DDK2; activation of Wnt/β-catenin pathway; induced EMT (151, 152)

miR-223 Liver cancer Increased expression of ABCB1

miR-223 Pancreatic cancer Induced EMT (153)

miR-223 Gastric cancer Reduced expression of FBXW7; altered cell-cycle control (154)

miR-224 Colon cancer Induced EMT; increased phosphorylation of AKT und ERK; increased activity of PI3K-AKT-mtor 
pathway; increased activity of ERK pathway; activation of NF-κB; and EGFR dependent  
pathways

(155)

miR-23a Microsatellite instable  
colon cancer

Increased expression of ABCF1 (156)

miR-25 Gastric cancer Reduced expression of FOXO3a, ERBB2, and FBXW7; cell-cycle deregulation; reduced  
apoptosis rate

(157–160)

miR-26b Liver cancer Increased activation of NF-κB (161, 162)

miR-27a Liver cancer Reduced expression of dihydropyrimidine dehydrogenase (163)

miR-27b Liver cancer Increased expression of CYP1B1; reduced expression of dihydropyrimidine dehydrogenase (163, 164)

miR-27b Pancreatic cancer Reduced expression of CYP3A4—resulting in cyclophosphamide resistance due to  
missing drug activation

(165)

miR-297 Colorectal cancer Increased expression of ABCC2 (166)

miR-29a Pancreatic cancer
Liver cancer

Reduced expression of SLC16A1 (115)

miR-29b Pancreatic cancer
Liver cancer

Reduced expression of SLC16A1 (115)

miR-31 Colorectal cancer Cell-cycle deregulation; reduced apoptosis rate (167, 168)

miR-320 Colon cancer Increased expression of SOX4; inhibition of p53 mediated apoptosis; reduced expression  
of FOXM1 and FOXQ1; cell-cycle deregulation

(169, 170)

miR-338-3p p53 mutant colorectal 
cancer

Reduced expression of mtor; increased autophagy; and reduced apoptosis rate (171)

miR-34a Colon cancer Increased expression of antiapoptotic protein Bcl-2 (172)

miR-365 Colon cancer Increased expression of antiapoptotic protein Bcl-2 (173)

miR-374b Pancreatic cancer Increased ATP7A expression (174)

miR-378 Liver cancer Increased expression of CYP2E1 (175)

TAble 1 | Continued

(Continued)
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FiGURe 1 | Role of non-coding RNAs for the different reasons that can cause resistance to anticancer drugs in liver cancer. For details about target genes and 
regulated protein expression by the non-coding RNAs, see text.

Non-coding RNA Gi cancer type Causing drug resistance via Reference

miR-409-3p Colon cancer Increased expression of Beclin-1; increased autophagy pathway (176)

miR-451 Colon cancer Increasing the self-renewal of cancer stem cells; increased expression of ABCB1 (177)

miR-494 Colon cancer Reduced expression of dihydropyrimidine dehydrogenase (178)

miR-503-5p Colorectal cancer Reduced expression of apoptotic protein PUMA (179)

miR-508-5p Gastric cancer Increased expression of ABCB1; increased expression of transcription factor ZNRD1 (180)

miR-519d Liver cancer Reduced expression of G1-checkpoint CDK inhibitor p21; reduced apoptosis rate (181)

miR-522 Colon cancer Increased expression of ABCB5 (182)

miR-92b Colon cancer Reduced expression of SLC15A and SLC15A1 (183)
miR-939 Gastric cancer Increased expression of SLC34A2; activation of Ras/MEK/ERK pathway (184)
miR-96 Colorectal cancer Reduced expression of antiapoptotic proteins XIAP and UBE2N (185)
svRNAb All GI tumors Reduced expression of CYP3A4 (186)
vRNA hvg-1 All GI tumors Transporting drugs away from the target and drug sequestration (187, 188)
vRNA hvg-2 All GI tumors Transporting drugs away from the target and drug sequestration (187, 188)

GI, gastrointestinal; vRNA, vault RNA; lncRNA, long non-coding RNA; miR, microRNA; EMT, epithelial–mesenchymal transition.

TAble 1 | Continued
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(rRNAs), small nucleolar RNAs (snoRNAs), endogenous small 
interfering RNAs (endo-siRNAs), sno-derived RNAs (sdRNAs), 
transcription initiation RNAs (tiRNAs), miRNA-offset-RNAs 
(moRNAs), circular RNAs (circRNAs), vault RNAs (vRNAs), 
microRNAs, small interfering RNAs (siRNAs), small nuclear 
RNAs (snRNAs), extracellular RNAs (exRNAs), piwi-interacting 
RNAs (piRNAs), small Cajal body RNAs (scaRNAs), long 
intergenic non-coding RNAs (lincRNAs), and long non-coding 
RNAs (lncRNAs), all of which are not coding for known proteins 
(190–211).

Long non-coding RNAs (lncRNAs) and microRNAs are the 
most studied non-coding RNAs playing a role in anticancer drug 
resistance and will be covered in this review.

LncRNAs are composed of more than 200 nucleotides. They 
are important regulators during development and pathological 
processes (212–216). LncRNAs are pivotal in regulating gene 
expression by binding to chromatin regulatory proteins and they 
are able to alter chromatin modification as well as transcriptional 
or posttranscriptional gene regulation by interacting with other 
RNAs and proteins (217–219). Recently, a crosstalk and strong 
linkage between lncRNA and microRNAs has been identified 
(220). It has been shown that lncRNA stability can be reduced by 
interaction with specific microRNAs and, vice versa, lncRNAs act 
as microRNA decoys sequestering microRNAs from the intracel-
lular cytosol and leading to reexpression of microRNA target 
genes (220). Furthermore, lncRNAs can promote gene expression 
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FiGURe 3 | Role of non-coding RNAs for the different reasons that can cause resistance to anticancer drugs in gastric cancer. For details about target genes and 
regulated protein expression by the non-coding RNAs, see text.

FiGURe 2 | Role of non-coding RNAs for the different reasons that can cause resistance to anticancer drugs in esophageal cancer. For details about target genes 
and regulated protein expression by the non-coding RNAs, see text.
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by competing with microRNAs for specific binding sites in the 
non-coding regions of mRNAs and prevent the transcriptional 
repression caused by microRNAs (220). Interestingly some lncR-
NAs can be processed into microRNAs (220) suggesting a plastic 
interaction among different classes of non-coding RNAs.

MicroRNAs are short RNA transcripts of 18–24 nucleo-
tides. They are responsible for fine tuning cell homeostasis by 

controlling gene expression at posttranscriptional level (221–223).  
Due to the fact that each microRNAs can have several target 
mRNAs, the interaction of one microRNA with various target 
mRNAs results in direct deregulation of different target proteins 
acting simultaneously in regulation of diverse cellular pathways 
(224, 225). Therefore, variation in microRNA expression can 
result in reduced mRNA levels ultimately resulting in changes 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


FiGURe 5 | Role of non-coding RNAs for the different reasons that can cause resistance to anticancer drugs in pancreatic cancer. For details about target genes 
and regulated protein expression by the non-coding RNAs, see text.

FiGURe 4 | Role of non-coding RNAs for the different reasons that can cause resistance to anticancer drugs in colon and colorectal cancer. For details about target 
genes and regulated protein expression by the non-coding RNAs, see text.
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in protein levels within the cell (225, 226). MicroRNAs 
expression patterns are tissue specific (227) and often define 
the physiological status of the cell (228). Strong clinical and 
preclincial evidence suggests that microRNA aberrant expres-
sion plays a role in several diseases including cancer, infectious, 

neurodegenerative, and immune-related diseases (229–240). 
Analysis of microRNA expression patterns represents a promis-
ing tool for cancer diagnosis, prognosis and treatment predic-
tion. MicroRNAs have been extensively studied in monitoring 
treatment resistance in consideration of their high stability in 
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FiGURe 7 | Role of non-coding RNAs for the different reasons that can cause resistance to anticancer drugs in cholangiocarcinoma. For details about target genes 
and regulated protein expression by the non-coding RNAs, see text.

FiGURe 6 | Role of non-coding RNAs for the different reasons that can cause resistance to anticancer drugs in gastrointestinal stromal cancer. For details about 
target genes and regulated protein expression by the non-coding RNAs, see text.
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tissues and body fluids. In blood, microRNAs are included in 
RNA-binding multiprotein complexes and/or exosomes and 
their short length makes microRNAs less prone to degradation 
and improves their stability under different sample storage 
conditions in blood (224, 230, 236, 240).

GeNeRAl PRiNCiPleS OF DRUG 
ReSiSTANCe

Drug resistance is classified into intrinsic and acquired. Primary 
drug resistance is pre-existing and renders cancer cells immune 
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TAble 2 | Overview about the different categories of non-coding RNA molecules.

Name biological role

Circular RNA (circRNA) Involved in forming RNA-protein complex that regulate gene transcription; involved in regulating gene expression at 
posttranscriptional level by acting as miRNA sponge

Endogenous small interfering RNA (endo-siRNA) Involved in repression of transposable elements, chromatin organization as well as gene regulation at transcriptional 
and posttranscriptional level

Extracellular RNA (exRNA) Involved in intercellular communication and cell regulation

Long intergenic non-coding RNA (lincRNA) Involved in gene expression via directing chromatin-modification complexes to specific target regions; lincRNAs 
located in the cytoplasm function as scaffold to bring together proteins and other RNA categories (especially mRNAs 
and miRNAs)

Long non-coding RNA (lncRNA) Involved in regulation of gene expression via binding to chromatin regulatory proteins; involved in regulating gene 
expression at posttranscriptional level by acting as microRNA decoys; some lncRNAs are processed into microRNAs

MicroRNA Involved in fine tuning cell homeostasis by controlling gene expression at posttranscriptional level

miRNA-offset-RNA (moRNA) Unknown

piwi-interacting RNA (piRNA) Involved in maintain germline integrity by repressing transposable elements; involved in mRNA deadenylation

Ribosomal RNA (rRNA) Component of the ribosomes; involved in protein synthesis

Small Cajal body RNA (scaRNA) Component of the Cajal bodies; involved in the biogenesis of small nuclear ribonucleoproteins and by this influence 
splicing of pre-mRNAs

Small interfering RNA (siRNA) Involved in RNA interference pathway as part of antiviral defense

Small nuclear RNA (snRNA) Component of the spliceosome; involved in splicing of pre-mRNAs during posttranscriptional modifications

Small nucleolar RNA (snoRNA) Component of the Cajal bodies; involved in modification and processing of snRNA, rRNA and tRNA precursors as 
well as in mRNA editing

sno-derived RNA (sdRNA) Component of the Cajal bodies; involved in alternative splicing of mRNAs; some sdRNAs control gene expression at 
posttranscriptional level

Transcription initiation RNA (tiRNA) Involved in regulation of RNA polymerase II dependent transcription

Transfer RNA (tRNA) Involved in transporting amino acids to the ribosomes during translation

Vault RNA (vRNA) Component of the vaults (large ribonucleoprotein complexes in cytoplasm); unknown function
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against the therapy from the very beginning. In contrast, 
acquired (secondary) drug resistance develops during therapy 
due to adaptive processes of the tumor (22, 241–244). Different 
mechanisms are involved in primary and acquired drug resist-
ance and relate to non-coding RNAs dysregulation.

Deregulation of Proteins involved  
in Drug Metabolism
One reason for drug resistance can be found on the level of 
drug transport. Reduced influx or increased efflux of chemo-
therapeutics result in lower intracellular drug concentrations 
and promotes therapy failure (241). Altered drug metabolism is 
another possible cause for drug resistance. Drug metabolism is a 
complex pathway composed of multiple proteins for detoxifica-
tion of foreign compounds (e.g., chemotherapeutics) normally 
neither produced nor present in a cell (245). This pathway can 
be subdivided into modification (phase I reaction), conjugation 
(phase II reaction), and excretion (phase III reaction) (246). 
Several drug-metabolizing enzymes, especially members of 
the cytochrome P450 family, together with drug transporters 
increase the polarity of the drugs during phase I (247, 248). 
In the following phase II, the polarity of the drugs is further 
increased by conjugation reactions (249, 250). Finally, in phase 
III the resulting drug metabolites are exported by transmembrane 
transporter like ATP-binding cassette (ABC) proteins and solute 
carrier (SLC) transport proteins (251–254).

The vaults are known to contribute to drug resistance by 
transporting drugs away from their intracellular targets and 
vaults are involved in drug sequestration (187). The vRNAs 
hvg-1 and hvg-2 that are present in the vaults (Table 2) interact 
with drugs via specific binding sites (188). In agreement with 
their role in regard to drug resistance, the number of vaults is 
increased in cancer patients who developed resistance under 
chemotherapy (187). In addition, the vRNAs are producing sev-
eral small RNAs among them is svRNAb which downregulates 
the key enzyme in drug metabolism CYP3A4 and accounts so 
for multidrug resistance in GI cancers (186).

Furthermore, lncRNA H19 was identified as another non-
coding RNA involved in drug resistance. The oncogenic potential 
of lncRNA H19 was demonstrated in different tumor types  
(e.g., liver and esophageal cancer) and overexpression of lncRNA 
H19 was observed in parallel with upregulation of the membrane 
glycoprotein p95 in multidrug-resistant tumors (36, 37). In liver 
tumor cells, resistant to doxorubicin, etoposide, paclitaxel, and 
vincristine lncRNA H19 expression was increased (36). LncRNA 
H19 participates in the regulation of MDR1 gene (also known as 
ABCB1 gene) expression and modulates the drug transport out of 
the cell (36). In vitro models of hepatocellular carcinoma suggest 
that lncRNA H19 can alter MDR1 promoter methylation and, in 
doing so, increases the transcription of P-glycoprotein (36).

Similarly, in gastric cancer, MDR-related and upregulated 
lncRNA (lncRNA MRUL) acts as an enhancer for transcrip-
tion of P-glycoprotein (MDR1) (69) increasing the number of 
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transmembrane transporters on the tumor cell membrane and 
fosters the drug export (69). As we described above, different 
non-coding RNAs can merge onto the same pathway: this is 
the case of lncRNA AK022798 whose expression is induced by 
NOTCH-1 overexpression during gastric cancer progression 
(28). LncRNA AK022798 in turn upregulates the expression of 
P-glycoprotein and is responsible for increased cisplatin resist-
ance in gastric cancer patients (28). Similarly, in cisplatin and 
5-fluorouracil-resistant gastric cancer patients the expression 
of lncRNA plasmacytoma variant translocation 1 (PVT-1) and 
lncRNA ANRIL (antisense to CDKN2B locus) are also increased 
and these non-coding RNAs promote MDR1 upregulation and 
drug resistance (29, 30).

Non-coding RNA dysregulation is tissue specific, indeed 
Wnt-β-catenin pathway activation triggers the expression of a 
different lncRNA, colorectal cancer-associated lncRNA (CCAL). 
The effect on phenotype is the same as in other cancers given 
CCAL in turn upregulates P-glycoprotein expression and causing 
chemotherapy resistance (34).

Additional to the regulation via lncRNAs ABC transporter 
expression levels are also controlled by miRNAs (255, 256).

In colon cancer, P-glycoprotein expression was found to 
be directly deregulated at posttranscriptional level by binding 
of miR-145 to the 3′-UTR of the MDR1 gene transcript (122). 
Downregulation of miR-145 results in increased ABCB1 protein 
level (122). Analogously miR-297 binds to the 3′-UTR of ABCC2 
mRNA and supresses the expression of ABCC2 transporter  
(166). In chemoresistant colorectal carcinoma, miR-297 is often 
downregulated and consequently ABCC2 is expressed on a higher 
level compared to the surrounding colon tissue (166). Interestingly, 
in vitro and in vivo models suggest that resistance to vincristine 
and oxaliplatin could be overcome by restoring miR-297 expres-
sion in therapy-resistant cells (166). Virtually expression of all 
the transporters can be affected by microRNA dysregulation; 
ABCB5 transporter is highly expressed in colon cancer cell lines 
with downregulated miR-522 expression and renders these cells 
resistant to doxorubicin treatment (182). miR-522 binds to the 
ABCB5 mRNA 3′-UTR and overexpression of miR-522 reverse 
chemoresistance to doxorubicin (182). Similarly, 5-fluorouracil 
resistance in microsatellite instable colon cancer [caused by 
deregulated miR-21 or miR-155 (124, 138) as mentioned in detail 
later] can be enhanced by downregulation of miR-23a resulting in 
higher expression of the direct target ABCF1 (156).

Similar examples exist across the board: in gastric cancer 
for example, downregulation of miR-508-5p was identified as 
a reason for multidrug resistance (180). miR-508-5p represses 
the expression of P-glycoprotein and the transcription factor 
zinc ribbon domain-containing 1 (ZNRD1) that is an important 
factor for MDR1 gene translation (180). Loss of miR-508-5p 
decreased drug sensitivity in gastric cancer in vitro and in vivo, 
whereas ectopic expression of miR-508-5p overcomes drug 
resistance (180).

In pancreatic cancer cell lines, expression of the transporter 
ABCC1 is controlled by miR-1291 binding to the 3′-UTR (118). 
miR-1291 is often downregulated in pancreatic cancer resulting 
in an increased expression of ABCC1 that finally leads to higher 
efflux rate of toxic substances (257, 258). This is the reason for 

resistance to many chemotherapeutics, such as anthracyclines 
(e.g., doxorubicin), platinum derivates, and the folate antagonist 
methotrexate (257, 258). Another transporter, called ATP7A 
(ATPase Cu2+ transporting alpha polypeptide), is upregulated in 
in vitro models of resistant pancreatic tumors due to decreased 
expression of miR-374b (174) and increased ATP7A protein 
expression is at least partially responsible for cisplatin resistance 
in pancreatic cancer model systems (174).

Downregulation of miR-122 in liver tumors results in high 
expression of ABC transporter proteins and causes increased 
drug export of doxorubicin in liver cancer patients (114). 
Similarly, ABCB1 transporter expression is upregulated in 
hepatocellular cancer cells when the posttranscriptional regula-
tor miR-223 is downregulated and the result is again resistance 
to doxorubicin treatment (259).

Downregulation of microRNAs let-7g and let-7i results in 
increased expression of ABCC10 that in turn is responsible for 
resistance to cisplatin therapy in esophageal cancer patients (102).

An important barrier for oral anticancer drugs is repre-
sented by intestinal epithelial cells of the GI tract (256, 260). 
The absorption of most nutrient components as well as drugs 
is related to a variety of influx transporters such as members of 
the SLC transporter family (256). The expression pattern of the 
SLC transporter varied according to the differentiation status 
of intestinal epithelial cells which is controlled by microRNAs 
(261). Therefore, changes in the expression level of microRNAs 
have most probably an important influence on the drug uptake 
rate (261). Up to now the role of microRNAs for the expression 
level of SLC transporter have been studied only in cell culture 
models for colon carcinoma, liver, pancreatic, and gastric tumors 
(115, 183). In colon cancer cells, expression of miR-92b reduces 
the amount of SLC15A and SLC15A1 transporter resulting in 
decreased drug absorption (183). In the context of liver and pan-
creatic tumors miR-29a, miR-29b, and miR-124 target SLC16A1 
and reduce the expression of this transporter (115). Recently, 
it was shown that miR-939 targets direct SLC34A2 in gastric 
cancer (184). In 5-fluorouracil-resistant gastric cancer, miR-939 
is downregulated and results in increased expression level of 
SLC34A2. The transport protein SLC34A2 acts as mediator of 
miR-939 and activates the Ras/MEK/extracellular signal-regu-
lated kinase (ERK) pathway which is known to be deregulated 
often in cancer and to cause resistance to chemotherapy (184). 
In in vitro models of gastric cancer, overexpression of miR-939 
strongly decreased MEK1/2 phosphorylation as well as Raf-1 
level, whereas SLC34A2 restoration rescued these effects (184).

Also for some drug-metabolizing enzymes posttranscriptional 
regulations by miRNAs have been proven (256, 262, 263). Due 
to their pivotal role in maintaining chemical and functional 
homeostasis of cells, cytochrome P450 enzymes are strictly 
controlled. Under physiological conditions, cytochrome P450 
enzymes are involved in the regulation of endogenous molecules 
like bile acids and steroids and under pathological conditions in 
the case of chemotherapy these enzymes are important in regard 
to drug metabolism. Deregulated expression of cytochrome P450 
enzymes is linked to drug resistance and therapy failure (264).

For example, miR-378 targets mRNA coding for CYP2E1 and 
reduces the expression level of CYP2E1 protein in cell culture 
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models of liver tumors (175, 265). In liver cancer patients, 
CYP2E1 expression is increased while miR-378 is downregu-
lated (175, 265). Also, a direct regulation of CYP1B1 by miR-
27b was demonstrated in hepatocellular cancer cell lines (164). 
Decreased expression of miR-27b results in high expression level 
of CYP1B1 and renders by this liver tumor resistant to docetaxel 
treatment (164).

In pancreatic cancer cells, overexpression of miR-27b leads to 
downregulation of CYP3A4 protein and results in drug resist-
ance to cyclophosphamide because CYP3A4 is necessary for 
drug activation (165). MicroRNA-based regulation of enzymes 
involved in phase II reactions are less analyzed but nevertheless, 
in the context of esophageal cancer, regulation of glutathione 
S-transferase P1 (GSTP1) was found to be regulated by miR-133a 
(121). Reduced expression of the tumor suppressor miR-133a 
resulted in increased level of GSTP1 protein (121). In phase II 
detoxification reactions—including inactivation of platinum 
derivates and alkylating reagents—GSTP1 catalyses the addition 
of glutathione to the drug activated during phase I reactions with 
electrophiles (249, 250).

A more specific influence of non-coding RNAs on drug 
metabolism was demonstrated for 5-fluorouracil in liver and 
colon tumors (163, 178). Dihydropyrimidine dehydrogenase, an 
important enzyme in 5-fluorouracil metabolism, is repressed by 
miR-494 in colon tumors and by miR-27a as well as miR-27b in 
liver cancer (163, 178). The fact that the translation of one and 
the same enzyme in two different tissues is under the control of 
different miRNAs underlines the tissue-specific regulation and 
fine-tuning of protein expression that is exerted by miRNAs.

In liver cancer, the translation of two of the most important 
targets of chemotherapeutic agents, dihydrofolate reductase and 
thymidylate synthase, are repressed by upregulation of miR-215 
(148). Reduced expression of dihydrofolate reductase and thy-
midylate synthase leads to the development of insensitivity to 
doxorubicin treatment (148).

Thymidylate synthase is the target of 5-fluoruracil therapy 
and this enzyme is downregulated by increased expression of 
miR-192 and miR-215 in colon cancer patients (129). In this case, 
altered microRNA expression results in down-modulation of the 
drug target and leads to therapy failure. In addition, miR-192 
and miR-215 alter the cell-cycle control at multiple levels and 
prevent progression into the S-phase leading to 5-fluorouracil 
resistance (129).

A similar case was observed in pancreatic tumors where ribo-
nucleotide reductase regulatory subunit M2 (RRM2) the target 
of gemcitabine is under direct control of miR-211 and let-7a 
(101, 147). Decreased expression of miR-211 and let-7a results 
in higher RRM2 protein level and renders the tumors resistant to 
gemcitabine (101, 147).

Deregulation of Cell-Cycle, DNA Repair 
Pathways and Alteration in Death 
Pathways
Impaired cell cycle regulation and alteration of cell death pathways 
are common causes of drug resistance (243, 266). Increased cell 
cycle progression and reduced cell death rate lead to accumulation 

of mutations and uncontrolled cell proliferation, a hallmark of 
tumor cells (267). Errors in the DNA-damage response program 
pathways [nuclear excision repair (NER), base excision repair 
(BER), and DNA mismatch repair (MMR)] play an important role 
in cancer progression and chemoresistance (268–271). A complex 
interaction interplay exists between non-coding RNAs and the 
DNA-damage pathways: on one hand the DNA-damage pathway 
induces the expression of several non-coding RNAs especially of 
microRNAs and on the other hand non-coding RNAs regulate 
directly the expression of several genes involved in DNA-damage 
pathway. This interaction is cell type specific and dependent on 
the intensity and nature of DNA damage (272–276).

LncRNA HOX transcript antisense RNA (HOTAIR) is highly 
expressed in a broad variety of solid tumors including liver, colo-
rectal, pancreatic, and GI stromal tumors (39, 40, 277). LncRNA 
HOTAIR reprograms chromatin organization together with the 
polycomb repressive complex PRC2 (40). Upregulation of lncRNA 
HOTAIR results in higher expression level of members of the 
PRC2 complex (SUZ12, EZH2, and H3K27me3) (40). Therefore, 
increased lncRNA HOTAIR expression is associated with a 
genome-wide reprogramming via PRC2 mediated epigenetic 
silencing of chromatin (40). In addition, lncRNA HOTAIR down-
regulates cyclin-dependent kinase inhibitor 1 [p21(WAF/CIP1)] 
(41) causing the loss of an important regulator of the G1 and S 
phase progression (38, 278, 279). Due to the fact that p21(WAF/
CIP1) represents a major target of p53 activity DNA damage in 
lncRNA HOTAIR expressing tumor cells don’t go into cell cycle 
arrest and this promote cisplatin resistance (38, 41, 278, 279).

In esophageal, gastric, colorectal, and hepatocellular cancer 
as well as cholangiocarcinomas, lncRNA taurine-upregulated 
gene 1 (TUG1) is involved in causing resistance to chemotherapy 
(79–85). In tumor tissue, lncRNA TUG1 is upregulated and 
promotes cell growth by increased transcription of the Bcl-2 
gene and epigenetic silencing of cyclin-dependent protein kinase 
inhibitors (p15, p16, p21, p27, and p57) and proapoptotic genes 
(caspase-3, caspase-9, and Bax) (79–85). Therefore, lncRNA 
TUG1 is an excellent example for the fact that non-coding RNAs 
target simultaneously the expression of different genes; beside 
increasing the expression level of the antiapoptotic protein Bcl-
2, expression of key players in the caspase-mediated apoptosis 
pathway are inhibited together with different cyclin-dependent 
protein kinase inhibitors. This results in decreasing the G0/G1 
arrest during cell cycle and reduces the apoptosis rate of the 
tumor cells. Most probably lncRNA TUG1 has also a role in the 
EMT (83, 85) that increases resistance to drug treatments further 
as outlined in detail below.

Also, the lncRNA promoter of CDKN1A antisense DNA 
damage-activated RNA (PANDAR) is often deregulated in 
different GI tumors like gastric, colorectal, and hepatocellular 
cancer as well as cholangiocarcinoma (71–74). In all these 
tumors, upregulation of lncRNA PANDAR results in increased 
proliferation rate and reduced apoptosis (71–74). LncRNA 
PANDAR interacts with the transcription factor NF-YA, an 
important regulator for transcription of proapoptotic genes  
(70). This interaction between lncRNA PANDAR and NF-YA 
results in decreased expression of proapoptotic genes and even-
tually leads to drug resistance (71–74).
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LncRNA urothelial carcinoma associated 1 (UCA1) mediates 
resistance to doxorubicin treatment in gastric cancer (94). In 
in vitro systems, knockdown of lncRNA UCA1 overcomes the 
doxorubicin resistance due to an increased expression of PARP 
and reduced expression of Bcl-2 resulting in higher apoptosis 
rate (94).

Furthermore, it was shown that lncRNA UCA1 sequesters 
miR-204-5p in colorectal cancer and reduces the level of this 
microRNA in cancer cells (90). The consequence is enhanced cell 
proliferation and 5-fluorouracil resistance (90).

Another example of non-coding RNAs influencing cell-cycle 
is lncRNA adriamycin resistance associated (ARA) (31, 32). 
LncRNA ARA was found to be overexpressed in doxorubicin-
resistant liver cancer cell lines compared to the parental cell lines 
(31). Downregulation of lncRNA ARA results in cell-cycle arrest 
in G2/M phase, suppressed proliferation, increased apoptotic 
cell death and, as expected, a reduced resistance against doxo-
rubicin (31, 32). Furthermore, lncRNA ARA is involved in the 
regulation of multiple signaling pathways including the MAPK-
pathway (31, 32). Beside lncRNA ARA the lncRNA upregulated 
in hepatocellular carcinoma (URHC) is found among the 
most upregulated lncRNAs in hepatocellular carcinoma. One 
target of lncRNA URHC is the tumor-suppressor ZAK (97). 
Downregulation of ZAK via lncRNA URHC results in increased 
cell proliferation and inhibits apoptosis (97).

In pancreatic cancer, lncRNA HOXA transcript at the distal 
tip (HOTTIP) upregulates the homeobox-transcription factor 
HOX13 resulting in deregulation of the cell cycle as well as gem-
citabine resistance (49, 50).

Downregulation of lncRNA LOC285194 in esophageal 
cancer results in resistance to chemoradiotherapy (radiation in 
combination with platinum- or paclitaxel-based chemotherapy) 
by influencing cell-cycle progression and non-apoptotic cell 
death pathway via regulating VEGF receptor 1 (60).

In contrast, lncRNA metastasis-associated lung adenocar-
cinoma transcript-1 (MALAT-1) is strongly overexpressed in  
esophageal tumor tissue and binds miR-107 and miR-217  
(62, 63). miR-107 and miR-217 decoy translates in reduced 
activity of the ATM-CHK2 signaling pathway leading to reduced 
cell-cycle arrest and cell death as response to DNA damage  
(61, 63) and overexpression of the transcription factor B-Myb—
an important regulator for G1/S and G2/M cell-cycle progression 
and cell survival (62, 63).

In addition, several microRNAs have been identified as 
regulators for cell cycle progression and induction of cell death 
pathways. Therefore, deregulated microRNA expression pattern 
is often a reason for drug resistance in GI tumors.

Colorectal cancers with upregulated mir-203 are resistant to 
oxaliplatin (136). Failure of oxaliplatin therapy is caused by miR-
203 mediated downregulation of the important mediator protein 
for DNA damage response ATM (136). As reaction to DNA 
damage, ATM induces the expression of DNA repair proteins, 
interrupts the cell cycle, and induces cell death in the case of 
extended DNA damage (280). Oxaliplatin resistance can also be 
caused by upregulation of miR-503-5p in colorectal cancer (179). 
Increased expression of miR-503-5p results in downregulation 
of the apoptotic protein p53 upregulated modulator of apoptosis 

(PUMA) and leads to resistance to oxaliplatin-induced apoptosis 
(179). In colon cancer tissues, downregulation of miR-320 is 
linked to resistance to 5-fluorouracil therapy (169). Among the 
targets for miR-320 is the transcription factor SOX4 which is 
involved in inhibition of p53-mediated apoptosis as well as the 
cell cycle regulators FOXM1 and FOXQ1 both known to have 
oncogenic potential (169, 170).

In colorectal cancer cells, miR-21 overexpression results in 
inhibition of the MMR proteins MSH2 and MSH6, two impor-
tant proteins for DNA damage recognition and repair (138). 
Inhibition of MSH2 and MSH6 leads to reduced G2/M cell-cycle 
arrest caused by 5-fluorouracil induced DNA damage and lower 
apoptosis rate in vitro and in vivo (138). Therefore, miR-21 overex-
pression reduces the therapeutic efficacy of 5-fluorouracil-based 
chemotherapy in colorectal cancer treatment (138). Furthermore, 
it was proven that the core mismatch repair proteins MSH2, 
MSH6, and MLH1 are also downregulated by miR-155 poten-
tially contributing to drug resistance (124). According to another 
study, 5-fluorouracil resistance in colorectal cancer cells can also 
be mediated by increased expression of miR-31 causing cell cycle 
deregulation and reduced apoptosis rate (167, 168). Efficacy of 
5-fluorouracil treatment in colorectal cancer patients can also be 
limited due to upregulation of antiapoptotic proteins like X-linked 
inhibitor of apoptosis (XIAP) and ubiquitin-conjugating enzyme 
E2N (UBE2N) as a consequence of decreased miR-96 expression 
(185) or due to upregulation of the antiapoptotic proteins Bcl-2, 
Bcl-2-like protein 11 (BIM), or Bcl-2-like protein 2 (Bcl2L2) by 
reduced expression of miR-129, miR-10b, or miR-195, respectively 
(106, 117, 131). In other colon cancer studies, reduced expression 
levels of miR-365, miR-1915, and miR-34a have been described as 
reason for increased expression of BCL-2 (128, 172, 173).

Increased Bcl-2 expression has been identified as a reason 
for resistance to 5-fluorouracil in other GI tumors, too, but the 
posttranscriptional regulation of mRNA coding for Bcl-2 is under 
the control of different miRNAs; e.g., in gastric cancer diminished 
expression of miR-204 is the reason (281). According to another 
study upregulation of Bcl-2 is caused by lower miR-15b and miR-
16 expression level and leads to drug resistance in gastric cancer 
cells due to reduced apoptosis (125). miR-25 overexpression 
was related to cisplatin resistance in gastric cancer cells (160). 
miR-25 targets directly mRNAs coding for tumor suppressors 
like FOXO3a, ERBB2, and F-box/WD repeat-containing protein 
7 (FBXW7) (157–160). All these proteins are involved in cell cycle 
regulation and apoptosis (160, 282, 283). Upregulation of miR-223 
targets FBXW7 and leads to cell-cycle deregulation and cisplatin 
resistance in gastric tumors (154). Furthermore, upregulation 
of miR-103/107 results in decreased expression of caveolin-1 in 
gastric cancer cells (109). The tumor suppressor caveolin-1 is a 
counter regulator for the Ras-p42/p44 MAP kinase pathway and 
due to the downregulation by miR-103/107 increased activity of 
the Ras-p42/44 Map kinase pathway results in increased cell cycle 
progression and reduced cell death (107, 108). In gastric cancer, 
increased cell cycle progression is also caused by increased expres-
sion of miR-215 resulting in reduced expression of the tumor 
suppressor retinoblastoma 1, an important cell cycle regulator 
(149, 150). Upregulation of miR-106a targets FAS and inhibits 
the extrinsic apoptotic pathway in gastric cancer (110, 111).  
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In turn, reduced amount of FAS leads to increased cell prolifera-
tion, reduced apoptosis rate, and drug resistance (110, 111).

Overexpression of miR-21 inhibits cell cycle arrest resulting in 
increased cell proliferation, reduced apoptotic rate, gemcitabine, 
and 5-fluorouracil resistance in pancreatic cancer (284–286). 
Similarly, in other pancreatic cancer studies, miR-21 overexpres-
sion results in reduced level of PTEN and Bcl-2 leading to activa-
tion of AKT-mTOR pathway, reduced apoptosis, and resistance 
against gemcitabine treatment (140, 141). Increased expression 
of miR-214 represses directly ING4 in pancreatic tumor (287). 
This impairs cell-cycle arrest, DNA repair as well as apoptosis and 
results in resistance to gemcitabine treatment (287). The expres-
sion of the important proapoptotic protein BIM is reduced by 
miR-17-5p in pancreatic cancer and results in decreased apoptotic 
rate leading to resistance to gemcitabine treatment (127). Therapy 
failure is also caused by the repression of a tumor suppressor net-
work involved in cell cycle and apoptosis regulation composed of 
PDCD4, BTG2 and NEDD4L by the combined action of miR-21, 
miR-23a, and miR-27a (145, 146). Furthermore, overexpression 
of miR-1246 results in decreased expression of cyclin-G2 and 
impairs the cell cycle regulation resulting in resistance to gemcit-
abine (116). Recently, miR-1307 was identified to be responsible 
for FOLFIRINOX resistance in pancreatic cancer (120). miR-
1307 is upregulated in in vitro models of FOLFIRINOX-resistant 
pancreatic cancer as well as in patient derived material compared 
to the surrounding tissue (120). Reduced apoptosis rate and an 
extended acceptance of DNA damage seem to be the consequence 
of higher miR-1307 expression (120).

In hepatocellular carcinoma, the liver specific miR-122 is 
downregulated and as consequence the expression of the target 
gene CCNG1 is increased (113). High level of cyclin G1 protein 
is found in several human tumors and results in reduced cell 
cycle control in the G2/M phase and modulation of p53 activity 
(113, 114). This results in reduced DNA-repair and diminished 
apoptotic rate (113, 114). As already mentioned above, ABC 
transporter proteins are highly expressed in liver tumors due to 
the missing posttranscriptional regulator miR-122 (114). All these 
effects caused by miR-122 downregulation promote doxorubicin 
resistance in liver cancer patients (113, 114). Another reason for 
doxorubicin resistance in liver cancer is based on reduced expres-
sion of miR-26b (161). Among the miR-26b targets in liver are the 
NF-κB activating proteins TAB 3 and TAK1 (161, 162). Therefore, 
a reduced expression of miR-26b results in increased activation 
of NF-κB and promotes drug resistance (161, 162). Also, down-
regulation of miR-101 is described as reason for resistance to 
doxorubicin in hepatocellular carcinoma (105). The antiapoptotic 
protein Mcl-1 is among the targets of miR-101 and high levels of 
Mcl-1 renders liver tumor cells resistant to doxorubicin treatment 
(105). Furthermore, doxorubicin treatment failure in liver cancer 
patients has been connected to downregulation of miR-199a-3p 
(133). Besides targeting mTOR and c-Met, miR-199a-3p influ-
ences cell cycle regulation (133). Decreased miR-199a-3p level 
results in downregulation of the G1-checkpoint CDK inhibitors 
p21 (CDKN1A) and p27 (CDKN1B) and abrogate the G1 arrest 
following damage to DNA (132, 133). In another study, downreg-
ulation of the G1 inhibitor CDKN1A in hepatocellular carcinoma 
was linked to upregulation of miR-519d (181). Consequently the 

apoptotic rate is reduced due to downregulated miR-199a-3p as 
well as upregulated miR-519d expression (133, 181).

Another important tumor suppressor protein involved in 
resistance to anticancer drugs is PTEN because it is a main 
regulator for PI3K-AKT-mTOR pathway which is often hyperac-
tivated in cancer and is one of the drivers for tumor growth and 
survival (288, 289). PTEN itself is regulated by different micro-
RNAs in different GI tumors, e.g., by miR-21 in liver and gastric 
cancer, miR-22 in p53-mutated colon cancer and mir-17-5p in 
colorectal cancer (126, 142–144, 151). In all cases, upregulation 
of microRNAs results in decreased PTEN level in the tumor cell 
and subsequent activation of AKT-mTOR pathways resulting in 
resistance to cisplatin (gastric cancer), paclitaxel (p53-mutated 
colon tumor), and FOLFOX (colorectal cancer) (126, 142– 
144, 151). Downregulation of PTEN due to overexpression of 
miR-19a and miR-19b in gastric cancer results in multi-drug 
resistance (134).

Furthermore, mTOR is an important regulator under physi-
ological as well as pathological conditions. In p53 mutant colo-
rectal cancer, mTOR is downregulated by miR-338-3p and results 
in resistance to 5-fluorouracil treatment (171). Indeed, inhibition 
of miR-338-3p in cell culture models restored sensitivity to 5- 
fluorouracil (171) likely due to increased autophagy and reduced 
apoptosis following decrease in mTOR expression (171, 290).

Autophagy is a further mechanism for chemoresistance 
(51, 291–293). In liver cancer, upregulation of lncRNA HULC 
activates autophagy by increasing the expression of ubiquitin-
specific peptidase 22 (USP22) which in turn prevents the 
ubiquitin-mediated degradation of silent information regulator 
1 (SIRT1) by removing the conjugated polyubiquitin chains 
from SIRT1 (51). Autophagy causes resistance to oxaliplatin, 5- 
fluorouracil and epitubicin treatments in liver tumors (51). In 
addition, lncRNA HULC downregulates the expression of micro-
RNAs that target directly the 3′-UTR of USP22 (miR-6825-5p, 
miR-6845-5p, and miR-6886-3p) in liver cancer cells and pre-
vents by this inhibition of USP22 at translational level (51).

LncRNA MALAT-1 is highly expressed in gastric cancer cells 
resistant to 5-fluoruracil and cis-platin, respectively, compared to 
parental gastric cancer cells (67). LncRNA MALAT-1 quenches 
miR-23b-3p and subsequently increases the expression of ATG12, 
an important regulator of autophagy (67).

In oxaliplatin-resistant colon cancer, miR-409-3p is down-
regulated so that the direct target Beclin-1 is expressed and 
induces autophagy (176). Overexpression of miR-409-3p results 
in low autophagic activity and overcomes oxaliplatin resistance in 
model systems of colon cancer (176).

induction of eMT
Drug resistance can be caused by EMT (294, 295). Several 
EMT-related signaling pathways are well known to be involved 
in mediating drug resistance in tumors (22, 295–297). Cells 
undergoing EMT have several features in common with cancer 
stem cells (e.g., increased drug efflux pumps and antiapoptotic 
effects) and furthermore EMT is instrumental for generation and 
maintenance of cancer stem cells (22, 295, 297).

The lncRNA plasmacytoma variant translocation 1 (PVT1) has 
been found to be elevated in nearly all GI tumors including gastric, 
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esophageal, pancreatic, colon, and liver cancers (75–77, 298).  
Increased expression of lncRNA PVT1 results in EMT and drug 
resistance (75–77).

The tumor suppressor lncRNA LEIGC prevents normal cells 
to undergo EMT. Therefore, the reduced expression of lncRNA 
LEIGC in gastric cancer fosters EMT and results in resistance to 
5-fluorouracil treatment (54, 55).

Upregulation of lncRNA HULC has been correlated to induce 
EMT and suppressed apoptosis in gastric tumors, leading to 
cisplatin resistance (52, 53).

Increased expression of lncRNA-activated by TGF-β (lncRNA-
ATB) in liver cancer results in competition with members of the 
miR-200 family for binding sites in the 3′-UTR of mRNAs cod-
ing for the transcription factors ZEB1 and ZEB2 (33). In turn, 
high expression of ZEB1 and ZEB2 causes EMT and increased 
drug resistance (33).

In pancreatic cancer, the lncRNA MALAT-1 is a regulator of 
EMT (64, 65). In addition, the lncRNA MALAT-1 suppress G2/M 
cell cycle arrest and apoptosis leading to resistance to gemcit-
abine treatment (65). As demonstrated by this example, the same 
lncRNA can induce resistance to chemotherapy by regulating 
different mechanisms at the same time.

Induction of EMT and resistance to gemcitabine treatment 
in pancreatic cancer cells can also be caused by miR-223 over-
expression (153). Inhibition of miR-223 restored the sensitivity 
of pancreatic cancer cell lines to gemcitabine treatment (153). 
Similarly, gemcitabine resistance in pancreatic cancer can also 
be caused by downregulation of microRNAs as demonstrated for 
miR-200 (miR-200a, miR-200b, and miR-200c) and let-7 family 
resulting in EMT (100, 135).

In colon cancer cells, downregulation of miR-147 results in 
EMT and increases the phosphorylation rate of AKT (123). Beside 
the activation of the PI3K-AKT pathway, the lower expression 
level of miR-147 also activates the TGF-β pathway and eventually 
leads to resistance to gefitinib treatment (123). Increased expres-
sion of miR-224 in colon cancer tissue was identified as another 
reason for resistance to 5-fluorouracil treatment. Increased miR-
224 expression translates in increasing phosphorylation rate of 
ERK and AKT, resulting in activation of both pathways (155).  
In addition, miR-224 seems to activate also EGFR dependent- 
and NF-κB-signaling pathway leading to EMT (155).

Cancer Cell Stemness
A further reason for drug resistance is the presence of cancer stem 
cells. Cancer stem cells are well known for being refractory to 
chemotherapies and therefore cause therapy failure and tumor 
recurrence or progression (299–305). Once again non-coding 
RNAs especially lncRNAs and microRNAs are involved in sus-
taining the cancer stem cell niche (95, 306–309).

The lncRNA urothelial carcinoma associated 1 [identical with 
lncRNA CUDR (cancer upregulated drug resistant)] is strongly 
expressed in different tumors; among these, gastric, hepatocellu-
lar, pancreatic, colorectal cancers, and esophageal squamous cell 
carcinoma (94–96, 310–314). LncRNA UCA1 binds to several 
microRNAs in different tumors (e.g., miR-216b in liver cancer, 
miR-204 in esophageal and colon cancer, miR-27b in gastric 
cancer) and influences entire transcriptional programs as well as 

response toward therapy (90, 92, 312, 314, 315). Well-established 
upregulated targets of lncRNA UCA1 are members of the 
Wnt-β-catenin signaling pathway, several transcription factors 
and cell division regulators (87, 93). For stem cells, the Wnt-β-
catenin pathway is of pivotal importance for cell self-renewal and 
mediating drug resistance (316, 317). Overexpression of lncRNA 
UCA1 results in resistance to cancer treatments with tamoxifen, 
5-fluorouracil, gemcitabine, cisplatinum, doxorubicin, imatinib, 
and tyrosine-kinase inhibitors targeting EGFR (90, 94, 96, 314).

Silencing of lncRNA UCA1 in in  vitro and in  vivo systems 
proved the oncogenic role of lncRNA UCA1 in gastric cancer  
(94, 96). Reduced expression level of lncRNA UCA1 results in 
reduced proliferation rate, increased apoptosis rate and overcomes 
the resistance to doxorubicin (94, 96). Furthermore, lncRNA 
UCA1 is a direct regulator of the PI3K-AKT-mTOR pathway 
(96) which is often found to be deregulated in human cancers 
and is known to contribute to chemoresistance of cancer cells  
(318, 319). In another study, overexpression of lncRNA UCA1 was 
shown to cause reduced miR-27 expression causing diminished 
apoptosis of gastric cancer cells due to increased Bcl-2 protein 
level in combination with reduced cleaved caspase-3 (92). This 
results in multidrug resistance of gastric tumors (92).

Overexpression of lncRNA UCA1 is also a reason for chem-
oresistance against 5-fluorouracil treatment in colon cancer 
(90). LncRNA UCA1 causes resistance by binding miR-204-5p 
and consequently upregulating the expression of its target genes 
Bcl-2, RAB22A, and CREB1 (90). miR-21 was identified as an 
important player in regard to failure of 5-fluorouracil therapy in 
colon cancer patients (139). miR-21 is able to increase the num-
ber of undifferentiated cancer stem cells during 5-fluorouracil 
treatment and contributes by this to therapy failure (139).

In liver cancer, lncRNA UCA1 contributes to chemotherapy 
resistance and malignant transformation of hepatocyte-stem 
cells (88, 93, 95, 320–322). LncRNA UCA1 increases directly 
the transcription rate of the oncogene c-myc well known to be 
involved in drug resistance as well as in activating stem-cell like 
properties in hepatocarcinoma (86, 89, 323–325). Furthermore, 
lncRNA UCA1 also induces the expression of lncRNA HULC 
(highly upregulated in liver cancer) in liver cancer and lncRNA 
HULC in turn stimulates the activity of the Wnt-β-catenin 
pathway (88). In addition, lncRNA UCA1 forms a complex with 
the cell-cycle regulator cyclin-D which enhances the expression 
of lncRNA H19 by inhibiting the methylation of the lncRNA 
H19 promoter (89, 95). High level of lncRNA H19 induces the 
telomerase activity and enhances the length of telomere thereby 
supporting the stem cell properties (35, 89, 326). Another effect 
of lncRNA UCA1 is the enhanced phosphorylation of the tumor 
suppressor retinoblastoma protein 1 (RB1). RB1 phosphorylation 
results in increased cell cycle progression and in interaction of 
the phosphorylated retinoblastoma protein 1 with the SET1A 
complex. Such interaction catalyses the transcription-activating 
methylation of histone H3 lysine-4 on several gene promoters 
including telomeric repeat-binding factor 2 promoter an impor-
tant component for the telomerase extension process (91, 320).

In liver cancer as well as in pancreatic, gastric, esophageal, 
and colon cancers a critical role in inducing the transforma-
tion of stem cells into cancer stem cell has been demonstrated 
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TAble 3 | Approved targeted therapies for GI cancer.

Gi cancer Drug Target

Gastric cancer Trastuzumab HER2
Ramucirumab VEGFR-2
Pembrolizumab PD-1

Hepatocellular cancer Sorafenib RAF, VEGFR-2, VEGFR-3,  
PDGFR, c-KIT

Colon cancer Cetuximab, 
panitumumab

EGFR

Bevacizumab VEGF
Regorafenib VEGFR-1, VEGFR-2, VEGFR-3, 

BRAF, c-KIT, RET, PDGFR
Colon cancer with MSI-H Pembrolizumab PD-1

HER2, human epidermal growth factor receptor 2; VEGFR, vascular endothelial growth 
factor receptor; PD-1, programmed cell death protein-1; RAF, rapidly accelerated 
fibrosarcoma; PDGFR, platelet-derived growth factor receptor; c-KIT, SCFR, mast/stem 
cell growth factor receptor; EGFR, epidermal growth factor receptor; VEGF, vascular 
endothelial growth factor; RET, rearranged during transfection; MSI-H, microsatellite 
instability-high.
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for lncRNA HOTAIR (45, 95, 327–331). LncRNA HOTAIR is 
a strong activator for expression of OCT4, RNF51, CD44, and 
CD133 genes—all these proteins are involved in reprogramming 
the gene network to acquire cancer stem cell properties (46, 47). 
LncRNA HOTAIR expression causes resistance against cisplatin 
and doxorubicin treatment in liver cancer model systems (332) 
and renders gastric tumors resistant to cisplatin therapy by bind-
ing miR-126 and activating the PI3K-AKT-mTOR pathway (48). 
In the context of several GI cancer stem cells, it has been shown 
that lncRNA HOTAIR downregulates the expression of histone 
methyltransferase SETD2 and reduces the phosphorylation rate 
of SETD2 resulting in reduced trimethylation of histone H3 
lysine-36 on several gene promoter, e.g., Wnt inhibitory factor-1 
(WIF-1) (44, 45, 331, 333). Reduced WIF-1 expression leads to 
activation and increased signaling through the Wnt-β-catenin 
pathway (44, 45). Furthermore, the modulated chromatin 
organization account for a reduced efficiency of the mismatch 
repair system and damaged DNA can escape from corrections 
leading to microsatellite instability (MSI) and altered expression 
of cell cycle regulators as well as reduced apoptosis (124, 327, 
331, 334, 335). In addition, lncRNA HOTAIR induces accumula-
tion of replication errors by hindering the complex formation 
of MSH2 with MSH6; one essential dimer for DNA mismatch 
recognition and repair (42, 43, 124, 138, 336).

In pancreatic cancer, the oncogenic lncRNA MALAT-1 
contributes to the expression of the cancer stem cell marker 
CD133, CD44, CD24, and aldehyde-dehydrogenase (65, 66, 337).  
In addition, the expression of the core pluripotent factors OCT4, 
NANOG, and SOX2 are also under the control of lncRNA 
MALAT-1 (66). LncRNA long intergenic ncRNA regulator of 
reprogramming (linc-ROR) inhibits the expression of p53 and 
activates by this the transcription factor ZEB1 in pancreatic 
cancer (56). ZEB1 in turn suppress the expression of the miR-200 
family that leads to maintenance of pancreatic cancer stemness 
and induces EMT known to be responsible for paclitaxel resist-
ance in pancreatic cancer patients (56, 57). Downregulation of 
miR-205 results in increased expression of stem cell markers 
OKT3, OKT8, and CD44 in pancreatic cancer tissue and is linked 
to gemcitabine resistance (137). Re-expression of miR-205 is 
able to overcome the gemcitabine resistance in pancreatic cancer 
model systems (137).

The lncRNA-34a mediates an increase in self-renewal of colon 
cancer stem cells and induce Wnt as well as NOTCH signaling 
pathways via sequester miR-34a expression (98, 99).

In hepatocellular carcinoma, the lncRNA is involved in 
regulating core pluripotent factors (OCT-4, NANOG, SOX2) 
necessary for the stem cell like phenotype and causes resist-
ance to chemotherapy (59). LncRNA linc-ROR competes with 
miR-145 for the same binding sites present in the mRNAs cod-
ing for OCT-4, NANOG, and SOX2 (58). Presence of lncRNA 
linc-ROR prevents the binding of miR-145 to the mRNA of the 
core pluripotent factors resulting in translation of these mRNAs 
and maintains the stem cell phenotype (58). Furthermore, the 
expression of CD133, another cancer stem cell marker, is directly 
induced by lncRNA linc-ROR (59).

miR-130b is connected to cancer stem cells growth in liver 
tumors (119). Increased expression of miR-130b targets directly 

the mRNA coding for tumor protein 53-induced nuclear protein 
1 and reduces the expression level of the corresponding protein 
(119). Furthermore, high level of miR-130b renders liver tumor 
cells resistant to doxorubicin treatment (119). Another reason for 
doxorubicin resistance in liver cancer patients is downregulation 
of the tumor suppressor miR-101 resulting in increased protein 
expression of enhancer of zeste homolog 2 (EZH2) (103, 104). 
EZH2 is a histone-lysine N-methyltransferase enzyme that 
silence Wnt-pathway antagonists and other tumor suppressor 
genes on the transcriptional level by histone methylation (338). 
Overexpression of EZH2 is positively correlated with increased 
Wnt-β-catenin signaling (338).

miR-221 is over-expressed in 5-fluorouracil-resistant esopha-
geal tumors (152). The mechanisms of resistance is mediated via 
downregulation of the direct target dickkopf-related protein 2 
(DDK2) and subsequent activation of the Wnt-β-catenin pathway 
(152). Furthermore, increased miR-221 expression fosters EMT 
and facilitates the formation of tumor stem cells (152).

In colon cancer stem cells, miR-451 was found to be down-
regulated compared to colon cancer cells (177). Reduced level of 
miR-451 seems to be essential for the self-renewal of colon cancer 
stem cells (177). In addition, expression of ABCB1 transporter 
is increased in colon cancer stem cells due to lack of miR-451 
posttranscriptional downregulation resulting in resistance to 
irinotecan treatment (177).

miR-1182 is often downregulated in gastric cancer tissue (112). 
One direct target of miR-1182 is telomerase reverse transcriptase 
(hTERT), an enzyme that is involved in controlling the length 
of telomere. Overexpression of hTERT due to missing transcrip-
tional regulation by miR-1182, results in cell immortality and 
stem-cell property of gastric cancer cells (112).

Targeted Therapies and Drug Resistance
For GI cancer several targeted therapies exist (Table 3) (339–345). 
They are used alone or in combination with chemotherapy. 
Unfortunately in most cases the patients develop resistance 
also against these targeted therapies and the above outlined 
general principles of drug resistance based on non-coding 
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RNA dysregulation are involved. Beside that non-coding RNAs 
interfering with the targeted protein itself or (up-)regulating the 
targeted signal pathway are involved in drug resistance (342). 
Furthermore, therapy failure can be related to activation of alter-
native signal pathways by non-coding RNAs (68, 342).

Recently, it was demonstrated that resistance to cetuximab 
in colon cancer patients and in in vitro 3-D-cell culture models 
can be caused by overexpression of lncRNA MIR100HG (68). 
Two microRNAs, miR-100, and miR-125b, are generated from 
lncRNA MIR100HG and these microRNAs downregulate in 
a concerted way five negative regulators of the Wnt/β-catenin 
pathway resulting in increased Wnt signaling (68). This kind 
of cetuximab resistance can be overcome by inhibition of Wnt 
signaling, underscoring the potential clinical relevance of the 
interactions between EGFR and Wnt/β-catenin pathways (68). 
Increased mir-125b expression is also correlated with trastu-
zumab resistance in HER2-positive gastric cancer patients but up 
to now the molecular basis for this resistance is unclear (346). 
Sorafenib resistance in hepatocellular carcinoma is caused by 
lncRNA TUC338 (78). RAS protein activator like-1 (RASAL-1) 
is a direct target of lncRNA TUC338 and high expression of 
lncRNA TUC338 inhibits the RASAL-1 expression resulting in 
activation of RAS-signaling (78). According to another in vitro 
study, reduced expression of miR-193b leads to higher expression 
of the antiapoptotic protein Mcl-1 and renders hepatocellular 
carcinoma cells resistant to sorafenib treatment (130).

Non-Coding RNAs as Potential 
biomarkers of Resistance and Novel 
Therapeutics: Promises and Hurdles
Our review summarizes most of the current evidence support-
ing the role of non-coding RNAs in resistance to chemotherapy 
and targeted agents. It is likely that, in the near future, given 
the promising and exciting results obtained with the use of 
immunotherapy in gastroesophageal (347) and colorectal cancer  
(348, 349), new data will emerge on the already known regulation 
of PD-1, PD-L1, and CTLA-4 by non-coding RNAs and response 
to nivolumab and pembrolizumab (350–352).

The contribution of non-cording RNAs in resistance mecha-
nisms to a broad range of anticancer treatments makes their use 
as biomarkers or novel therapeutics quite promising but several 
challenges remain.

Given microRNAs and, to a lesser extent, other non-coding 
RNAs can be reliably detected in tissues and biofluids such as 
plasma, serum, and urine, it is tempting to hypothesize the use of 
non-coding RNA based tools to predict and monitor resistance to 
anticancer treatments. Few studies have already tested the validity 
of microRNAs as biomarkers of response to anticancer treatment 
in other cancers such as prostate (353), chronic lymphocytic leu-
kemia (354), and sarcomas (355). In colorectal cancer, we (356) 
and others (357–359) have tested the contribution of a single 
nucleotide polymorphism (SNP) in the binding site of let-7 in 
the KRAS 3’UTR in predicting benefit from anti-EGFR treatment 
with conflicting results across different trials. Despite the good 
reproducibility of the assay, the predictive value of the test was not 
confirmed in all trials likely due to use of cetuximab in different 

context (neoadjuvant, adjuvant and metastatic colorectal cancer, 
respectively). Similarly the analysis of a SNP in miR-608 led to 
contradicting results in patients treated with neoadjuvant or adju-
vant chemo- and radiochemotherapy in colon and rectal cancers 
highlighting some of the challenges in validating data obtained 
in retrospective series (360–363). Tissue (cancer versus stroma) 
and organ (colon versus rectum) specificity in non-coding RNA 
expression might represent potential explanations for different 
findings obtained in some of these studies. Beside SNPs, expres-
sion of microRNAs can be detected in fresh frozen or formalin 
fixed paraffin embedded tissues and serve as potential biomarker 
of sensitivity or resistance to treatment. Robust data have emerged 
from the retrospective analysis of a prospective phase III clinical 
trial (364). In this study, KRAS wild-type patients were classified 
based on high or low miR-31-3p expression: patients with high 
expression were resistant to cetuximab while patient with low 
expression had good and durable responses which translated in 
survival benefit. The miR-31 expression cutoff for the classifica-
tion into high or low expression was predefined in the above study. 
However, one of the key challenges in validating these interesting 
findings will be design of a clinically approved assay that can 
accurately assign patients into one of these two categories. In this 
prospective, the use of different sources of material (i.e., primary 
colorectal cancer versus metastasis) might result in different 
basal expression of the microRNA and as such different scoring. 
Source of material and choice of reference controls represent 
important obstacles that might bias the definition of a threshold 
for high or low expression of microRNAs in tissues and biofluids. 
MicroRNAs can be detected in plasma, serum and urine samples 
and have been used for early detection and prognostic purposes in 
GI cancer (365–367). The use of digital droplet approaches allows 
the quantitative detection of copies of the microRNA of interest 
based on the starting volume of biofluids and, potentially over-
comes or at least mitigates, the issues related to the normalization 
of data against reference controls, making the definition of cutoff 
easier to standardize. One study has reported the potential role 
of miR-126 in predicting and tracking response to chemotherapy 
and anti-VEGF treatment in colorectal cancer (368) and, with 
the advent of digital quantitative technologies, more studies are 
expected.

In consideration of their role in cancer initiation, progres-
sion and resistance to treatment, non-coding RNAs and among 
them microRNAs have been proposed as potential therapeutics 
(369). A large body of pre-clinical evidence is available on the 
use of anti-microRNAs or molecules re-expressing microRNAs 
alone or in combination with other agents in order to increase 
efficacy and prevent or revert drug resistance (370). Inhibition 
of microRNAs has been tested in clinical trials in the context 
of HCV infection (371, 372) and in mesothelioma (373). These 
trials highlighted a huge potential for microRNA-based thera-
peutics but at the same time pinpointed some of the criticalities 
in further clinical development of such approaches. miR-122 
inhibition led to durable viral load reduction in both HCV tri-
als and was associated with manageable side effects. Similarly, 
in mesothelioma patients treated with miR-16-loaded minicells 
the disease control rate was satisfactory and the toxicity profile 
acceptable warranting further investigations. Overall in both 
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approaches the risk of off-target effects represent the main 
hurdle to be taken into account: indeed miR-122 inhibition 
has been associated with risk of developing liver cancer in 
preclinical models (374) and, similarly, overexpression of 
miR-16 might lead to uncontrolled cardiac effects as proven 
in the phase I trial (373). These effects might be increased in 
combination studies in which anti-microRNAs or microRNA-
conjugates are delivered together with chemotherapy leading 
to cumulative side effects. Therefore, a robust understanding of 
the biology underpinning microRNA deregulation in physiol-
ogy and pathological conditions in order to implement effort 
that can minimize the risk of serious adverse events hampering 
the clinical development of microRNA-based strategies.

CONClUSiON

Non-coding RNAs especially lncRNAs and microRNAs are 
important mediators for drug resistance. They function in an 
organ and tissue specific manner and through different molecular 
mechanisms. One non-coding RNA always have several targets 
and in the end deregulation of one non-coding RNA alters the 
expression level of several proteins in a tissue specific way. For 
example, in the case of miR-374b more than 700 genes have been 
identified as direct target in pancreatic tissue (174). Drug resist-
ance is a dynamic process caused by several cell and non-cell 

autonomous mechanisms. Given non-coding RNAs can simulta-
neously control several cancer-associated pathways, non-coding 
RNA dysregulation plays a crucial role in treatment resistance. 
Future studies will continue to shed insights in the fine interplay 
among lncRNA, microRNA and their target genes and might 
provide opportunities for more effective strategies to prevent or 
overcome resistance. In the interim, given non-coding RNAs 
and especially microRNAs can be tested in tissues and biofluids 
in a rapid, cost/effective and robust way. More investigational 
studies should explore their utility to monitor and forecast treat-
ment response and resistance in order to personalize treatments 
and improve patient’s outcomes.
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