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NITRIC OXIDE INVOLVEMENT IN CANCER

Nitric oxide (NO) is a free radical that can target cellular biomolecules directly, or by means of the
activity of its metabolites (RNS) generated upon reaction with transitionmetals (e.g., NO+), oxygen
(e.g., N2O3), or superoxide (ONOO−). For instance, it is well-documented that NO and RNS affect
DNA integrity and mitochondrial physiology, this leading to genetic mutations (1) and damage
to the mitochondrial respiratory chain (2, 3), respectively. Processes ranging from apoptosis,
angiogenesis, immunity, and neuronal physiology, all show seemingly contradictory behavior in
response to NO. Indeed, the relevance of the steady-state NO concentrations represents a key
determinant of its biological function. In support to this assumption, it has been demonstrated that
cGMP-mediated processes occur at the low nM range, whereas higher NO concentrations cause
protein kinase B (PKB)/Akt phosphorylation; stabilization of hypoxia inducible factor (HIF)-1α;
phosphorylation of p53 and, at the µM range, they can generate detrimental conditions usually
referred as to nitrosative stress (Figure 1). Likewise, in tumor biology, it is now commonly
accepted that high NO concentrations mediate apoptosis and cancer growth inhibition, whereas
(relatively) low concentrations usually promote tumor growth and proliferation, this supporting
the nature of “doubled-edged sword” molecule for NO (4, 5). This dichotomy originates from
the observations that the inducible form of NO synthase (iNOS or NOS2) was implicated in the
macrophage-mediated tumor killing process (6, 7) (Figure 1). NOS2−/− mice develop intestinal
tumors (8), thereby substantiating the protective role of NOS2 within host defense mechanisms
(9, 10). In accordance, a growing body of evidence pointed out that NO-releasing drugs can be
toxic for cancer cells.

On the other hand, low rate of NO production can promote tumor growth rather than
killing. In line with this assumption, the overexpression of NOS isoforms has been detected
in a wide range of human tumors. In particular, NOS2 has been found to be upregulated in
melanoma, estrogen receptor-negative (ER−)-breast cancer, as well as in pancreatic, cervical
liver and ovarian cancers (10). Moreover, NOS2 seems to be involved in maintaining
physiologically relevant levels of NO to sustain the progression phase of carcinogenesis;
mainly it is required to promote angiogenesis and to enhance the ability of cancer cells
to counteract nutrient paucity in solid tumors and to metastasize (10, 11). NOS2 is also
overexpressed in glioma stem cells, and its activity is required for the expression of the cell
cycle inhibitor cell division autoantigen-1 (CDA1), which sustains growth and tumorigenicity
(12). NOS2 has been also found to be upregulated in hepatocellular carcinoma (HCC),
and is often increased in the hepatocytes of patients with chronic hepatitis and alcoholic
cirrhosis, conditions that predispose to HCC (13–15). Notwithstanding all these lines of

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2018.00334
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2018.00334&domain=pdf&date_stamp=2018-09-04
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:giufil@cancer.dk
mailto:rizza@cancer.dk
https://doi.org/10.3389/fonc.2018.00334
https://www.frontiersin.org/articles/10.3389/fonc.2018.00334/full
http://loop.frontiersin.org/people/454926/overview
http://loop.frontiersin.org/people/308574/overview


Rizza and Filomeni Role, Targets and Regulation of (de)nitrosylation in Malignancy

evidence, investigations on NOS2−/− mice, in spontaneous and
fibrosis-associated models of HCC, reveal little effect of NOS2-
derived NO on hepatocarcinogenesis (16), meaning that other
players are also involved.

S-nitrosylation and Cancer
Redox signal underlying both pro-survival and death pathways,
is a molecular information transduced by means of reactive
cysteine residues that can undergo S-hydroxylation (SOH),
upon reaction with ROS (i.e., H2O2) or S-nitrosylation (SNO),
the posttranslational modification induced by NO, which
is now emerging to underlie NO bioactivity (17). In the
presence of a sulfhydryl group in their close proximity, both
these modifications can resolve in a more stable disulfide
bridge (S-thiolation, SS) (18–20). Actually, it has been recently
questioned whether S-nitrosylation—given its nature of instable
posttranslational modification—is able to convey the NO-
mediated signal, or just acts as mere intermediate for disulfide
bridge formation (21). Whatever is the end effector (if directly
the SNO group or, indirectly, the SS adduct), the extent of S-
nitrosylation is determined by a delicate balance between: (i)
the rate of NO production, which is catalyzed by NOSs (22,
23), (ii) the activity of a recently discovered class of enzymes
termed nitrosylases (24, 25), and (iii) the efficiency of SNO
removal, that is mediated by denitrosylases. S-nitrosoglutathione
reductase (GSNOR) represents the prototype of this class of
oxidoreductases and, so far, the only denitrosylase able to
completely reduce NO moiety, reason why it has been also
termed GSNO terminase (26–28). Notwithstanding current
literature offers still conflicting lines of evidence about the role
of NOS/NO system in cancer biology, even less is known on the
role played by GSNOR and denitrosylation. In this scenario, it
has been reported that GSNOR-ablated (GSNOR-KO)mice show
predilection to hepatocellular carcinoma (HCC) in association
with S-nitrosylation and proteasomal degradation of the DNA
damage repair enzyme O6-alkylguanine-DNA alkyltransferase
(AGT) (29). As a result, the repair of carcinogenic O6-
alkylguanines is significantly impaired with a consequence
increase in tumorigenesis (29, 30). Analyses performed on
human HCC patients showed a significant decrease of GSNOR
protein levels and activity in the 50% of cases (30), arguing
for a functional link between GSNOR-dependent S-nitrosylation
and HCC. Although this evidence supports a driving role
for GSNOR and excessive S-nitrosylation in HCC ontogenesis,
it is still unknown whether they are also implicated in the
other phases of carcinogenesis, e.g., tumor promotion and
progression (31).

In this regard, it has been published that GSNOR deficient
HCC cells have a compromised mitochondrial electron
transport chain characterized by the upregulation of succinate
dehydrogenase (SDH), likely as an adapting response to
the general impairment of the mitochondrial respiratory
machinery (32) derived from excessive nitrosative stress. The
hyper-nitrosylation of the mitochondrial chaperone TNF
receptor–associated protein 1 (Trap1) has been identified as the
molecular event responsible for such a rearrangement and, in

turn, for the enhanced sensitivity of GSNOR-downregulating
HCC to SDH-targeting mitochondrial drugs (32). Nevertheless,
it is worth to note that the mean size of GSNOR-deficient tumor
xenografts is larger (approximately the double) than parental
(GSNOR-proficient) HCC (32), suggesting that excessive
S-nitrosylation arising from GSNOR loss, might promote
tumor progression and growth in vivo. This hypothesis finds
support in a recent study correlating GSNOR downregulation
with HER2+ breast cancer resistance to trastuzumab and poor
patient prognosis (33). Altogether, these pieces of evidence
argue for a new role of GSNOR in malignancy and resistant
phenotypes of breast cancer. However, no evidence about
the molecular mechanisms underneath has been provided
so far.

Known and Supposed Targets of
S-nitrosylation in Aggressive Cancer
Based on what above reported, it is plausible that impairments
of denitrosylation capacity (e.g., upon GSNOR deficiency)
modulates the function/activity of oncoproteins susceptible to
S-nitrosylation. These defects, more specifically than a general
increase of NO production (that could impact on a plethora of
different targets and to a different extent) might account for a
deregulated NO-signaling in carcinogenesis. This hypothesis is
further sustained by a very recent study indicating that GSNOR-
deficiency (and excessive S-nitrosylation deriving from it), is
a condition associated with aging (34, 35), which represents a
major risk factor for cancer development. Actually, cancer might
count as an aging disease, and shares with aging some common
features (e.g., genomic instability, telomere shortening, oxidative
stress, deregulation of nutrient sensing) that, indeed, characterize
both disorders (36).

Besides those previously mentioned, and others well
documented to play a role in apoptosis (e.g., p53, Bcl2, and
Fas), many oncoproteins have been discovered in the last
decades to undergo S-nitrosylation. The modification of
oncoproteins and tumor suppressors by NO—independently
on the effects induced, whether gain- or loss-of-function
(23, 37)—is emerging as a critical phenomenon associated
with neoplastic transformation. Some of these NO-modified
oncoproteins participate to signal transduction and are found
mutated or modulated in cancer. Within this class of proteins
in which S-nitrosylation has been identified as pro-oncogenic
modification, we can list: (i) the GTPase Ras (nitrosylated at
Cys118) (23, 38), which underlies cancer cell growth downstream
of receptor-associated tyrosine kinases; (ii) the phosphatase and
tensin homolog PTEN (nitrosylated at Cys83) (39), which
regulates the levels of phosphatidyl inositole-3-phosphate/Akt-
dependent pathway; (iii) the protein kinase c-Src, which
represents one of the master regulators of tumor proliferation,
invasion and metastatic phenotype, and has been found to be
nitrosylated at Cys498 (40) (Figure 1). Interestingly, this residue
is conserved throughout the Src family of protein tyrosine
kinases (SFKs) and, at least for other two members, i.e., Yes
and Fyn, has been also reported to stimulate their activation
(40). Focal adhesion kinase 1 (FAK1) is also comprised in the
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FIGURE 1 | Roles of NO signaling and protein denitrosylation in cancer. Nitric oxide plays different roles in cancer biology depending on its concentration. GSNOR is

the main cellular denitrosylase. Counteracting the effects induced by NOS, GSNOR finely modulates protein S-nitrosylation (second panel from the top), which is

establishing as the main posttranslational modification underlying NO bioactivity. A disbalance in NO signaling can promote tumor induction, survival and progression.

(Continued)
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FIGURE 1 | NOS2 deficiency impairs the capability of macrophages to kill cancer cells (Top). Conversely, in conditions of normal (or induced) NOS activity, GSNOR

decrease has been linked to many cancer hallmarks, such as: (i) apoptosis and anoikis resistance (due to caspases and, reasonably, FAK-1 S-nitrosylation); (ii)

genomic instability (DNA repair impairment, due to AGT S-nitrosylation and degradation); (iii) cells hyperproliferation (via the NO-mediated activation of oncoproteins,

such as AKT, RAS, and Src); (iv) angiogenesis (putatively regulated by HIF-1α and TRPs S-nitrosylation). Extreme nitrosative stress conditions—induced, for instance,

by NOS overexpression or by the use of NO-donors—activate cell death and are implemented (or physiologically activated in macrophages) to destroy cancer cells

(Bottom). NO, nitric oxide; GSNOR, S-nitrosoglutathione reductase; NOS, nitric oxide synthase; FAK1, focal adhesion kinase 1; AGT, O6-methylguanine-DNA

methyltransferase; HIF-1α, hypoxia-inducible factor-1α; TRP, Transient receptor potential channel.

SFKs family. It is phosphorylated upon integrin engagement
in a Src-dependent or independent (auto-phosphorylation)
fashion, thus initiating multiple downstream signaling pathways
responsible for aggressive and metastatic phenotype (e.g.,
resistance to anoikis and cell migration) (41). Similarly to Src,
Yes and Fyn have been reported to act as FAK1-interacting
kinases and to be involved in FAK1 activation as well (42, 43).
Notwithstanding this tight relationship, triple-KO cells in
which Src, Yes, and Fyn expression is suppressed (SYF cells),
still show phospho-active levels of FAK1 upon treatment with
NO donors (40). This unexpected evidence clearly indicates
that S-nitrosylation of Src, Yes, and Fyn is dispensable for
NO-driven phosphorylation of FAK1 and, interestingly, suggests
that FAK1 might represent a direct target of S-nitrosylation
(Figure 1), with this modification driving its oncogenic
function.

Another oncoprotein, which has been identified to be crucial
in cancer cell survival and growth, especially under low-oxygen
tension (hypoxia), is HIF-1α. HIF-1α deregulation has been
deeply implicated in different aspects of cancer biology, such
as angiogenesis, cell resistance, and tumor invasion (44–47).
From a metabolic point of view, HIF-1α aberrant activation
underpins the so-called “Warburg effect”: the preferential
glycolytic consumption of glucose in cancer cells, which takes
place also under normal oxygen tension. HIF1α has been
found nitrosylated at Cys533 (48), with this being relevant in
stroke and cardiovascular disease. However, if S-nitrosylation
might somehow induce HIF1α oncogenic activity still remains
neglected (Figure 1) and would deserve to be investigated in the
future.

Among the various classes of proteins that have been
identified in the last decades as being activated by S-nitrosylation,
the transient receptor potential (TRP) ion channels (49), which
represent a huge family of proteins underpinning, among
others, warm, taste, and pain sensory transduction, are worth
to be mentioned. Besides their well-documented role in the
nervous system as mediators of sensations, in the last years
it is emerging that many TRPs, such as those belonging to
the “melastatin” (TRPM), “vanilloid” (TRPV), and “ankyrin”
(TRPA) subfamilies, are overexpressed in many cancer types,
this being pivotal for calcium signaling-dependent control of
tumor-promoting processes, e.g., vascularization and metastasis
(50, 51). In particular, it has been proposed that, by modulating
intracellular Ca2+ concentrations, TRPs are deeply involved
in tumor initiation, progression and resistance (52). In this
context, it has been very recently found out that TRPA1
is upregulated in breast and lung cancer downstream of
the activation of Nrf2, the master regulator of antioxidant

response, this conferring non-canonical resistance to tumor cells
against oxidative stress and ROS-producing chemotherapeutics
(53). Many other observations argue for TRPs inhibition
being a promising tool to eradicate cancer (54–56). However,
notwithstanding the evidence that S-nitrosylation interferes
with TRPs activity and calcium signaling, to date there’s still
no indication supporting a direct involvement of TRPs S-
nitrosylation in carcinogenesis (Figure 1). Mostly, there’s still
no study aimed at understanding whether TRPs targeting on
nitrosylable cysteines might represent a novel line of intervention
in cancer treatment.

Putative Mechanisms That Affect
Denitrosylation in Cancer
The above reported evidence points out that defects in GSNOR
expression and denitrosylation are pivotal for sustaining the
tumorigenic effects of NO, namely, its role in the progression
phase of cancer (31). A recent report on the epigenetic
regulation of GSNOR might be of help to understand how
this condition can be established in cancer. In particular, it
has been demonstrated that GSNOR expression is controlled
by the activity of the demethylase Ten-eleven translocation
protein 1 (Tet1), a member of the 2-oxoglutarate–dependent
dioxygenases that regulates transcription by removing methyl
groups from CpG islands located in the promoter regions of
genes (34). Remarkably, Tet1 expression has been found to be
reduced in a wide range of solid cancers, such as melanoma,
prostate, lung, and liver tumors (57, 58)—where also GSNOR
mRNA seems to be downregulated—and to correlate with
advanced cancer stage, nodal metastases, and poor survival
rate in breast cancer patients (59). These lines of evidence
suggest that GSNOR might be epigenetically downregulated
in aggressive cancer as a consequence of Tet1 reduction,
thus providing a new link between epigenetics and redox
signaling. This hypothesis can be even extended to further
mechanisms of epigenetic regulation. Indeed, given the complex
structure of GSNOR mRNA, it has been proposed that GSNOR
expression might be also regulated via microRNAs (miRs)
(27). However, no putative miRs, able to target GSNOR
transcript, has been so far identified to be upregulated in
cancer, or hypothesized acting as additional modulators of S-
nitrosylation.

CONCLUSION

The role of GSNOR-mediated denitrosylation in carcinogenesis
has been capturing the interest of many researchers working
on cancer biology, as many lines of evidence indicate that this
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process is frequently deregulated in cancer cells. In this article,
we have tried to summarize what has been discovered in the
last years and provide some hints on possible aspects that
are still overlooked. Understanding how GSNOR expression is
deregulated in may cancer histotypes, as well as the mechanisms
underlying the modification of new protein targets involved
in cancer resistance and aggressiveness, are, indeed, issues that
deserve to be investigated in the future, since they could set the
stage for new anticancer approaches interfering with the redox
adaptation distinctive of many cancer cells.
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