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There is a growing evidence that antimalarial chloroquine could be re-purposed for

cancer treatment. A dozen of clinical trials have been initiated within the past 10 years

to test the potential of chloroquine as an adjuvant treatment for therapy–refractory

cancers including glioblastoma, one of the most aggressive human cancers. While there

is considerable evidence for the efficacy and safety of chloroquine the mechanisms

underlying the tumor suppressive actions of this drug remain elusive. Up until recently,

inhibition of the late stage of autophagy was thought to be the major mechanism of

chloroquine-mediated cancer cells death. However, recent research provided compelling

evidence that autophagy-inhibiting activities of chloroquine are dispensable for its ability

to suppress tumor cells growth. These unexpected findings necessitate a further

elucidation of the molecular mechanisms that are essential for anti-cancer activities of

CHQ. This review discusses the versatile actions of chloroquine in cancer cells with

particular focus on glioma cells.
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INTRODUCTION

Glioblastoma (GB) is one of the most lethal human cancers (1). Despite its rarity, GB is among
the top priorities in clinical oncology due to its extremely aggressive pattern, high mortality rate
and unsatisfactory efficacy of current treatments. An eventual mortality rate close to 100%, 5–years
survival rate of <10%, and a median survival of only 15 months remain unimproved since the
establishment of standard frontline therapy for GB in 2005 (2, 3). The current standard of care for
GB is based on the “one-treatment-for-all” principle and consists of a surgical resection as complete
as feasible, followed by combined treatment with hypofractionated radiation therapy and non-
selective chemotherapy with DNA alkylating agent temozolomide (TMZ) followed by six cycles
of chemotherapy alone (3). However, the clinical effectiveness of TMZ is rather moderate (survival
benefit of 2 months compared with radiotherapy alone) and restricted to a subset of GBs (∼50%)
lacking methyl-guanine-methyl-transferase (MGMT), an enzyme that removes the alkyl group
from TMZ-induced O6-methylguanine DNA adducts (4). GBs re-grow inevitably after (or under)
radio-chemotherapy. For recurrent GBs, there is no generally accepted standard therapy. None of
the experimentally tested therapeutic options led to significant survival benefit (5). Post-treatment
recurrence due to intrinsic and acquired resistance to cytotoxic treatments pose themajor challenge
to effective treatments of GB. The hallmark of GB’s genetic landscape is the co-occurrence
of multiple defects in key cancer-related pathways that use distinct mechanisms yet have
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partially overlapping functions. RTK, pRb and p53 have been
identified as core pathways impaired nearly universally in
the majority of GBs (6). Multiplicity of genetic aberrations
affecting different pathways in conjunction with the functional
redundancy of affected pathways poses a challenge for mono-
targeted therapies for GB. Adding a further level of complexity,
there is considerable heterogeneity of cell types constituting GBs.

Development of multi-targeted therapeutic approaches using
a combination of drugs or a drug with a broad spectrum of targets
might provide the solution to overcome intrinsic and acquired
resistance of GBs to cytotoxic treatments.

CHLOROQUINE: A CONVOLUTED PATH
FROM MALARIA TO CANCER TREATMENT

Chloroquine (CHQ) is a well-known antimalarial that has
recently attracted considerable attention for its anti-neoplastic
activites. Application of CHQ for cancer treatment is an
example of drug re-purposing, a strategy for identifying new
therapeutic indications for drugs that have initially been
developed for different medical applications (7). Synthetized
at I.G. Farbenindustrie Bayer A.G. Laboratories (Elberfeld,
Germany) in 1934, CHQ has been the drug of choice for malaria
treatment for several decades till its role as anti–malarial has
diminished due to the emergence of CHQ–resistant strains of the
malaria parasite. One of the early encounters of anti-neoplastic
effects of CHQ have been made during an anti-malaria trial
launched by WHO in North Africa in the 1970’s. It was noticed
that the incidence of Burkitt’s lymphoma dropped profoundly
in the CHQ-treated population during the trial but returned to
the basal level after the trial has been discontinued (8). This
unexpected observation has remained unfollowed until a series
of experimental studies reported on anti–neoplastic effect of
CHQ in different types of cancer cells (9). In particular, the
potential of CHQ to sensitize neoplastic cells to radiation and
some other types of chemotherapy has been emerging as an
approach to target treatment-refractory cancers including GBs.
Currently, 17 clinical studies have been initiated to test the
effects of CHQ as adjuvant treatment for different types of cancer
including GB (Table 1) (12). Interest to CHQ as an adjuvant
treatment for GB was sparked by the initial observation that
addition of CHQ to standard therapy leads to a significant
prolongation of survival in patients with GB (17) (10). After the
initial demonstration that CHQ potentiates therapeutic effects
of standard therapy in a double-blinded clinical trial (Phase III)
involving a cohort of 30 patients with newly diagnosed GB,
(10) further encouraging results have been reported in a case
study with 5 patients suffering from recGB treated with CHQ
and re-irradiation (18). These observations are coherent with the
results from experimental studies indicating that chloroquine can
potentiate cytotoxicity of TMZ and ionizing radiation in glioma
cells (19–22).

CHQ (7-chloro-4-(4-diethylamino-1-methylbutylamino)-
quinoline) is a small, lipophilic, amphiphilic and weakly basic
tertiary amine with pKas of 8.4 and 10.2 (12, 23). At the
physiological pH of 7.4, CHQ is unprotonated and highly

membrane-penetrating (12). Once inside the cell, CHQ
accumulates in acidic compartments and becomes protonated.
As a consequence, it raises the intra–organellar pH and
affects the activity of endosomes, lysosomes, autophagosomes,
and autophagolysosomes (23). Owing to its lysosomotropic
properties, CHQ accumulates primarily in the lysosome,
where the increase of the lysosomal pH leads to a blockage of
the lysosome-autophagosome fusion, a critical event during
the late stage of autophagy (24). Good solubility and rapid
absorption are attractive pharmacological properties of CHQ.
It is rapidly absorbed when administered orally, but sub
cutaneous, intra muscular, and rectal administrations are
likewise possible (25).

CHQ can elicit an array of distinct biological responses in
the CNS, depending on the dose and cell type. The lowest
threshold of CHQ concentrations to induce neuronal death
in vitro is around 20µM (26, 27). Similar values for cytotoxic
concentrations of CHQ were found in normal astrocytes (28) or
neoplastic cells derived from astrocytic tumors (29, 30). However,
at concentrations of 10µMor lower, CHQ elicits neuroprotective
effects in the context of oxidative damage (31). Thus, various
functional outcomes can be elicited by CHQ depending on the
cell type, particular pathophysiological condition, dose of the
drug and treatment context. While there is an abundance of
information about safety and tolerability profiles of CHQ in the
context of non–cancer pathologies, CHQ application for cancer
treatment will require establishing tolerability ranges in cancer
patients and at cancer-relevant doses. This consideration is of
special importance in the context of brain tumors, which are
protected by the blood brain barrier. A phase I/II trial addressing
the effects and feasibility of escalating CHQ doses for GB
treatment found that CHQ doses used for treating rheumatoid
arthritis may not be sufficient to effectively inhibit autophagy
when used in combination with TMZ and radiation in patients
with GB (32).

MOLECULAR MECHANISMS OF
ANTI-NEOPLASTIC ACTIVITIES OF
CHLOROQUINE

The mechanisms of radio- or chemo sensitization mediated by
CHQ in glioma cells are not entirely understood. Modulation
of the autophagic response is by far the most intensively
investigated mechanism of CHQ in non-neoplastic and cancer
cells. Until recently, the generally accepted view was that
inhibition of autophagy is the major route of cancer cell death
induced by CHQ (33). Indeed, several lines of experimental
evidence suggest the importance of autophagic inhibition as the
underlying mechanisms of radio-sensitization by CHQ. Knock
down of beclin-1 or pharmacological inhibition of autophagy
by 3-methyladenine or interference with autophagy-promoting
signaling mediated through the PI3K/Akt (20) or EGFR
signaling (34) have been shown to impair the radio/chemo-
sensitizing ability of CHQ in glioma cells. However, the
seemingly well delineated causative relationship between CHQ
effects on autophagy and tumor suppression has recently been
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TABLE 1 | Summary of clinical trials testing chloroquine in GBs.

Study ID Phase Patient group Treatment Outcomes

Age Diagnosis

NCT00224978 III 18–65 First/second recurrent or

relapsed GB (WHO stage = IV) in

one hemisphere

Carmustine + radiotherapy +

placebo

vs.

Carmustine + radiotherapy +

chloroquine

- Increase OS from 11 to 24

months

- No statistical significance

- Well tolerated (10, 11)

NCT03243461 III 3–18 Untreated pediatric high-grade

glioma (WHO stage ≥ III)

Temozolomide + radiotherapy +

valproic acid

vs.

Temozolomide + radiotherapy +

chloroquine

Estimated study start: Feb. 2018

(12, 13)

NCT02432417 II 18–70 Newly diagnosed IDH wild-type

GB (WHO stage = IV)

Radiotherapy + chloroquine Estimated study start: Jan. 2020

(12, 14)

NCT02378532 I ≥ 18 Newly diagnosed GB (WHO

stage = IV) and confirmed

MGMT and EGFRvIII status

Temozolomide + Radiotherapy

+ chloroquine

Currently recruiting (12, 15)

NCT01727531 ≥18 Solid primary tumor and at least

one brain metastasis

Whole-brain radiotherapy +

chloroquine

No results published (16)

challenged by some very surprising findings coming from the
pharmaceutical oncology field. Nearly simultaneously, research
teams from AstraZeneka, Novartis and Pfizer have provided
compelling evidence that tumor–suppressing effects of CHQ are
independent from its autophagy-inhibiting activities (35, 36).
Intriguingly, CHQ-induced cell death was found to be related
with the inhibition of cholesterol biosynthesis by autophagy-
related pathways but not with autophagy inhibition per se (36).
These findings prompt to hypothesize that modulation of the
cell metabolism might be one of the mechanisms underlying
the anti-neoplastic efficacy of CHQ, which affects a range
of metabolic processes including the amino acid metabolism,
(37) glucose metabolism (38) and mitochondrial metabolism
(39). Interestingly, CHQ potently inhibits glyconeogenesis, (40)
which is a compensatory mechanism supporting the survival of
cancer cells bearing mutations in the isocitrate dehydrogenase
(IDH) gene. IDH1/2 genes code for metabolic enzymes that
interconvert isocitrate and α-ketoglutarate. Loss of catalytic
activity caused by point mutations in IDH1/2 genes leads to a
decrease in α-ketoglutarate and increased production of D–2–

hydroxyglutarate (41, 42). In glial tumors, IDH1/2 mutational
status is regarded as one of the most important diagnostic
and prognostic biomarkers (43, 44). Point mutations in IDH1/2

associate with longer survival and are found in about 80% of
anaplastic astrocytoma (WHO Grade III) and secondary GBs
(GBs that progress from lower grade gliomas), but only rarely (<
10%) in primary GBs (GBs that occur without precursor lesions).

Although the relationship between IDH1/2mutational status and
sensitivity to CHQ in gliomas remains to be established, the
recently proposed hypothesis that IDH1/2 mutations might be

predictive of the efficacy of CHQ in gliomas seems plausible
(42). Recently launched clinical studies aiming to validate the

association between IDH1/2-mutated molecular subtype and
sensitivity to CHQ will test this hypothesis (45).

FUNCTIONAL PLEIOTROPY OF
CHLOROQUINE: THE BALANCE OF GOOD
AND EVIL

The diversity of CHQ effects reflects the functional pleiotropy
of its molecular targets, which include multi-functional factors
as transcription factor NF-κB, (46) or DNA damage-inducible
factors like the ataxia telangiectasia mutated (ATM) kinase (47)
and its downstream target tumor suppressor p53 (48). A broad
versatility of responses that can be mediated by CHQ can be
exemplified by its effects on p53 whose functional status is
an important factor determining the ultimate outcome from
CHQ treatment in cancer cells. This, in fact, is not surprising
considering the nodal position of p53 in several regulatory
hubs that govern diverse cellular responses to different types
of stress (49, 50). The ability to trigger distinct effects such
as cell survival or cell death is the key fundamental of p53
function as the “guardian of the genome” (51). Amidst a great
multitude of factors influencing the choice between pro-survival
and death-promoting activities of p53, (52) the ability to repair
DNA damages is essential for promoting cell survival after cell
injury. Activation of p53 signaling upon DNA damage can lead
to a transient arrest of the cell cycle, enabling DNA repair, or
cell death, if the extent of DNA damage exceeds the repair
capacity of the cell. Whereas the ability of CHQ to induce p53-
dependent apoptosis has been well-documented (22, 27, 29),
the mechanism of p53 activation by CHQ remains elusive.
In the canonical DNA damage response (DDR), activation of
the ATM/Chk1/p53 signaling is the initial event in a signaling
cascade triggered by DNA-double strand breaks (53). However,
CHQ does not cause direct DNA damage. It has been proposed
that topological perturbations in the chromatin structure caused
by CHQ intercalation into the DNA helix (54–57) may be
sensed by ATM leading to its activation by autophosphorylation
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(47). Alternatively (or in addition) to its direct effects on DNA
topology, CHQ can cause DNA breakage through an indirect
mechanism involving mitochondrial damage (58). Considering
that both ATM and p53 are sensitive to oxidative stress, (59,
60) these findings indicate that activation of the ATM-p53
signaling by CHQ might be triggered by oxidative DNA damage.
Interestingly, while activating key mediators of DDR, CHQ
has an intrinsic repair-inhibiting activity manifest in different
types of normal and neoplastic cells in vitro (30, 58) and
in vivo (61). Although the exact mechanisms of CHQ–mediated
inhibition of DNA repair remain unknown, they are likely to
reflect the causative relationship between impaired autophagy
and deficient DNA repair (62). It is tempting to hypothesize
that conflicting signals generated through the dual ability of
CHQ to activate key mediators of DDR and to suppress DNA
repair, play a role in shifting the balance in favor of cell death.
Potentially conflicting signals can also emanate from the p53
transcriptional response induced by CHQ. p53 activation leads to
transcriptional up-regulation of Bax1, which is indispensable for
CHQ–induced apoptosis, (27) but also induces a battery of genes
that promote cell survival through the activation of autophagic
response (52).

The concurrent activation of cell death and pro-survival
pathways through the modulation of autophagy might represent

yet another death-survival axis regulated by CHQ: On the one
hand, CHQ can activate cell death through the lysosome-initiated
apoptosis via cathepsin signaling (63, 64). On the other hand,
CHQ leads to the accumulation of a multifunctional protein
chaperone p62 (also known as sequestome-1, SQSTM-1), whose
expression is associated with increased cell proliferation, tumor
growth and cytotoxic resistance in different types of human
cancers (65). In gliomas, p62 expression correlates with the tumor
grade and shorter survival (66, 67). As p62 is an autophagy
adaptor targeted for degradation through autophagic clearance,
autophagy inhibition by CHQ leads to the increase of the p62
protein levels (68). One of the mechanisms underlying pro-
tumor activities of p62 relies on its ability to activate NF-
κB, a key pathway regulating cell survival and proliferation.
Augmented NF-κB signaling is linked to poor prognosis and
treatment resistance in gliomas (69, 70). Moreover, there is
evidence that activation of the p62/NF-κB signaling by CHQmay
be further amplified through a positive feedback loop whereby
CHQ-induced p62 activates NF-κB, which in turn activates the
expression of p62 (71). Thus, inhibition of autophagy by CHQ
can activate not only the lysosome-mitochondria death pathway,
(63, 64) but also survival–promoting signaling mediated through
the p62/NF-κB feedback loop (71). Considering that ATM is
essential for the function of both p53 and NF-kB proteins,

FIGURE 1 | Antagonistic pleiotropy of multifunctional hub proteins modulated by CHQ. (i) CHQ accumulation in the lysosome inhibits the lysosome-autophagosome

fusion and impairs degradation of proteins including the ubiquitin (Ub)-binding protein p62 and its binding partner pro-apoptotic LC3-II. (ii) CHQ intercalates into the

DNA helix and cause relaxation of chromatin structure, which may be the mechanism of ClQ-mediated activation of a DNA damage-inducible kinase ATM. (iii) CHQ

modulates activities of pleiotropic transcription factors p53 and NF-κB and may influence cross-talk between these pathways. (iv) p62 functional duality and positive

p62 / NF-κB feedback loop. (v) Augmentation of pro-apoptotic activities of p53 may be a possible mechanism of CHQ-mediated radiosensitization. (vi) Autophagy

inhibition by ClQ may counteract autophagic activation by TMZ and thereby sensitize glioma cells to chemotherapy.
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which often act in an antagonistic way in the regulation of
cell survival, (72) and that CHQ modulates activities of all

three factors (Figure 1), it is conceivable that p53 status is an
important factor in determining cell fate in response to CHQ

treatment.

The dichotomy of cellular responses elicited by CHQ is
also manifest in its inhibitory effects on the inflammatory
response which might be particularly important considering
the tumor microenvironment. Normalization of the tumor
vasculature has been implicated as a potential mechanism
underlying the ability of CHQ to increase the efficacy of
chemotherapeutic drugs, by facilitating their delivery to the
tumor mass (73, 74). Indeed, there is evidence that CHQ
normalizes the tumor vasculature through the reduction of
vessel density, improvement of cell alignment, formation of
tight junctions and promotion of quiescent phenotype of
endothelial cells (73, 74). However, CHQ has also been shown
to have pro-inflammatory effects in some types of cells.
Within the CNS, CHQ inhibits pro–inflammatory cytokines
in microglial cells, but not in astrocytes, in which it induces
inflammatory cytokines through the activation of NF-κB
signaling (46). Considering that GBs are tumors of astrocytic

origin, their responses to CHQ may resemble those observed in
astrocytes.

Thus, the ultimate outcome of CHQ treatment is likely to

be determined by the intricate balance between activities of
pleiotropic pathways involved in the regulation of autophagy,

DDR and apoptosis/cell death (Figure 1).

CHLOROQUINE AS POTENTIAL
ANTI-CANCER DRUG: UNSOLVED
QUESTIONS AND CONFOUNDING ISSUES

Despite recent advances in the understanding of molecular
mechanisms of anti-tumor effects of CHQ, a number of issues
remain unsolved. One confounding factor is that experimental
models used for investigating the effects of CHQ may not
fully recapitulate distinctive characteristics of treatment-resistant
GB. The current paradigm of therapeutic resistance in GB is
centered on so-called glioma stem-like cells (GSCs). GSCs are
considered the most clinically relevant type of glioma cells
driving GBs propagation before and after therapy (75). It has
been shown that GSCs possess an augmented DNA damage
response (DDR), (76) which renders them capable of surviving
cytotoxic treatments that are otherwise effective in killing non-
stem glioma cells (76–78). In conjunction with augmented
DDR, radiation-induced activation of anti-death and autophagic
responses make important contributions to GSCs ability to
escape from the cytotoxic effect of radiation (79, 80). Most of
the existing studies addressing the effects of CHQ in glioma
cells have used conventional serum-dependent cell lines that
lack stemness properties and/or poorly recapitulate characteristic
features of human GBs. For example, the human glioma cell

line U87MG, which has been widely used as an experimental
model for investigating biological responses mediated by CHQ
(21, 22, 29, 30, 81, 82) does not reproduce certain characteristic
traits of GBs such as an invasive tumor phenotype, intra-tumoral
heterogeneity and high degree of intrinsic radio-resistance.
Considering that GSCs are fundamentally distinct from non-
stem glioma cells, it is conceivable that their responses to CHQ
might also differ from those operating in the latter ones. Further
underscoring this notion, activation of the p53 signaling by CHQ
seems to lead to different outcomes in GSCs or non–stem glioma
cells. In non-stem glioma cells with wtp53, p53-dependent
apoptosis is a profound response to high concentrations of
CHQ (≥20µM) either applied alone or combined with other

treatments (22, 29, 30). In contrast, GSCs with functional p53 do
not activate apoptosis, but undergo predominantly a G1 arrest in
response to similar CHQ concentrations (20).

Furthermore, the threshold of CHQ concentrations required
for inducing cell death in the experimental setting (∼20µM)
is considerably higher than clinically acceptable doses of
CHQ (∼5µM). Therefore, the potential therapeutic value
of clinically acceptable doses of CHQ for GB treatment
requires further validation. Clarifying this question is particularly
important considering the results of a phase I/II trial addressing
the feasibility of dose escalation for CHQ treatment of
GB (32). It was found that CHQ doses used for treating
rheumatoid arthritis may not be sufficient to effectively
inhibit autophagy when used in combination with TMZ
and radiation in patients with GB (32). Likewise, CHQ
potential in sensitizing glioma cells to radiation, observed under
experimental conditions (single treatment with 10Gy) (20)
needs to be reproduced under clinically relevant conditions,
applying hypofractionated radiation (multiple fractions of 2.0–
2.5Gy).

CONCLUSION

The chemo- and radio-sensitizing effects of CHQ observed under
experimental conditions warrant further explorations of CHQ
potential as an adjuvant treatment for GB. In order to better
define the potential benefits of using this drug as an adjuvant
treatment for GB, the remarkable diversity of outcomes that can
be elicited by CHQ need to be considered.
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