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Leukemias typically arise in the bone marrow and then spread to the blood and into

other tissues. To disseminate into tissues, leukemia cells migrate into the blood stream

and then exit the circulation by migrating across vascular endothelial barriers. Formin

proteins regulate cytoskeletal remodeling and cell migration of normal and malignant

cells. The Formin mDia1 is highly expressed in transformed lymphocytes and regulates

lymphocyte migration. However, the role of mDia1 in regulating leukemia progression

in vivo is unknown. Here, we investigated howmDia1mediates the ability of leukemia cells

to migrate and disseminate in vivo. For these studies, we used a mouse model of Bcr-Abl

pre-B cell acute lymphoblastic leukemia. Our data showed that mDia1-deficient leukemia

cells have reduced chemotaxis and ability to complete transendothelial migration in vitro.

In vivo, mDia1 deficiency reduced the ability of leukemia cells to engraft in recipient

mice. Furthermore, leukemia dissemination to various tissues and leukemia progression

were inhibited by mDia1 depletion. Finally, mDia1 depletion in leukemia cells resulted in

prolonged survival of recipient mice in a leukemia transfer model. Overall, our data show

that the ForminmDia1mediates leukemia cell migration, and drives leukemia engraftment

and progression in vivo, suggesting that targeting mDia1 could provide a new method

for treatment of leukemia.
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INTRODUCTION

Acute lymphoblastic leukemias (ALL) typically arise from the unrestrained proliferation of
transformed leukocyte precursors in the bone marrow. This type of leukemia is the most common
form of cancer in children (1). Leukemia cells eventually reach the blood circulation and from there
can disseminate to various tissues. Leukemia dissemination is associated with a poor prognosis. The
ability of leukemia cells to disseminate to various tissues relies in part on their ability to migrate out
of the blood stream and infiltrate tissues. A necessary step for the exit of leukemia cells from the
blood circulation is migration through the endothelial cell wall of blood vessels, a process referred
to as transendothelial migration.
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In the case of tumors of hematological origin, such as
leukemias and lymphomas, many of the adhesion and homing
molecules required for the transendothelial migration process are
the same as those used by non-transformed lymphocytes (2, 3).
This suggests that the basic mechanisms driving lymphocyte
transendothelial migration and tissue infiltration are likely shared
between normal and transformed cells. During transendothelial
migration, leukocytes undergo a multi-step process by which
they initially roll on the endothelial vascular wall, in a selectin-
dependent manner, adhere to the endothelium through a
chemokine-induced integrin-mediated process, and finally crawl
and squeeze through the endothelial barrier (4, 5). During
the various phases of transendothelial migration, leukocytes
change shape, and extend membrane protrusions at their
leading edge (6), which are processes that require actin network
remodeling and force generation by cytoskeletal motors (7–
9). Furthermore, data have shown that genes involved in
cytoskeletal remodeling and cell migration play an important
role in lymphoma progression in vivo (10). We recently reported
that the cytoskeletal motor protein Myosin-IIA is required for
leukemia migration, progression and entry into the Central
Nervous System (11). However, the role of specific cytoskeletal
effector proteins in leukemia migration and progression in vivo
is largely unknown.

Among the cytoskeletal effectors that regulate actin dynamics
in lymphocytes are members of the Formin family, of which
Diaphanous-related formin-1 (mDia1, Diaph1) and Formin-
like-1 (FMNL1) are the main Formin proteins expressed in
lymphocytes (12, 13). Formins promote the polymerization of
linear actin filaments by processively adding actin monomers
to generate and elongate actin filaments (14, 15). In addition
to actin nucleation and polymerization, Formins also regulate
microtubules and have been shown to play a role in various
cellular processes including cell division, polarization, adhesion,
and migration (14, 16). Furthermore, Formins have also been
implicated in mediating the migration and invasion of malignant
cells (17–19).

In leukocytes, Formins regulate motility, trafficking and
activation (20–23). In response to various stimuli, including
chemokine stimulation, and downstream of Rho-GTPase
activation, Formins reorganize the actin cytoskeleton, a
process required for motility and transendothelial migration
(6, 7). Specifically, mDia1 is highly expressed in transformed
lymphocytes and regulates T lymphocyte migration in vitro
(24). In vivo, mDia1 plays an important role in T lymphocyte
development, migration and trafficking (20, 21). This Formin
has also been shown to play a role in T cell actin polymerization,
activation, and proliferation (20, 21, 24). Furthermore, the
Formin FMNL1 is overexpressed in lymphoid malignancies
(25, 26) and recently FMNL1 has been implicated in regulating
leukemia proliferation and migration (27).

Based on the role of mDia1 in cytoskeletal rearrangements
and lymphocyte motility, as well as the reported role of
FMNL1 in leukemia migration (27), we sought to determine the
possible role of mDia1 in leukemia cell migration, dissemination,
and progression in vivo. We found that mDia1 deficiency
in leukemia cells reduced their chemotaxis and ability to

complete transendothelial migration. We also discovered a
role for mDia1 in leukemia extravasation and engraftment
in vivo. These migration defects resulted in poor engraftment,
slower progression of mDia1-deficient leukemia, and ultimately
prolonged survival in a leukemia transfer model. Our data
suggest that either mDia1 or the upstream pathways that regulate
its function are possible therapeutic targets for the treatment of
leukemia dissemination and progression.

MATERIALS AND METHODS

Ethics Statement
This study and protocol were reviewed and approved by the
Institutional Animal Care and Use Committee at National Jewish
Health, and all efforts were made to minimize mouse suffering.

B-ALL Cell Transduction and shRNA
Constructs
The Arf-negative BCR-ABL-positive Acute Lymphoblastic
Leukemia cells (B-ALL) were generously provided by
Dr. James DeGregori (University of Colorado, School of
Medicine), and established by Sherr and colleagues (28).
The B-ALL cells were retrovirally transduced using pSiren-
RetroQ vectors to express mDia1 specific shRNAs (mDia1
KD B-ALL, sequence #1 GCGCAGAATCTCTCAATCTTT;
sequence #2 GGACATCTCAGACGAGCAATT) or a
control non-silencing shRNA (Control B-ALL, sequence
TCTATAGAACCCTCAATAT). The pSiren vectors co-expressed
ZsGreen or DsRed as a marker and the B-ALL transduced cells
were sorted based on green or red fluorescence. Sorted cells were
cultured in vitro for no more than 6 weeks and knock-down
(KD) was monitored routinely by western blot and verified to be
at least 85% compared to control B-ALL cell mDia1 expression.
Every 6 weeks of culture transduced B-ALL cells were refreshed
using cryogenically stored aliquots.

Western Blot Analysis
Protein levels were determined using an anti-mDia1 rabbit
polyclonal antibody (ECM Biosciences) or anti-FMNL1 rabbit
polyclonal antibody (Sigma). Mouse anti-tubulin (Sigma) was
used as a loading control. Antibody staining was detected using
the Odyssey near-infrared imaging system (Li-cor Biosciences)
with IRDye-680 or-800 secondary antibodies.

Apoptosis Assay
The steady-state frequency of apoptotic B-ALL leukemia cells was
measured by staining with APC-Annexin V (Becton Dickinson).
Control and mDia1 KD B-ALL cells cultured for 48 h at 37◦C
were stained with Annexin V and analyzed by flow cytometry
using an LSR Fortessa (Becton Dickinson). Data was analyzed
using Flowjo (Flowjo) and the frequency of apoptotic cells was
determined by measuring the Annexin V positive population.

In vitro Cell Growth Curves
B-ALL leukemia cells were grown in RPMI 1640 (MediaTech),
with 10% FBS (Hyclone) 5µMBME (Thermo Fisher), Penicillin,
Streptomycin, and L-glutamine (Thermo Fisher). For growth
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curve determination, B-ALL cells were plated at 5× 105/mL and
then diluted every 2 days by a 1:4 factor. Cell numbers were
determined by hemocytometer using Trypan Blue (Sigma) for
dead cell exclusion. B-ALL proliferation was monitored for 6
days and growth curves were determined by compounding cell
numbers over the growth period.

Transwell Migration Assay
Control or mDia1 KD B-ALL cells were resuspended in RPMI
+ 2% BSA +10mM HEPES and added to 5µm pore transwell
inserts (Corning). The bottom chambers of a 24 well transwell
plate contained the same RPMI + 2% BSA +10mM HEPES
with or without 1µg/mL of CXCL12/SDF1-α (Peprotech). As
a standard to calculate the percentage of migrated cells, 4 ×

105 cells (20% of input cells added to the transwell inserts)
were plated into bottom wells with no transwell. The plate was
incubated for 2 h at 37◦C and then B-ALL cells were harvested
from the bottom wells and analyzed by flow cytometry using
counting beads (Thermo Fisher) for standardization.

Transendothelial Migration Under Flow
Assay
Forty-eight hours prior to the assay bEnd.3 endothelial cells were
plated in tissue culture treated µ-Slide VI 0.4 flow chambers
(ibidi). Twenty-four hours later, the endothelial monolayer was
treated with 40 ng/mL TNF-1α (Peprotech), which upregulates
expression on the bEnd.3 endothelial cells of adhesion molecules
(such as ICAM-1 and VCAM-1) needed to support leukocyte
TEM. Then 30–45min prior to the assay the endothelial cells
were treated with 1 µg/mL CXCL12, which promotes the
rolling and adhesion of leukocytes on the endothelial cells. For
the transendothelial assay, using a syringe pump, control, or
mDia1 KD B-ALL cells (at 2 × 106 cells/mL) were flowed onto
the treated endothelial monolayer at 0.25 dyne/cm2 for 5min
(accumulation phase), and then the flow rate was increased
to 2 dyne/cm2 (approximate physiological shear flow). Phase
contrast and fluorescent images were acquired every 15–25 s
using a 20X Phase-2 objective for 30min long time-lapses
using a Spinning Disk confocal microscope with environmental
control (Intelligent Imaging Innovations) and Slidebook imaging
software (Intelligent Imaging Innovations). Using similar criteria
as previously described (11, 29), a cell was scored as having
undergone transendothelial when it lost its white phase ring in
a step-wise process during the course of the time-lapse.

In vivo Short-Term B-ALL Co-adoptive
Transfer
Control or mDIa1 KD B-ALL cells were stained for 15min at
37◦C in HBSS (MediaTech) with either 1µMViolet Proliferation
Dye 450 (Becton Dickinson) or 5µM Cell Proliferation Dye
eFluor670 (eBioscience). Dye-labeled cells (2.5 × 106) were then
transferred at a 1:1 ratio in 8–16 week old C57BL/6 CD45.1+
recipient mice (Charles River) by tail vein injection and 24 h later
the recipient mice were euthanized and organs were harvested for
flow cytometry analysis as described below. To rule-out effects of
the different dyes used for labeling, between experimental repeats
the dye used to label each population was swapped.

Long-Term in vivo Leukemia Dissemination
and Survival Assays
Control or mDia1 KD B-ALL cells were adoptively transferred
by tail vein injection into cohorts of 5–6 age-matched 8–12 week
old CD45.1+ male recipient mice (5 × 104 cells/mouse). Mice
were monitored daily, and mice showing signs of morbidity
(hunched position, lethargy, ruffled fur) and/or body weight loss
>15% from original weight were euthanized for humane reasons.
For time-course experiments, randomly chosen pairs of mice (1
control and 1 mDia1 recipient) were selected every 3 days (from
day 3 to 9 post-transfer). The recipient mice were euthanized and
organs harvested for flow cytometry analysis as described below.

Tissue Processing and Analysis
All mice were euthanized with CO2 according to our humane
institutional IACUC procedures. After euthanasia, blood was
extracted via cardiocentesis andmice were subsequently perfused
with saline. For experiments with intravascular cell labeling,
4min prior to euthanasia mice were injected via tail vein
with 3 µg of anti-CD19-APC (Biolegend, Clone 6D5). Bone
marrow, spleen, brain, and spinal cord were harvested and
mechanically dissociated, the liver was digested by collagenase
D (0.786 Wunsch U/mL and DNase I 250 ug/ml [Roche]).
Spleen and blood were treated with 175mM ammonium chloride
(Sigma) for 5min at room temperature to lyse red blood cells.
Lymphocytes from brain and spinal cord samples were isolated
using a 70/30% Percoll gradient (Sigma). Lymphocytes from
liver samples were isolated using Histopaque 1119 (Sigma). To
identify transferred leukemia cells, samples were stained with
anti-CD45.1 PacBlue (Biolegend, Clone A20), except for dye
labeled B-ALL samples, and analyzed on a Cyan ADP flow
cytometer (Beckman Coulter). Transferred B-ALL cells were
identified as CD45.1-negative and fluorescent marker-positive.
For the staining procedures, to prevent non-antigen specific
binding of IgG antibodies to Fcγ receptors, prior to staining with
antigen specific labeled antibodies, we incubated the samples with
blocking anti-CD16/CD32 antibodies (BioXcell). All flow data
was analyzed on Flowjo.

Statistical Analysis
Prism software (Graphpad) was used to create graphs and
perform statistical analyses. To determine statistical significance,
for single comparisons the Student’s paired t-test was used, for
multiple comparisons ANOVA was performed followed by post-
tests, and for two independent variables analysis a 2-way ANOVA
was used followed by post-tests. Survival curve data was analyzed
using the log-rank test.

RESULTS

mDia1 Knock-Down Does Not Increase
Leukemia Cell Apoptosis or Reduce
Proliferation
For these studies we employed a murine model of pre-B-
cell ALL (B-ALL). This leukemia cell line was developed by
transducing the Bcr-Abl fusion protein into bone marrow cells
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from Arf-negative C57BL/6 mice (28). This adoptive transfer
leukemia model is highly aggressive and typically induces overt
leukemia in syngeneic non-irradiated mice within 2–3 weeks of
transfer (28, 30, 31). We used a short-hairpin RNA (shRNA)
transduction approach to knock-downmDia1 protein expression
in this B-ALL line to investigate the role of mDia1 in leukemia
cell migration, engraftment and progression. B-ALL cells were
stably transduced with retroviral vectors encoding for a control
shRNA or, to ensure specificity, two different shRNA sequences
targeting the mDia1 mRNA. For shRNA delivery we used a
retroviral vector that co-expresses a fluorescent marker (ZsGreen
or DsRed) to sort and purify the transduced leukemia cells. Our
results showed that in sorted B-ALL cells we could routinely
deplete mDia1 protein with an average knock-down (KD) level
of ∼86% for each of the two targeting shRNAs compared to B-
ALL cells transduced with control shRNA (Figure 1A). We next
investigated if as a compensatory mechanism, the other main
Formin expressed in lymphocytes, FMNL1, was upregulated in
the mDia1 KD cells. Our western blot analysis did not show any
major change in FMNL1 expression between control and mDia1
KD cells (Supplemental Figure 1A).

Formin proteins function in cytokinesis and, potentially, cell
division (32–34). Therefore, we analyzed if mDia1 depletion
altered B-ALL cell viability and growth. Using a flow cytometry-
based assay we measured B-ALL cell apoptosis and found no
significant difference in the number of Annexin-V+ apoptotic
cells comparing control and either of the two mDia1 KD cells
(Figure 1B and Supplemental Figure 1B). We then determined
if mDia1 KD affected B-ALL cell proliferation. For these
experiments we compared control and mDia1 KD B-ALL growth
over a period of 6 days and found no significant difference in
control andmDia1 KDB-ALL cell numbers over time (Figure 1C
and Supplemental Figure 1C). These results suggested that
mDia1 depletion did not cause overall viability defects allowing
us to study the role of mDia1 in leukemia cell migration in vitro
and progression in vivo without the potential confounding factor
of reduced viability due to impaired mDia1 expression.

mDia1-Deficient B-All Cells Have Impaired
Ability to Undergo Transendothelial
Migration
Given the importance of cell migration for leukemia
dissemination, and the reported role of mDia1 in T cell
migration (20, 21, 24) and of the related Formin FMNL1 in
leukemia migration (27), we investigated if mDia1 depletion
affected the ability of B-ALL cells to complete the various
steps of transendothelial migration. For these experiments
we set up an in vitro reductionist system to visualize and
analyze the process of transendothelial migration in real-time
by time-lapse microscopy. Transendothelial migration is a
multi-step process that entails the capture of leukocytes on the
endothelial monolayer by an initial rolling step, followed by
firm adhesion to resist vascular shear forces (4). Subsequently,
leukocytes can migrate over the endothelial monolayer and
finally migrate through the endothelial barrier to complete the
extravasation process. With our imaging system we analyzed

FIGURE 1 | mDia1 knock-down does not affect B-ALL cell viability and

proliferation. B-ALL cells were transduced with two independent shRNA

constructs targeting mDia1 (mDia1 KD1 and mDia1 KD2) or with a control

shRNA. The transduced cells were sorted based on the co-expression of a

fluorescent marker (ZsGreen or DsRed) on the shRNA vector. (A) mDia1 is

depleted in B-ALL cells transduced with mDia1-specifc shRNAs. Left panels,

Western blot analysis of cell lysates from control and mDia1 knock-down (KD)

cells. Tubulin staining is shown for normalization purposes. Right panel,

quantification of KD levels in the two mDia1 KD cell lines. (B) B-ALL cell

apoptosis is not increased in mDia1 KD cells. Left, representative flow

cytometry staining for Annexin V of control and mDia1 KD cells. Right,

quantification of the frequency of apoptotic cells. (C) mDia1 KD does not

impair B-ALL proliferation. In vitro proliferation of B-ALL cells over the course

of 6 days. Data in (A,C) are the average of at least 4 independent experiments;

data in (B) are the average of at least 3 independent experiments. Error bars

are the SEM.

these transendothelial migration steps on endothelial cells under
physiological shear flow (Figures 2A,B). Using phase contrast
imaging, leukocytes above the endothelial monolayer display
a white phase contrast halo that disappears step-wise as the
leukocyte undergoes transendothelial migration (Figure 2A,
bottom panels, and Supplemental Video 1). Comparing control
and mDia1 KD cells we found no significant difference in B-ALL
cell adhesion to the endothelial monolayer (Figure 2C). The
fraction of leukemia cells crawling on the endothelial monolayer
and their motility characteristics were also not altered in mDia1
KD B-ALL cells (Figures 2D–F). Furthermore, detachment
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FIGURE 2 | mDia1 deficiency impairs transendothelial migration of B-ALL cells. Fluorescently-labeled control and mDia1 KD B-ALL cells were introduced into flow

chambers with a monolayer of bEnd.3 endothelial cells in the presence of CXCL12 and then maintained under a shear flow of 2 dyne/cm2 and imaged for 30min

(Continued)
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FIGURE 2 | using a spinning-disk confocal microscope. Phase contrast and fluorescence images were captured during time-lapse imaging every 15–25 s as

indicated. (A) Representative images of a control B-ALL cell undergoing transendothelial migration (TEM). Top panels, overlay of ZsGreen fluorescence and phase

contrast images; bottom panels, phase contrast images. As the control cell completes transendothelial migration the light ring around the cell body in the Phase

contrast channel (bottom panels) disappears step-wise. The white arrow indicates a cellular protrusion initiating the transendothelial migration process. Time is in

min:sec. (B) Representative images of an mDia1 KD B-ALL cell attempting and failing to complete transendothelial migration (depicted as in A). C. Similar adhesion of

control and mDia1 KD B-ALL cells to the endothelial monolayer. (D–F) Control and mDia1 KD cells have equivalent crawling behavior on the endothelial cell

monolayer. (G) mDia1 depletion does not significantly alter B-ALL detachment from the endothelial monolayer. (H) mDia1 KD cells take a similar amount of time to

initiate TEM. (I) mDia1 deficiency significantly reduces the capacity of B-ALL cells to complete transendothelial migration. Data in (A,B) are representative of 4

independent experiments; data in (C–I) are the average of 4 independent experiments, with at least 61 cells/group for each experiment (C,D,G–I) or at least 27

cells/group for each experiment (E,F). Error bars are the SEM.

FIGURE 3 | mDia1 depletion reduces the ability of B-ALL cells to undergo chemotaxis. (A) Left, representative flow cytometry staining for CXCR4 of control and

mDia1 KD B-ALL cells. Right, quantification of CXCR4 surface expression on control and mDia1 KD cells. (B) Quantification of the percentage of chemotactic

migration with or without CXCL12 through 5µm pore transwell membranes of control and mDia1 KD B-ALL cells. Data in (A) are from 4 independent experiments;

data in (B) are the average of 5 independent experiments. Error bars are the SEM.

under flow (Figure 2G) and the time to initiate transendothelial
migration (Figure 2H) were not significantly different in mDia1
KD cells. However, we identified a significant impairment of the
adhered mDia1-deficient B-ALL cells in completing the process
of transendothelial migration compared to control B-ALL cells
(Figure 2I and Supplemental Video 2).

Depletion of mDia1 Reduces Leukemia
Cell Chemotaxis
Chemokines have been shown to affect various steps of the
transendothelial migration process (4, 35). Having seen reduced
transendothelial migration of mDia1 KD B-ALL cells, as a
potential mechanism for this reducedmigration, we subsequently
analyzed if leukemia cells lacking mDia1 would be affected
in their capacity to respond to chemokine stimulation. The
CXCL12-CXCR4 axis plays an important role for homing and
engraftment of leukemia cells to the bone marrow and other
tissues (36–40). We therefore first analyzed the expression levels
of the CXCR4 receptor on control and mDia1 KD B-ALL
cells and found no significant difference in CXCR4 expression
(Figure 3A and Supplemental Figure 2A). Next, using the
transwell chamber system, we determined if the ability to migrate
in response to CXCL12 was affected by mDia1 depletion in B-
ALL cells. Our data showed that B-ALL cells migrated in response
to CXCL12 stimulation, and that migration through 5µm pore
transwell membranes in response to a CXCL12 gradient was
significantly impaired in both mDia1 KD B-ALL cell lines
(Figure 3B and Supplemental Figure 2B).

mDia1 Promotes Leukemia Engraftment
The defects in chemotaxis toward CXCL12 and in
transendothelial migration suggested that mDia1 could have a
role in regulating the ability of leukemia cells to migrate and
engraft in vivo. Therefore, using an adoptive transfer model, we
measured the engraftment capacity of control and mDia1 KD
B-ALL cells. Using short-term transfer assays, we analyzed the
number of B-ALL cells in the blood, bone marrow and spleen of
recipient mice by flow cytometry 24 h after intravenous adoptive
transfer. To minimize variability due to the transfer procedure
or the recipient mice, we co-transferred equal numbers of
differentially-fluorescently labeled control and mDia1 KD cells.
We used recipient mice expressing the congenic marker CD45.1
to readily distinguish endogenous cells from the transferred
B-ALL which are CD45.2+. Using this experimental system,
our data showed that mDia1 KD B-ALL cells had a significant
reduction in their ability to engraft and colonize the spleen 24 h
after transfer (Figures 4A,B). We further validated that this
engraftment defect was specific to mDia1 depletion by analyzing
the engraftment capacity of B-ALL cells transduced with the
second mDia1 shRNA. Our data confirmed that mDia1 deficient
B-ALL cells are significantly impaired in colonizing the spleen
(Supplemental Figure 3).

We then analyzed the surface expression of the integrins
LFA-1 (αLβ2, CD11a/CD18) and VLA-4 (α4β1, CD49d/CD29),
adhesion proteins that can play a homing role during trafficking
(4). We found comparable CD11a expression between
control and mDia1 KD cells (Supplemental Figures 4A,C).
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FIGURE 4 | Depletion of mDia1 decreases engraftment of B-ALL cells.

Differentially dye-labeled control and mDia1 KD B-ALL cells were

intra-venously co-transferred at a 1:1 ratio in CD45.1+ recipient mice. The

number of B-ALL cells in the blood, bone marrow, and spleen of recipient mice

was determined 24 h post-transfer by flow cytometry. (A) Representative flow

cytometry plots of differentially-labeled control and mDia1 KD cells recovered

from the indicated tissues. The transferred B-ALL cells were identified by

gating on CD45.1-negative/ZsGreen-positive cells (not shown). (B)

Quantification of the ratio and number of control and mDia1 KD B-ALL cells in

the indicated tissues. A ratio below 1.0, indicated by the horizontal red line,

shows reduced numbers of the mDia1 KD B-ALL cells. Data in (A) are

representative of 4 experiments; data in (B) are the average of 4 experiments

each with 2 mice/group. Error bars are the SEM.

In our analysis of CD49d, we detected differences in CD49d
expression that were not consistent between the two different
mDia1 KD cells transduced with either mDia1 shRNA
(Supplemental Figures 4B,D), suggesting that these differences
are not responsible for the impairment of mDia1 KD cell
migration and engraftment seen consistently with both mDia1
KD cells.

mDia1 Deficiency Reduces Leukemia
Progression in vivo
We next analyzed the in vivo progression and dissemination
of control and mDia1-deficient leukemia cells over time. For
these experiments, we transferred control or mDia1 KD cells in
separate recipient mice since fluorescent dye labels would dilute
too much over the course of the experiment to reliably identify
the control and KD populations. Furthermore, this experimental
setup would also avoid any confounding effects due to the
presence of control B-ALL cells helping the mDia1 KD B-ALL
invade and colonize various tissues. For these experiments, every
3 days, we determined the number of CD45.2+ control or mDia1
KD B-ALL cells in various tissues of CD45.1+ recipient mice
(Figures 5A,B). Our analysis determined that, over the course
of leukemia progression, mDia1-deficient B-ALL cells have a

significant reduction in their dissemination and expansion in
various tissues including: Blood, BoneMarrow, Spleen, and Brain
(Figure 5B).

In this leukemia model the spleen is a main site of leukemia
colonization and pathology, therefore, in the above experiment
we also measured the leukemia burden in the spleen of recipient
mice by determining the weights of the spleens of recipient
mice during this time-course experiment. Our data showed
significantly smaller spleens in the mice receiving mDia1-
deficient B-ALL cells at the end of the time-course (Figure 5C,
day 9 time-point).

mDia1 Depletion in Leukemia Cells
Prolongs Survival
Finally, we investigated if the defects seen in spleen engraftment
and reduced leukemic cells in tissues during leukemia
progression of mDia1 KD B-ALL cells would result in improved
survival of the recipient mice. To this end, we analyzed the
survival of recipient mice receiving control or mDia1 KD B-ALL
cells. For these experiments, we transferred control or mDia1 KD
B-ALL cells into wild-type immunocompetent recipient mice
and then determined leukemia incidence over time. Our data
showed a significant extension of the survival of recipient mice
transferred with mDia1 KD cells compared to control B-ALL
cells (Figure 5D and Supplemental Figure 5). Overall, our data
suggest that mDia1 regulates the ability of leukemia cells to
extravasate and engraft into the spleen promoting leukemia
progression.

DISCUSSION

Here we report that the Formin mDia1 promotes leukemia
migration and progression in vivo. Although some Formins have
been shown to affect cell proliferation (27), our data suggests that
the effect of mDia1 deficiency on leukemia progression in vivo
is more related to the ability of the leukemia cells to engraft and
disseminate rather than effects on their proliferation capacity or
viability.

Formins, and mDia1 in particular, can modulate many
cellular processes including cell polarity and migration of
both normal and transformed cells by regulating microtubules
and actin networks (14–16). mDia1 has been shown to
mediate actin polymerization in response to chemokine and
antigen stimulation in lymphocytes (20, 21), and to regulate
leukocyte motility (20, 21, 23, 41). Consistent with these
findings, we demonstrated that mDia1-deficient B-ALL cells have
impaired chemotaxis and have reduced capacity to complete
transendothelial migration through endothelial cell barriers.
Interestingly, a previous report found that B cells lacking
mDia1 were able to undergo in vitro chemotaxis normally
(20). On the other hand, our data shows that mDia1-deficient
transformed pre-B cells are clearly impaired in chemotaxis
and transendothelial migration. Furthermore, our results also
indicate that the migratory defect of mDia1-deficient B-ALL cells
causes reduced engraftment and dissemination of leukemia cells
into tissues in vivo.
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FIGURE 5 | mDia1 deficiency reduces leukemia progression in vivo and prolongs survival. Control or mDia1 KD B-ALL cells were transferred intra-venously into

CD45.1+ recipient mice. (A,B) Every 3 days, the number of transferred B-ALL cells was quantified by flow cytometry in randomly selected pairs of recipient mice (1

control and 1 mDia1 KD). The transferred B-ALL cells were identified by gating on CD45.1-negative/ZsGreen-positive cells. (A) Representative flow cytometry plots of

control and mDia1 KD B-ALL cells recovered from recipient mice in the indicated tissues. (B) Quantification of the frequency of control and mDia1 KD cells in the

indicated tissues over time. (C) Reduced spleen colonization by mDia1-deficient B-ALL cells. As a readout of spleen colonization by the leukemia, the weight of the

spleen in randomly selected pairs of recipient mice was determined every 3 days. (D) mDia1 depletion in leukemia cells prolongs survival. Using the above

experimental set up, the recipient mice were monitored daily for signs of leukemia and euthanized once signs of morbidity were detected. Data in (A) are

representative of 3 experiments; data in (B,C) are the average of 3 experiments each with 2 mice/group/time-point; data in (D) are pooled from 3 independent

experiments each with cohorts of 5 mice/group/experiment. Error bars are the SEM.

mDia1 can localize to the tips of filopodia (42–44), which are
elongated membrane protrusions containing parallel bundles of
linear actin filaments. Filopodia have been suggested to serve
as environmental sensors and possibly guide migration (45).
Therefore, consistent with our data, a mechanism by which cells
deficient in mDia1 have impaired migratory activity and reduced
transendothelial migration could be caused by reduced formation
and function of filopodia in response to chemokine stimulation.
Additionally, mDia1 has been implicated in cross-talk between
the actin and microtubule cytoskeletons (46–48). Thus, a further
mechanism by which mDia1 deficiency could impair leukemia
cell migration is by disrupting coordination of the actin and
microtubule cytoskeletons during transendothelial migration.

Previous studies in tumors of non-lymphoid origin have
suggested a role for mDia1 in promoting cancer invasion,
migration and consequently metastasis (48–50). These previous
studies have focused on the role of mDia1 in mediating

morphological changes that enable malignant cells to migrate
out of their native tissue environment. Our finding that mDia1
promotes transendothelial migration of leukemia cells may
have additional implications for the dissemination of other
cancer types once they enter the blood stream, suggesting that
mDia1 also plays an important role in extravasation and tissue
infiltration. Interestingly, mDia1 has been shown to be highly
expressed in activated lymphocytes, including transformed
lymphocytes (24), which could have implications on the ability
of these cells to disseminate.

Overall, our findings show that mDia1 is a positive
regulator of leukemia progression by promoting leukemia
cell transendothelial migration and engraftment, thereby
contributing to leukemia progression in vivo. Our data showing
prolonged survival of recipient mice receiving mDia1-deficient
leukemia cells suggest that this Formin, and the signaling
pathways that regulate its activity, can be potential therapeutic
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targets for the treatment of ALL by preventing leukemia
cells from reaching and colonizing niches that enable tumor
progression. However, the relatively widespread tissue expression
of mDia1 and the current lack of a selective inhibitor of mDia1
may pose a challenge for therapeutic targeting of this Formin
protein.
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