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INTRODUCTION

Diagnostic molecular pathology of genito-urinary (GU) tumors is facing new technological
challenges in the era of genome-wide analyses and patient-derived animal tumor models. In view
of the increasing number of dedicated clinical trials, GU tumors represent the next urgent field
of application of molecular diagnostics and drug discovery after gastro-intestinal and thoracic
oncology.

DNA-BASED GENOME-WIDE ANALYSES

Wide spectrum mutational analyses using next generation sequencing (NGS) platforms will soon
represent the standard-of-care technologies for the assessment of genetic variants in solid tumors
(1). These technologies apply successfully to archival pathology specimens, cytological samples and
even liquid biopsies (blood or pleural effusions) (2).Mutational analyses can be wider (whole exome
sequencing, WES) or restricted to selected genes or amplicons (targeted gene sequencing TGS).
Both approaches are used to identify single or multiple genetic variants as predictive biomarkers
of response to targeted oncologic therapies. At least the following three genome-wide mutational
analyses will become routine diagnostic tests for GU tumors in the immediate future. Analysis
of BRCA1 and BRCA2 germ-line mutations will be required to assess inherited prostate cancer
risk and to predict response to treatment with poly(ADP-ribose) polymerase (PARP) inhibitors
and even next-generation anti-androgens (3, 4). Given the complexity of the BRCA1 and BRCA2
mutations the NGS sequencing is the ideal method for their assessment. Similarly, deep sequencing
of the DNAmismatch repair genes will be required in patients with familiar prostate and colorectal
cancer for suspected Lynch syndrome (3). Mutations in homologous recombination repair genes
(ATM/BRCA1/2 specifically) is enriched in men with advanced clinical stage (≥ cT3) and higher
Gleason grade groups ( ≥ 3) (5). Patients with metastatic castration-resistant prostate cancer
whose tumors harbor homologous recombination DNA repair gene alterations, experience a
different response to PARP inhibitor therapy. In particular, patients with cancer harboring DNA
repair alterations in genes other than BRCA2 are often non-responders (6). The assessment of
tumor mutation burden defined as the number of mutations per mega-base of tumor cell DNA
is becoming the most relevant candidate biological predictor of response to immunotherapies
targeting the PD-1/PD-L1 axis (7). Tumor mutation load can be achieved either byWES or by TGS
using NGS dedicated panels covering at least 2 mega-bases of tumor DNA. Assessment of tumor
mutation load is also prognostically relevant in metastatic renal cell cancer and in muscle-invasive
bladder cancer (8–10). Finally, epigenetic changes, including CpG island hypermethylation can
be investigated using genome-wide methylation NGS panels in the attempt to better stratify
high-grade and low-grade disease (11).
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RNA-BASED GENOME-WIDE ANALYSES

Genome-wide trascriptome analyses include gene expression
profiling, miRNA and non-coding RNA profiling and RNA
sequencing. In particular, RNA sequencing with high-throughput
NGS platforms starting from RNA libraries allows simultaneous
analysis of differential gene expression, allele-specific expression,
splicing variants, and gene rearrangements (12). These analyses
can also be done on RNA and DNA contained in small
extracellular vesicles (EVs) that could be found in blood,
urine, and other biological fluids (13). RNA abundance and
sequence can be also investigated by array hybridization using
platforms such as the NanoString System (14). Immediate clinical
application of RNA sequencing to GU tumor include primarily
the following fields of interest. The study of tumor immune
micro-environment through the expression analysis of immune
response genes is becoming important to assess tumor response
to immune check-point inhibitors and BCG in bladder cancer
(15, 16). The new molecular classification of muscle-invasive
bladder cancer is largely based on gene expression profiling
(17). Recognition of the molecular subtypes has prognostic and
therapeutic implications for patients with advanced urothelial
cancer. The assessment in the tumor tissue of the AR-V7 splicing
variant of the androgen receptor (AR) gene is a predictor of poor
response to anti-androgens and good response to chemo-therapy
in castration-resistant prostate cancer (CRPC). The presence of
AR splicing variants can be successfully investigated by RNA
sequencing in prostate cancer tissue samples (18).

PATIENT-DERIVED ANIMAL MODELS

Patient-derived xenografts (PDX) are mouse models where
disaggregated cells or little fragments of human tumors are
implanted into immunodeficient mice. The establishment of a
PDX allows treating and monitoring the response to treatment
of the original tumor in vivo in the mouse, instead of the
patient, providing the best therapeutic selection at the same
time (19). This procedure is ethically and commercially valuable
since it spares pointless drug toxicity to the patient while saving
money for oncological treatments that would be ineffective.
Successful PDX establishment for monitoring response to
treatment has been described in GU tumors (20). In CRPC there
are available examples of PDX for treatment with abiraterone
and enzalutamide as well as for a number of drugs in pre-
clinical phase of development (21). In papillary type kidney
cancer harboringMET mutations, there is evidence of successful
treatment of PDX with Cabozantinib and other MET inhibitors

(22, 23). PDX created using human bladder tumor tissues have
been utilized to assess response rates to cisplatin or PI3K
inhibitors (24). The success of PDX establishment is highly
variable and depends on several tumor-related or animal-related
factors. For instance, in a meta-analysis on bladder cancer,
the tumor engraftment rate varied between 20 and 100% (24).
In addition, several flaws can affect the reliability of PDX as
surrogate models of original patients’ tumors. Tumor histological
appearance may change in the PDX frequently toward squamous
or sarcomatoid or neuroendocrine differentiation. Cancer cell
proliferative rates in PDX may increase as well as cancer
mutations may turn out enriched or underestimated (25). On
the other hand, host mice for PDX can be selected to be
totally immunodeficient or “humanized” by forcing in the
animals the expression of cytokines or injecting in the mouse
bloodstream human bone marrow stem cells to re-create the
tumor inflammatory microenvironment. Humanized PDX have
been established for several tumor types but not yet for GU
cancers (26).

Organoids are 3D cell-cultures recapitulating the natural
complex environmental organization of a normal or a cancer
tissue. They differ from the cell-lines that grow flat in 2D
and lack the signal trafficking and the organization of a tissue
(27). Organoids can be constructed from human cancer cells
or tissues and can be utilized for testing the response to drugs
(28). Compared to PDx, organoids are more amenable to grow
but they are transient in nature and represent a methodological
choice in-between cell-lines and animal xenografts. Organoid
models have been created to trait rare phenotypes or genotypes
of prostate cancer and to test their potential response to drugs, or
to track evolution of bladder cancer (29, 30).

Patient-derived models are increasingly used to address
questions in GU oncology. There are still limitations to
the reliability of these models to actually guide patients’
therapy. In addition, these model technologies require dedicated
infrastructures (such as bio-banks, laboratories, and animal
facilities) and experienced professionals. There are also several
ethical restrictions to the use of model systems in different
countries. Notwithstanding, PDX and organoids represent a
fascinating opportunity to enhance cancer drug discovery
and to provide more therapeutic options to cancer patients.
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