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Resistance to therapeutic agents, either intrinsic or acquired, is currently a major problem

in the treatment of cancers and occurs in virtually every type of anti-cancer therapy.

Therefore, understanding how resistance can be prevented, targeted and predicted

becomes increasingly important to improve cancer therapy. In the last decade, it has

become apparent that alterations in cellular metabolism are a hallmark of cancer cells and

that a rewired metabolism is essential for rapid tumor growth and proliferation. Recently,

metabolic alterations have been shown to play a role in the sensitivity of cancer cells

to widely-used first-line chemotherapeutics. This suggests that metabolic pathways are

important mediators of resistance toward anticancer agents. In this review, we highlight

the metabolic alterations associated with resistance toward different anticancer agents

and discuss how metabolism may be exploited to overcome drug resistance to classical

chemotherapy.

Keywords: cancer metabolism, drug resistance, bortezomib, cisplatin, BRAF inhibitors, multiple myeloma,
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INTRODUCTION

Changes in metabolism are one of the emerging hallmarks of cancer cells (1). Although many
signaling pathways that are affected by genetic mutations in cancer influence metabolism
(2), metabolic alterations are more than just an epiphenomenon (3). Alterations in cellular
metabolism sustain rapid production of adenosine triphosphate (ATP) and increased biosynthesis
of macromolecules, including nucleotides, lipids and amino acids, and also help maintain cellular
redox state (2, 4). As such, a rewired metabolism is essential to meet the needs of tumors for rapid
cell growth and proliferation.

Both intrinsic and extrinsic mechanisms contribute to the characteristic metabolic alterations in
cancer cells. Many different oncogenic as well as tumor suppressor signaling pathways influence
metabolism, such as hypoxia-inducible factor 1 (HIF1), p53 and MYC. In addition, cancer
metabolism is influenced by the tumor microenvironment, for example the interaction with
surrounding cells and the variation in availability of nutrients and oxygen, as extensively reviewed
elsewhere (2, 5–12). These mechanisms affect pathways involved in central carbon metabolism,
such as glycolysis and the tricarboxylic acid (TCA) cycle, amongst others. As a result, cancer cells
have an increased consumption of glucose and glutamine to satisfy their altered metabolic needs.
The fact that cancer cells can become addicted to specific metabolic pathways has led to the recent
development of novel drugs that target these metabolic vulnerabilities (13, 14).
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Resistance to therapeutic agents, either intrinsic or acquired,
is currently a major problem in the treatment of cancers and
occurs in virtually every type of anti-cancer therapy (15, 16).
Although increased knowledge about the molecular mechanisms
of cancer has led to the development of novel targeted therapeutic
compounds that increase progression-free survival, this does not
always translate in overall survival benefits due to development
of resistance (17). Acquired drug resistance can result from
the acquisition of mutations causing decreased drug binding,
increased activity of the drug target or the upregulation of multi-
drug resistance transporters. Acquired resistance can also be the
result of various adaptive responses that occur downstream of
the drug target and that help cancer cells withstand the effects
of the drug [reviewed in (18)]. Examples of such mechanisms
are the upregulation of cellular pro-survival pathways, including
the activation of DNA repair mechanisms (19), the upregulation
of anti-apoptotic proteins (20, 21) or autophagy (22). Another
mechanism of resistance, that is frequently observed with
kinase inhibitor therapy, is the so-called “oncogenic bypass,” in
which the target pathway is activated through an alternative
kinase, even when the primary kinase remains inhibited (23–
26). Although adaptive resistance can be targeted to improve
drug efficacy, heterogeneity and adaptability of cancer cells
often leads to new forms of adaptive resistance (27). Therefore,
understanding how resistance can be prevented, targeted, and
predicted becomes increasingly important to improve cancer
therapy.

Recent studies show that the response to widely-used first-line
chemotherapy is substantially influenced by themetabolic state of
the cells and that cancer cells rewire their metabolism in response
to chemotherapeutic drugs. We postulate that metabolic rewiring
is a novel and important mechanism of adaptive resistance.
Here, we will introduce the main features of cancer metabolism
in relation to drug resistance and review specific metabolic
programs and adaptations that exist in drug-resistant tumors.
We will discuss how these adaptations depend both on the
drug and the origin of the tumor and how they contribute to
drug resistance, focussing on widely-used chemotherapeutics,
including proteasome inhibitors (multiple myeloma), EGFR
inhibitors (breast cancer), cisplatin (lung cancer/ovarian cancer)
and BRAF inhibitors (melanoma). Finally, we will illustrate how
targetingmetabolism could overcome drug resistance to standard
chemotherapy.

Abbreviations: 2-DG, 2-deoxyglucose; 6-AN, 6-aminonicotinamide; ATP,

adenosine triphosphate; BSO, buthionine sulfoximine; CPT1, carnitine palmitoyl

transferase 1; DCA, dichloroacetate; ETC, electron transport chain; FASN,

fatty acid synthase; FH, fumarate hydratase; G6PD, glucose-6-phosphate

dehydrogenase; GCLC, glutathione cysteine ligase; GLS, glutaminase; GLUT,

glucose transporter; GSH, glutathione; HIF1, hypoxia inducible factor 1; HK2,

hexokinase 2; IDH1, isocitrate dehydrogenase 1; IDH2, isocitrate dehydrogenase

2; LDHA, lactate dehydrogenase A; MCT4, monocarboxylate transorter 4; ME,

malic enzyme; NQO1, NADPH dehydrogenase; OAA, oxaloacetate; OXPHOS,

oxidative phosphorylation; PDK1, pyruvate dehydrogenase kinase 1; PFK2,

phosphofructokinase 2; PGAM1, phosphoglycerate mutase 1; PHGDH, 3-

phosphoglycerate dehydrogenase; PKM2, pyruvate kinase isoform M2; PPP,

pentose phosphate pathway; ROS, reactive oxygen species; SDH, succinate

dehydrogenase; SOD2, superoxide dismutase 2; SSP, serine synthesis pathway;

TCA, tricarboxylic acid.

CANCER METABOLISM

Changes in Metabolism Are Essential to
Sustain Cancer Cell Growth and
Proliferation
Glycolysis is the main pathway that is responsible for the
breakdown of glucose, and converts glucose to pyruvate in
several steps (Figure 1). Glycolysis results in the production
of a limited amount of energy in the form of ATP and
reducing equivalents in the form of NADH. Pyruvate can
subsequently be fed into the mitochondrial TCA cycle, where
it is condensed with oxaloacetate to produce citrate. A series
of subsequent reactions yields reducing equivalents in the form
of NADH and FADH2, which can be oxidized in the electron
transport chain (ETC) complexes to ultimately produce ATP
in a process called oxidative phosphorylation (OXPHOS) (28,
29) (Figure 1). Although ATP production via OXPHOS is
more efficient, the majority of cancer cells generate most of
their ATP through glycolysis, even in the presence of oxygen
(30). This phenomenon is known as aerobic glycolysis or
“the Warburg effect” and is characterized by an increased
glycolytic rate, whereby pyruvate is converted to lactate and
secreted by the cell instead of being funneled into the TCA
cycle.

Cancer cells sustain their high glycolytic rates in several
ways. For example, glycolytic cancers often meet the high
demand for extracellular glucose by overexpression of glucose
transporters (GLUTs) (31, 32). They also show higher levels of
monocarboxylate transporter 4 (MCT4), which is responsible for
lactate export and thereby helps both in maintaining intracellular
pH and in continuing glycolysis (33, 34). In addition, the
secretion of lactate could aid in creating an acidic extracellular
tumor environment that favors tumor growth by promoting
migration and invasion (35, 36). Interestingly, cancer cells seem
to rely more on specific isoforms of glycolytic enzymes, making
these promising targets to specifically inhibit glycolysis in cancer
cells (Figure 1) (14). For example, the M2 isoform of pyruvate
kinase (PKM2) is preferentially expressed over other isoforms in
most cancer cells (37). PKM2 catalyzes the final step in glycolysis,
and cancer cells are thought to regulate its activity to either
increase glycolytic rates or divert glycolytic intermediates to
biosynthetic pathways (38), as detailed below. Cancers can also
bemore dependent on isoforms of hexokinase (HK2) (39, 40) and
lactate dehydrogenase (LDHA) (41), or overexpress an isoform of
phosphoglycerate mutase (PGAM1) (42, 43) (Figure 1). Finally,
several metabolic enzymes that regulate glycolysis are highly
expressed in cancer, including pyruvate dehydrogenase kinase
1 (PDK1) (44) and phosphofructokinase 2 (PFK2) (45, 46),
allowing cancer cells to easily adapt glycolytic flux to meet their
needs.

Diverting Glycolytic Resources Toward the
Production of Building Blocks
Why cancer cells prefer the less efficient glycolysis over OXPHOS
for ATP production is not fully understood. Initially, Warburg
hypothesized that cancer cells increase glycolytic activity because
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FIGURE 1 | Metabolic pathways associated with cancer. Pathways involved in central carbon metabolism are presented. Metabolic enzymes that are often

upregulated in cancer and serve as potential therapeutic targets are shown in purple. These metabolic pathways are involved in the synthesis of building blocks for

macromolecules and redox homeostasis, needed for cell proliferation (shown in red boxes). 2PG, 2-phosphoglycerate; 3PG, 3-phoshoglycerate; ATP, adenosine

triphosphate; CPT1, carnitine palmitoyltransferase I; F1,6-BP, fructose-1,6-bisphosphate; F2,6-BP, fructose-2,6-bisphosphate; F6P, fructose- 6-phosphate; FASN,

fatty acid synthase; FH, fumarase; G6P, glucose-6-phosphate; GCLC, glutamate-cysteine ligase; GLS, glutaminase; Glu, glutamate; GLUT, glucose transporter type;

HK2, hexokinase 2; I, complex I; IDH, isocitrate dehydrogenase; II, complex II; III, complex III; IV, complex IV; LDHA, lactate dehydrogenase A; MCT4,

monocarboxylate transporter 4; ME, malic enzyme; OAA, , oxaloacetate; PDH, pyruvate dehydrogenase complex; PDK1, pyruvate dehydrogenase kinase 1; PEP,

phosphoenol pyruvate; PFK1, phosphofructokinase 1; PFK2, phosphofructokinase 2; PGAM1, phosphoglycerate mutase 1; PHGDH, 3-phosphoglycerate

dehydrogenase; PKM2, pyruvate kinase M2; PPP, pentose phosphate pathway; R5P, ribose 5-phosphate; SDH, succinate dehydrogenase; SSP, serine synthesis

pathway; TCA, tricarboxylic acid cycle; V, complex V.

of impaired mitochondrial function (30). Indeed, several cancers
are associated with mutations in TCA cycle enzymes, supporting
this hypothesis (47, 48) (Figure 1). However, cancer cells also
prefer glycolysis when mitochondrial function is intact (49, 50),

suggesting that glycolysis confers other advantages to cancer
cells. As several glycolytic intermediates can branch off into key
biosynthetic pathways to generate nucleotides, amino acids and
fatty acids, one of the main functions of the increased glycolytic
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rates is likely to meet the increased biosynthetic needs of cancer
cells (4).

One of the pathways that branches of glycolysis is the pentose
phosphate pathway (PPP), which both sustains the biosynthesis
of macromolecules and maintains redox homeostasis (Figure 1)
(51–53). The PPP produces ribose-5-phosphate for nucleotide
synthesis, and regenerates NADPH to provide reducing power
for glutathione and thioredoxin, both of which can capture
the reactive oxygen species (ROS) that are produced during
rapid cell proliferation. Glucose-6-phosphate dehydrogenase
(G6PD), which catalyzes the first step of the PPP, is upregulated
in numerous cancer cells, underlining the importance of the
PPP in cancer metabolism (53, 54). In addition, the glycolytic
intermediate 3-phosphoglycerate is used for the synthesis of the
non-essential amino acid serine and downstream metabolites
through the serine synthesis pathway (SSP; Figure 1). The SSP
has emerged as a key pathway in cancer metabolism. Serine is
needed to synthesize reduced glutathione and phospholipids and
also plays a major role in the one-carbon cycle, which sustains
both the biosynthesis of nucleotides and NADPH regeneration
(55, 56). In line with this role, the SSP is often highly active
in cancer cells and 3-phoshoglycerate dehydrogenase (PHGDH),
the first and rate-limiting enzyme in this pathway, is frequently
upregulated in different cancers (57, 58). The influx of glycolytic
intermediates into the SSP and PPP can also be regulated
by the glycolytic enzymes PKM2 (59–62) and PGAM1 (63).
Lower activity of these enzymes results in accumulation of
upstreammetabolites, which then enter the SSP and PPP. Cancer
cells thus employ various strategies to tune the diversion of
glycolytic metabolites into biosynthetic pathways, underscoring
the importance of glycolytic regulators in cancer metabolism (4).

Rewiring of Glutamine Metabolism in the
Mitochondria
As intermediates of the TCA cycle are also building blocks for the
biosynthesis of lipids and nucleotides (Figure 1), the TCA cycle
is as important as glycolysis for cancer cell anabolism. Citrate can
be used for fatty acid synthesis via fatty acid synthase (FASN),
which has shown to be important in cancer cells [reviewed in
(64)]. Aspartate, which is synthesized from oxaloacetate and
glutamate, is important for nucleotide synthesis, making the TCA
cycle important for DNA synthesis (65). In addition, malate
can exit the TCA cycle via malic enzyme (ME), resulting in the
production of NADPH (Figure 1) (66).

Because many TCA intermediates are shuttled into
biosynthetic pathways, a new supply of carbons is needed
to maintain TCA cycle activity, a process called anaplerosis.
One of the most important anaplerotic pathways in cancer is
glutaminolysis, in which glutamine is used to replenish the
TCA cycle. Indeed, glutamine is the second most consumed
metabolite in proliferating cells in cell culture (67, 68). It has
been shown that glutamine is needed for protein-, fatty acid-, and
nucleotide synthesis, but is also important for redox homeostasis
and protein O-GlcNAcylation (66, 69, 70). As a result, many
tumor cells are more dependent on glutamine as compared to
healthy cells (71, 72).

After glutamine enters the cell, it is converted to glutamate by
glutaminase (GLS). Glutamate in turn can be further converted
to α-ketoglutarate that can subsequently enter the TCA cycle
(Figure 1). Via glutamate, glutamine is used for the production
of the amino acids aspartate and proline. Both these amino acids
can be limiting for proliferation in cancer cells (65, 73, 74).
In addition, glutathione cysteine ligase (GCLC), which converts
glutamate to GSH, is highly expressed in several cancers (75, 76).
These examples underscore the importance of glutamine and
downstream pathways in cancer growth.

However, a range of other metabolites has also been described
to fuel the TCA cycle in cancer. Fatty acids are not only important
components of membranes, but are also energy-rich compounds
that can be degraded to provide ATP via β-oxidation (77).
Carnitine palmitoyl transferase 1 (CPT1) conjugates fatty acids
with carnitine to translocate them to mitochondria, where β-
oxidation takes place (Figure 1). CPT1C, an atypical isoform of
CPT1, is highly expressed in cancers and promotes β-oxidation
and ATP production (78). In addition, lactate (79), acetate (80),
and branched chain amino acids (BCAA) (81) can provide the
TCA cycle with carbons, illustrating the complexity of cancer
metabolism.

Interestingly, TCA cycle enzymes are emerging as mediators
of malignant transformation in cancer. Fumarate hydratase (FH)
and succinate dehydrogenase (SDH) are tumor suppressors
(Figure 1). Loss-of-function mutations in these genes are
associated with tumorigenesis [reviewed in (82)] and result in
the accumulation of succinate and fumarate, respectively, both
of which function as oncometabolites (83, 84). Mutations in
isocitrate dehydrogenase 1 (IDH1) and IDH2 are present in
many cancers (85, 86) and result in the production of the
oncometabolite 2-hydroxyglutarate (87). The accumulation of
these oncometabolites promote cancer in various ways, including
stabilization of HIF1 and DNA hypermethylation via inhibition
of α-ketoglutarate-dependent dioxygenases [as reviewed in (48,
84)].

METABOLISM AND DRUG RESISTANCE

It is becoming increasingly clear that changes in metabolism
influence drug response to established first-line chemotherapy
in several cancers, identifying metabolic rewiring as a novel,
and important mechanism of adaptive resistance. Table 1 gives
a comprehensive overview of studies linking metabolism to drug
resistance in cancer.

In this section, we provide a more in-depth analysis of the
four cancer-drug combinations on which most research has
been done: Proteasome inhibitors for multiple myeloma, EGFR
inhibitors for breast cancer, cisplatin for lung and ovarian cancer,
and BRAF inhibitors for melanoma.

Metabolism Is Linked to Anticancer Drug
Resistance to Proteasome Inhibitors
Proteasome inhibitors are a cornerstone in the treatment of
multiple myeloma (143, 144), with bortezomib being the first
clinically available proteasome inhibitor. Proteasome inhibition
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TABLE 1 | Overview of metabolic alterations associated with drug resistance in

cancer.

Cancer

type

Pathways

associated

with

resistance

Therapy Target in

resistance

(proposed

therapy)

References

MULTIPLE MYELOMA

Glycolysis Bortezomib LDHA, PDK1 (88–91)

Mitochondrial

energy

metabolism

Bortezomib,

Carfilzomib

SOD2 (2ME), (92–95)

Redox

metabolism

Bortezomib – (91, 93, 96)

Glutaminolysis Bortezomib,

Carfilzomib

GLS (CB-839) (92)

Mevalonate

pathway

Bortezomib HMG-CoA

(simvastatin)

(97)

Serine

synthesis

Bortezomib PHGDH (91)

Pentose

phosphate

pathway

Bortezomib – (91)

LUNG CANCER

Mitochondrial

energy

metabolism

Cisplatin – (98)

Glutaminolysis Cisplatin xCT antiporter

(riluzole)

(98, 99)

Redox

metabolism

Cisplatin ASS, TRX1

(Elesclomol),

GCLC

(100–103)

Glycolysis Cisplatin,

Paclitaxel,

Carboplatin

HK2 (2-DG),

mTOR, PDK2

(DCA), PKM2

(metformin)

(99, 104–

106)

OVARIAN CANCER

Glycolysis Cisplatin 2-DG (107, 108)

Pentose

phosphate

pathway

Cisplatin G6PD (6-AN) (107, 109)

Redox

metabolism

Cisplatin GCLC (BSO),

TRX (auranofin)

(107, 108)

Fatty acid

synthese

Cisplatin FASN (orlistat) (110)

Glutaminolysis Cisplatin,

Paclitaxel

GLS (BPTES) (110, 111)

BREAST CANCER

Fatty acid

synthese

Adriamycin FASN (Orlistat) (112)

Redox

metabolism

Tamoxifen GCLC (BSO) (75, 113)

Glycolysis Lapatinib,

Paclitaxel,

Trastuzumab,

Tamoxifen

HK (2-DG)

LDHA

(oxamate)

(52, 114–

117)

Mitochondrial

energy

metabolism

Lapatinib,

Tamoxifen

ERRα, NQO1 (113, 118,

119)

(Continued)

TABLE 1 | Continued

Cancer

type

Pathways

associated

with

resistance

Therapy Target in

resistance

(proposed

therapy)

References

MELANOMA

Mitochondrial

energy

metabolism

BRAF inhibitor ETC (esclomol) (120–123)

Glutaminolysis BRAF inhibitor GLS (BPTES) (120)

Arginine

metabolism

BRAF inhibitor ASS1 (arginine

starvation)

(124)

Glycolysis BRAF inhibitor

(Vemurafenib)

PDK1 (DCA) (121, 125)

Redox

Metabolism

BRAF inhibitor

(Vemurafenib)

NAMPT (126)

PANCREATIC CANCER

Glycolysis Gemcitabine FBP1 (127, 128)

Fatty acid

synthesis

Gemcitabine FASN (orlistat) (129, 130)

Glutaminolysis Gemcitabine (131)

Redox

metabolism

Gemcitabine xCT antiporter (132)

Pyrimidine

synthesis

Gemcitabine DODH

(leflunomide)

(128)

LEUKEMIA

Glycolysis Daunorubicin,

Imatinib

PFK2 (133, 134)

Mitochondrial

energy

metabolism

Imatinib,

Cytarabine

– (135, 136)

HEPATOCELLULAR CARCINOMA

Glutaminolysis Sorefanib GLS1

(BPTES),

PPARδ

(137)

SQUAMOUS CELL CARCINOMA

Glycolysis Cisplatin, radiation

therapy

PKM2 (138, 139)

Redox

metabolism

Cisplatin, radiation

therapy

(138, 139)

Nucleotide

metabolism

Gemcitabine (metformin) (140)

Fatty acid

synthesis

Radiation therapy FASN (orlistat) (139)

COLON CANCER

Glycolysis Multiple

chemotherapeutic

agents

(141)

ANAPLASTIC THYROID CANCER

Pentose

phosphate

pathway

Doxorubicin 6PGD (142)

results in a disbalance between the production and degradation
of proteins and eventually causes apoptosis in malignant cells
via multiple pathways, including overproduction of ROS (145–
147). Although bortezomib therapy prolongs survival, some
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patients show intrinsic resistance to therapy, while others develop
resistance during treatment (21, 147, 148). Bortezomib resistance
is associated with mutations in the proteasomal bortezomib-
binding pocket and upregulation of the proteasomal machinery,
both of which lower the efficacy of the drug (149–154). However,
intracellular concentrations of bortezomib seem to correlate with
proteasome inhibition, but not cytotoxicity (155). This suggests
that adaptive resistance mechanisms are involved, which allow
cells to proliferate even when proteasome function is impaired.
Indeed, recent studies suggest that compensating mechanisms
downstream of the proteasome are altered in bortezomib
resistance, such as the unfolded protein response and vesicular
exocytosis of ubiquitinated proteins (145, 156–159).

Several recent studies describe that metabolic processes are
also involved in mediating sensitivity toward bortezomib (see
Table 1, Figure 2A). In particular, pathways involved in energy
metabolism and the anti-oxidant response are associated with
bortezomib resistance (88–90, 92–95). For example, bortezomib-
resistant cells have higher mitochondrial function and expression
of mitochondrial genes (94). Proteomic screening of bortezomib-
resistant and -sensitive cell lines also showed that resistant
cells have increased levels of proteins involved in mitochondrial
function and the generation of reducing equivalents (93). These
increased levels of mitochondrial proteins are accompanied with
higher activity of OXPHOS in proteasome inhibitor resistant
cell lines (92). In addition, higher expression levels of genes
related to OXPHOS were found in patients that responded
poorly to bortezomib (92). Together, these studies suggest that
bortezomib-resistant cells are more dependent on OXPHOS than
–sensitive cells, making it a promising target for bortezomib-
resistance.

In addition, bortezomib-resistant cells have higher expression
of superoxide dismutase 2 (SOD2) which is important for
mitochondrial ROS clearing (94). The combination of SOD2
inhibition and bortezomib induces cell death in bortezomib-
resistant multiple myeloma cells via mitochondrial ROS
overproduction (95). Because oxidative stress plays a role in the
mechanism of action of bortezomib, it is likely that resistance
is accompanied with increased antioxidant capacity. In line
with this, high intracellular glutathione levels protect cells from
bortezomib-induced apoptosis (96). Other antioxidant-related
pathways are also upregulated in bortezomib-resistant cells, such
as the PPP and SSP (91). High levels of PHGDH were found
in bortezomib-resistant cells and starving multiple myeloma
cell lines for serine during bortezomib treatment enhanced
bortezomib toxicity (91). This demonstrates the importance of
serine metabolism in bortezomib resistance.

Finally, several studies show that bortezomib resistance is
accompanied with higher glycolytic activity (88, 89, 91, 93).
Soriano et al. showed that proteasome inhibitor-resistant cells
display higher levels of glycolytic enzymes and higher glycolytic
rates than parental cell lines (93). Higher glycolytic activity has
also been found to lower bortezomib sensitivity under hypoxic
conditions, while inhibition of LDHA enhances sensitivity of
bortezomib under these conditions (89). In addition, LDHA
expression correlated to poor prognosis in multiple myeloma
patients (88). Zaal et al. showed that bortezomib-resistant cells

have a higher uptake of extracellular glucose, which is used for
biosynthetic pathways branching off from glycolysis to support a
higher anti-oxidant capacity (91). This is in line with findings that
showed that dichloroacetate (DCA), which inhibits PDK1 and
thereby promotes pyruvate entry into the TCA cycle, increases
sensitivity of multiple myeloma cells to bortezomib both in vitro
and in myeloma-bearing mice (88, 90).

Metabolic Rewiring in Lung and Ovarian
Cancer in Response to Cisplatin Treatment
Cisplatin is a widely used chemotherapeutic agent in several
types of cancer, including lung cancer and ovarian cancer.
Cisplatin interacts with reducing equivalents (e.g., GSH) and
DNA, resulting in increased ROS and DNA damage, which
eventually leads to apoptosis (160). Many mechanisms involved
in cisplatin resistance have been described, including reduced
cisplatin uptake, increased DNA repair mechanisms and anti-
apoptotic pathways [reviewed in (20, 160)]. Several studies
suggest that metabolic rewiring in cisplatin-resistant cells is
involved in redox buffering in both lung cancer and ovarian
cancer cells to counteract cisplatin therapy (Table 1, Figure 2B)
(98, 100, 101, 103, 107). Cisplatin-resistant lung cancer cells have
higher levels of ROS, in part due to low levels of intracellular
thioredoxin (100), but display higher levels of GSH and GCLC
(20, 103), likely to counteract the high ROS levels induced by
cisplatin (161). Catanzaro et al. showed that cisplatin-resistant
ovarian cancer cells have higher levels of GSH and G6PD and
that PPP inhibition with 6-aminonicotinamide (6-AN) increases
cisplatin cytotoxicity in these resistant cells (107, 109). In line
with this, several studies show that cisplatin-resistant cells are
vulnerable for ROS inducing agents. Cisplatin-resistant cells lung
cancer cells have been reported to bemore sensitive to elesclomol,
an agent that is known to increase ROS (98). In addition, the xCT-
cysteine/glutamate pump that provides cells with cystine for GSH
synthesis, is upregulated in these cisplatin-resistant cells, and they
are more sensitive to the xCT-cysteine/glutamate pump inhibitor
riluzole as compared to their parental counterpart (98). Also,
inhibition of GSH biosynthesis with buthionine sulfoximine
(BSO) enhances the effect of cisplatin in breast cancer cells (75).

Cisplatin-resistant cells have an altered energy metabolism
compared to sensitive cells, but the findings on glycolysis and
oxidative phosphorylation in lung and ovarian cancers are
opposing. Cisplatin-resistant ovarian and cervical cancer cells
were found to have higher rates of glycolysis and reduced
mitochondrial activity compared to their cisplatin-sensitive
counterparts. This leads to a higher sensitivity of resistant
ovarian cancer cells to glucose starvation or to treatment with
2 deoxyglucose (2-DG), a competitive inhibitor of HK (107,
108). Cisplatin-resistant lung cancer cells, on the other hand,
have lower rates of glycolysis and instead rely on oxidative
phosphorylation (98, 99). These lung cancer cells have lower
levels of HK1 and HK2 (99), in accordance with the observation
that cisplatin treatment itself lowers HK expression (162).
Cisplatin-resistant lung cancer cells also display lower glucose
uptake and lower levels of LDHA and lactate production as
compared to sensitive parental cell lines (98), all indicative of
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FIGURE 2 | Metabolic pathways involved in anticancer drug resistance in multiple myeloma (A), lung- and ovarian cancer (B), breast cancer (C), and melanoma (D).

Metabolic enzymes that are associated with drug resistance are shown in purple. Metabolic inhibitors that can be used to target drug-resistant cancers are depicted in

red. 2-DG, 2-deoxyglucose; 2ME, 2-methoxyestradiol; 6-AN, 6-aminonicotinamide; ATP, adenosine triphosphate; BPTES,

bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide; BSO, buthionine sulphoximine; FASN, fatty acid synthase; G6PDH, glucose-6-phosphate dehydrogenase;

GCLC, glutamate-cysteine ligase; GLS, glutaminase; HK2, hexokinase 2; I, complex I; II, complex II; III, complex III; IV, complex IV; LDHA, lactate dehydrogenase A;

LDHB, lactate dehydrogenase B; mTOR, mammalian target of rapamycin; NQO1, NAD(P)H quinone dehydrogenase; PDH, pyruvate dehydrogenase complex; PDK1,

pyruvate dehydrogenase kinase 1; PHGDH, 3-phosphoglycerate dehydrogenase; PPP, pentose phosphate pathway; R5P, ribose 5-phosphate; ROS, reactive oxygen

species; SOD2, superoxide dismutase 2; SSP, serine synthesis pathway; TCA, tricarboxylic acid cycle; V, complex V; xCT, glutamate/cysteine xCT antiporter.
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a lower glycolytic activity. In line with lower glycolysis rates,
cisplatin-resistant lung cancer cells are not sensitive to glucose
starvation under normal growth conditions. However, under
hypoxic conditions, these cells are more vulnerable for 2-DG
treatment as compared to the parental cells. As cells depend on
glycolysis for their energy production in the absence of oxygen,
the lower levels of HK in cisplatin-resistant cells likely makes
themmore vulnerable for 2-DG under these conditions (99). The
lower glycolytic activity in cisplatin-resistant lung cancer cells is
accompanied by higher rates of oxidative phosphorylation and
mitochondrial activity (98–100), as well as a higher dependence
on glutamine (98). Also β-oxidation of fatty acids has been
described to fuel the TCA-cycle in cisplatin-resistant lung
cancer cells (99, 100). In line with these findings, inhibition
of glutaminase sensitized cisplatin-resistant ovarian cancers to
chemotherapy (110, 111) and also the inhibition of FASN with
orlistat enhanced the efficacy of cisplatin in ovarian cancers (110).

Interestingly, the metabolic reprogramming in lung cancer
cells seems to some extent specific for cisplatin. Lung cancer
cells that are resistant to carboplatin, which has a similar mode
of action, are more dependent on glycolysis (106). In addition,
paclitaxel-resistant lung cancer cells show higher expression
of PDK2 as compared to their parental cells (105). As a
result, these resistant cells are more dependent on glycolysis
than OXPHOS and could be sensitized to paclitaxel through
PDK2 inhibition. These examples highlight the heterogeneity
of metabolic alterations in response to drugs and indicate
that these can not only be tumor specific, but also drug
specific.

Metabolic Alterations Involved in
Drug-Resistant Breast Cancers
Many breast cancers overexpress the receptor tyrosine kinase
ErbB2 and several drugs that target ErbB2, such as trastuzumab
and lapatinib, are used in the treatment of breast cancer. Several
mechanisms of resistance against these targeted therapies have
been described, including the re-activation of downstream kinase
pathways and oncogenic signaling (112, 163, 164). In addition,
metabolism pays a role in mediating resistance against tyrosine
kinase inhibitors.

Increased glycolysis is a common feature of drug-resistant
breast cancer cells irrespective of the type of chemotherapeutical
agent used (Table 1, Figure 2c), but this increased activity is
regulated in different ways in different resistant breast tumors.
For example, several studies have found that resistance to
lapatinib is associated with increased glycolysis (114, 115).
Lapatinib-resistant SKBR3 breast cancer cells showed increased
expression of genes associated with glucose deprivation
compared to sensitive cells, which correlated to poor outcome
in patients. These genes included glucose transporters and
glycolytic enzymes, as well as alternative pathways for energy
production, such as β-oxidation (114). Higher glycolytic activity
and an increased sensitivity toward inhibition of glycolysis
were also found in lapatinib-resistant BT474 breast cancer cells
using a multi-omics approach involving (phospho)proteomics
and metabolomics (115). Interestingly, the higher glycolytic

rates in these BT474 cells were not resulting from higher
expression levels of glycolytic enzymes, but merely from
changes in the phosphorylation state of glycolytic enzymes,
showing that post-translational modifications alone can
regulate glycolytic activity. In trastuzumab-resistant ErbB2-
positive breast cancer cells, increased glycolytic activity is
mediated by heat shock factor 1 and LDHA and inhibition
of glycolysis with 2-DG and the LDH inhibitor oxamate
resensitizes resistant cells to trastuzumab (117). Finally, in
paclitaxel-resistant breast cancer cells, synergistic effects
on promoting apoptosis were observed when LDHA was
genetically downregulated or when paclitaxel was combined with
oxamate (116).

Interestingly, Park et al. showed that the nuclear receptor
estrogen-related receptor alpha (ERRα) regulates a metabolic
switch to allow breast cancer cells to use lactate as a substrate
for mitochondrial respiration in the absence of glucose. The
ability to bypass glycolysis makes these cells less vulnerable for
PI3K/mTOR inhibitors in the presence of lactate and ERRα

antagonists are able to restore drug efficacy (119), underscoring
the importance of nutrient availability drug efficacy. The
importance of ERRα in regulating metabolism is further
emphasized by Deblois et al., who showed that lapatinib-resistant
breast cancer cells restore ERRα levels through reactivation of
mTOR signaling, resulting in increased glutamine metabolism,
mitochondrial energy production and anti-oxidant capacity
(118). Moreover, in a HER2-induced mammary tumor mouse
model, targeting ERRα counteracts the metabolic alterations
associated with lapatinib resistance and overcomes resistance
to this drug (118). Targeting ERRα is therefore emerging as a
strategy to increase the sensitivity of drug-resistant breast cancer
cells in the context of metabolism.

Another metabolic aspect that is observed in drug-resistant
breast cancer cells is increased levels of OXPHOS, coupled to
higher levels of oxidative stress. For example, tamoxifen-resistant
MCF-7 breast cancer cells display increased mitochondrial
metabolism and ATP production (113). The biguanides
metformin and phenformin, which inhibit ETC, selectively
kill breast cancer stem cells that were resistant to standard
chemotherapy (165), underscoring the importance of OXPHOS
activity in drug response. This higher mitochondrial activity
may also explain the observation that tamoxifen-resistant breast
cancer cells display lower levels of GSH (113), as these cells
probably experience higher levels of oxidative stress. In line with
this, tamoxifen-resistant cells have higher expression of NADPH
dehydrogenase 1 (NQO1) and GCLC, both involved in the
defense against oxidative stress. Moreover, transduction of these
genes intoMCF-7 cells results in a tamoxifen-resistant phenotype
and NQO1 mRNA levels associate with disease progression in
patients that received endocrine therapy. As a result, NQO1
inhibition with dicoumarol restored tamoxifen sensitivity in
tamoxifen-resistant breast cancer cells (113). Increased GSH
synthesis was also observed in PI3K/Akt driven breast cancer
and required for resistance to oxidative stress, Inhibition of
GSH biosynthesis with BSO synergized with cisplatin to induce
regression of in PI3K/Akt driven breast cancer (75). Together,
these results suggest that an increased anti-oxidant defense
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mechanism drives resistance in breast cancer to various types of
chemotherapy.

Metabolic Contributions to BRAF Inhibitor
Resistance in Melanoma
Most cutaneous melanomas harbor activating mutations in
the protein kinase BRAF, which makes inhibitors that target
mutant BRAF promising agents to treat melanoma patients.
In terms of metabolism, melanomas that express mutant
BRAF and that developed resistance against BRAF inhibitors
display increased activity of mitochondrial oxidative metabolism,
increased dependency on mitochondria for survival and higher
levels of ROS (Table 1, Figure 2D) (120–123, 126). For
example, treatment of mutant BRAF melanoma cells with the
BRAF inhibitor vemurafenib results in increased mitochondrial
respiration. Inhibition of mitochondrial respiration enhances
vemurafenib-induced cell death, suggesting that increased
mitochondrial activity serves as a defense mechanism against
the drug. At the same time, increased levels of ROS that
accompany the increased respiration renders these cells more
vulnerable for further oxidative stress induced by exogenous
agents such as elesclomol (122). Baenke et al. showed that the
increased dependency on mitochondrial respiration is associated
with a metabolic switch that makes cells more dependent on
glutamine rather than glucose. Hence, resistant BRAF mutant
melanoma cells are more sensitive to the GLS inhibitor BPTES,
which reduces ATP levels in resistant cells but not in parental
cells. Moreover, BPTES enhances the anti-tumor activity of
BRAF inhibitors, underscoring the importance of glutamine in
mediating BRAF inhibitor resistance (120). A second metabolic
switch in BRAF inhibitor-resistant melanoma cells was found on
the level of PDK (121, 125). PDK inhibition reduced viability
of BRAF inhibitor resistant cells, likely by increasing pyruvate
influx into the TCA cycle and thereby mitochondrial ROS (121).
The susceptibility to higher levels of oxidative stress was also
observed in other tumor types that harbored amutation in BRAF,
as mutant BRAF colorectal cancer cells are prone to cell death
after exposure to the oxidized form of vitamin C, which causes
oxidative stress via GSH depletion (166).

TARGETING DRUG RESISTANCE
THROUGH THE MANIPULATION OF
METABOLISM

From the studies discussed above, it becomes apparent that
anticancer drug resistance to first-line chemotherapy is often
linked to metabolic alterations and consequently, that these
may be targeted to overcome drug resistance or to enhance the
efficacy of current chemotherapy. Among the different drug-
resistant cancers described, pathways involved in redox and
energy metabolism are frequently altered (Table 1, Figure 2),
making them promising pathways to target drug-resistant
cancers.

Resistance to several anticancer agents, including proteasome
inhibitors, cisplatin, EGFR inhibitors and BRAF inhibitors, is
accompanied with increased activity of pathways involved in

redox balance, suggesting that interfering with redox metabolism
can improve response to a wide range of drugs and aid
in overcoming multidrug resistance. A majority of anticancer
agents induce apoptosis by increasing oxidative stress (96, 101,
132, 137, 167–169) and it is likely that drug-resistant cells
in general increase their anti-oxidant capacity to counteract
the effect of drug treatment, albeit via different pathways.
But although an increased anti-oxidant capacity seems to
be a common characteristic of drug-resistant cells, metabolic
profiles are altered in drug-specific manners. For example,
bortezomib- and sorafenib-resistant cells as well as cisplatin-
resistant ovarian cancers rely more on NADPH production
via the PPP (91, 107, 137), while tamoxifen-resistant cells
and cisplatin-resistant lung cancers have higher activity of
GSH synthesis (75, 103, 113). The fact that several different
pathways are involved suggests not only that a tailored
approach may be needed to overcome resistance to specific
drugs, but also that these redundant pathways may protect
cancer cells to a large extent from inhibition of one specific
pathway.

In addition, many studies show an association between drug
resistant cells and the Warburg effect, suggesting that a high
glycolytic rate helps cancer cells to survive anticancer treatment,
such as bortezomib, cisplatin and lapatinib (89, 116, 121, 125,
170). As a consequence, glycolytic inhibition with 2-deoxyglucose
could be a novel strategy to overcome drug resistance. It has been
postulated that higher glycolytic rates may lower drug efficacy
through the increased secretion of lactate and acidification of
the extracellular space, as some drugs are not stable under
acidic conditions (171, 172). High glycolytic rates in drug-
resistant cells are often accompanied with higher expression
of glycolytic regulators such as PDK1 and LDHA, making
these enzymes interesting targets for drug-resistant cancers. In
contrast, bortezomib- and BRAF inhibitor-resistant tumors rely
more on mitochondrial activity fuelled by glutamine rather than
glucose (92, 98, 120). Interfering with glutamine metabolism, via
either inhibition of glutaminolysis or glutamine uptake, could be
a strategy for drug-resistant tumors that rely on glutamine (173,
174). In addition, as glutamine is mainly used for mitochondrial
energy production, inhibition of the ETC with biguanides, such
as metformin and phenformin, holds great promise in cancer
therapy and drug resistance (173, 175).

Finally, most studies on metabolism-mediated drug resistance
have so far focused on glycolysis and the TCA cycle and on
the role glucose and glutamine. But fatty acids and branched
chain amino acids can also provide energy and are also linked
to tumorigenesis (77, 176). Interesting opportunities to target
drug resistance may therefore also be found beyond glycolysis
and the TCA cycle. FASN correlates with poor prognosis in
various types of cancer and also interferes with drug efficacy
(77). FASN overexpression causes resistance to the anticancer
drugs adriamycin and mitoxantrone in breast cancer cells (112),
gemcitabine-resistant pancreatic cells (129), cisplatin-resistant
ovarian cancer cells (110), and radiotherapy resistant head and
neck squamous cell carcinomas (139). Orlistat, a FASN inhibitor,
increases the sensitivity to all drugs, suggesting that FASN can be
a new target in drug resistant cancers. Amino acid metabolism
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may also yield promising targets to treat drug-resistant tumors.
Cancer cells can be dependent on specific amino acids, such
as serine (58, 177), proline (74, 178), aspartate (65, 73), and
arginine (179). Although the role of amino acid metabolism
in drug resistance is largely unexplored, studies suggest that
amino acid availability could be important in drug response
and the development of drug resistance. For example, BRAF
inhibitor-resistant melanoma cells are more sensitive to arginine
deprivation as compared to parental cells (124). Finally, serine
synthesis is associated with bortezomib resistance in multiple
myeloma and serine starvation enhanced the cytotoxic effect
of bortezomib (91). These studies not only underscore the
complexity of cancer metabolism, but also suggest that the
exploration of amino acid metabolism may be a promising
avenue to identify novel targets to overcome drug resistance.

CONCLUSIONS

It is clear that understanding cancer metabolism can improve
cancer therapy, as exemplified by the widespread use of 18-
fluorodeoxyglucose, a glucose analog that exploits the Warburg
effect in PET imaging for cancer diagnosis, treatment, and
prognosis (180). The potential of metabolic inhibitors in cancer
is also illustrated by the use of antimetabolites, such as 5-
fluorouracil and methotrexate, which have been used for decades
to treat cancers (181), even though their anticancer effects were
only coupled to metabolic interference much later (14). Another
example of a successful metabolic drug is L-asparaginase, which
is used in the treatment of acute lymphoblastic leukemia (182).
The recent surge in knowledge in the field of cancer metabolism
has sparked increased interest to exploit the altered metabolism

of cancer cells to find novel targets for therapy. As a result,
compounds have been developed that specifically target the
unique metabolism of cancers. Several of these compounds
targeting for example glycolysis, TCA cycle and OXPHOS are
now being tested in clinical trials (13, 14, 160, 183).

In this review, we discussed specific metabolic programs
and adaptations that exist in drug-resistant tumors, how these
adaptations depend both on the drug and the origin of the tumor
and how they contribute to drug resistance. From these studies,
it becomes apparent that for many first-line chemotherapeutic
agents, combinational treatments with metabolic drugs hold
great promise to increase drug efficacy. Moreover, a better
understanding of the altered metabolism in different drug
resistant cancers is essential to further improve cancer therapy.
Such understanding will provide insights into the molecular
mechanisms of resistance to identify novel metabolic targets that
can be used for (combinational) therapy. Finally, this knowledge
may also lead to prognostic biomarkers for drug response, which
could advance current therapy by predicting drug response based
on the metabolic state of a tumor and thereby contribute toward
more efficacious personalized medicine.
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