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In order to determine the role of human herpesvirus 6 (HHV-6) in human disease,
several confounding factors, including methods of detection, types of controls, and the
ubiquitous nature of the virus, must be considered. This is particularly problematic in the
case of cancer, in which rates of detection vary greatly among studies. To determine what
part, if any, HHV-6 plays in oncogenesis, a review of the literature was performed. There
is evidence that HHV-6 is present in certain types of cancer; however, detection of the
virus within tumor cells is insufficient for assigning a direct role of HHV-6 in tumorigenesis.
Findings supportive of a causal role for a virus in cancer include presence of the virus in
a large proportion of cases, presence of the virus in most tumor cells, and virus-induced
in-vitro cell transformation. HHV-6, if not directly oncogenic, may act as a contributory
factor that indirectly enhances tumor cell growth, in some cases by cooperation with
other viruses. Another possibility is that HHV-6 may merely be an opportunistic virus that
thrives in the immunodeficient tumor microenvironment. Although many studies have
been carried out, it is still premature to definitively implicate HHV-6 in several human
cancers. In some instances, evidence suggests that HHV-6 may cooperate with other
viruses, including EBV, HPV, and HHV-8, in the development of cancer, and HHV-6 may
have a role in such conditions as nodular sclerosis Hodgkin lymphoma, gastrointestinal
cancer, glial tumors, and oral cancers. However, further studies will be required to
determine the exact contributions of HHV-6 to tumorigenesis.
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BACKGROUND

Human herpesvirus-6A and—6B (HHV-6A and HHV-6B) are linear, double-stranded DNA viruses
and members of betaherpesvirinae, along with CMV and HHV-7. HHV-6A and HHV-6B were
identified as two distinct herpesviruses as early as 1992 (1), and in 2014, they were formally classified
as two separate species (2). While less is known about the epidemiology of HHV-6A, HHV-6B is
a ubiquitous virus, with over 90% of the human population infected within the first 3 years of
life. In 1986, HHV-6 was isolated from the peripheral blood mononuclear cells of AIDS-associated
non-Hodgkin lymphomas by Robert Gallo and associates at the National Cancer Institute in their
search for undiscovered herpesviruses that might be causing cancer in HIV-infected patients (3).

Frontiers in Oncology | www.frontiersin.org

1 November 2018 | Volume 8 | Article 512


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2018.00512
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2018.00512&domain=pdf&date_stamp=2018-11-13
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dharam_ablashi@hhv-6foundation.org
https://doi.org/10.3389/fonc.2018.00512
https://www.frontiersin.org/articles/10.3389/fonc.2018.00512/full
http://loop.frontiersin.org/people/466807/overview
http://loop.frontiersin.org/people/61707/overview
http://loop.frontiersin.org/people/596666/overview
http://loop.frontiersin.org/people/129960/overview
http://loop.frontiersin.org/people/591883/overview
http://loop.frontiersin.org/people/174507/overview
http://loop.frontiersin.org/people/588225/overview

Eliassen et al.

Human Herpesvirus 6 and Malignancy

Soon afterward, it was found that both HHV-6-transfected
NIH3T3 fibroblasts (4) and human primary foreskin epidermal
keratinocytes transfected with HHV-6 subgenomic clones
PZV714 (5) and PZVB70 (6) produced tumors when injected
into nude mice (7). The PZV714 and PZVB70 tumors were
cytogenetically abnormal, with loss of chromosomes 12 and
13 and acquisition of extra marker chromosomes. These early
results suggested that HHV-6 may be oncogenic in some settings.
Decades later, several studies identified HHV-6A and HHV-6B
(2) within a wide variety of tumors, including glioma, oral cancer,
cervical cancer, adrenocortical tumors, gastrointestinal cancer,
classical Hodgkin lymphoma, and non-Hodgkin lymphoma, as
summarized in Tables 1-8 (99).

Both HHV-6A and HHV-6B share similar replication
cycles: immediate-early (IE) proteins are synthesized within
a few hours post-infection, which regulate the expression
of the early and late genes. It takes ~72h to complete a
replication cycle (i.e., from infection to new virion release).
It is now known, however, that these two species utilize
distinct receptors for cellular entry: HHV-6A uses CD46,
a ubiquitous complement regulatory protein, whereas HHV-
6B primarily uses CD134, a molecule expressed only on
activated T cells (100). Like other herpesviruses, HHV-6
displays broad cellular tropism, although it replicates most
efficiently in CD4% T cells in vitro. As is the case for other
oncogenic human herpesviruses, including Epstein-Barr virus
(EBV) and HHV-8, also known as Kaposi’s sarcoma-associated
herpesvirus (KSHV), HHV-6 establishes latency in lymphocytes
and possesses a strong immunomodulatory capacity that can
trigger both immunosuppressive and chronic inflammatory
pathways (101).

HHV-6A/B are unique among human herpesviruses in their
ability to integrate into the telomeres of chromosomes as a form
of latency. They share significant homology with a neoplastic
avian alpha herpesvirus, MareK’s disease virus (MDV), which also
integrates into the subtelomeric region of the chromosome and
causes an aggressive T-cell lymphoma and immunosuppression
in domestic chickens (102, 103). Approximately 1% of the
world’s population carries inherited chromosomally integrated
HHV-6 (iciHHV-6), with the full genome integrated into the
subtelomeric region of the chromosome in every nucleated cell
(104). These integrated genomes can be activated by drugs
(105), and immunocompromised patients with iciHHV-6 can
develop symptomatic infections from the integrated strain
(106). Inherited ciHHV-6 can affect telomeric stability (107),
and telomeric disruption has been associated with hematologic
diseases, such as aplastic anemia (108). Recent studies suggest
that iciHHV-6 can be reactivated by HDAC inhibitors and
can be horizontally transmitted through liver transplantation
(109, 110).

Even if not directly oncogenic, HHV-6 may contribute to
oncogenesis in cooperation with other viruses, such as EBV and
human papillomavirus (HPV) (99). The molecular basis of this
phenomenon is only partially understood. Herein, we review
the wide range of neoplastic conditions associated with HHV-6
infection and the possible mechanisms by which HHV-6 might
contribute to tumorigenesis.

METHODOLOGICAL LIMITATIONS

The early use of such methods as serological testing and
qualitative PCR represented pioneering steps in elucidating the
roles of HHV-6 in a range of diseases, including several types
of cancer. Data resulting from these techniques was largely
inconclusive, and unfortunately, subsequent studies employing
more targeted approaches, such as IHC and ISH, have not been
carried out as frequently as would be needed to gain a better
understanding of HHV-6 in cancer. Consequently, the progress
of research in this field has been slow. As a ubiquitous virus,
HHV-6 can often be found at a low viral load in the blood,
latent or slightly reactivated without deleterious effects. It also
tends to reactivate during periods of immunosuppression and
stress. Thus, it is difficult to distinguish background reactivation
from pathological reactivation using serological and qualitative
PCR approaches that do not provide information on viral load,
viral transcription, viral species, and localization of the virus. In
tissues, HHV-6 may be found in infiltrating lymphocytes; because
of this, staining techniques are preferred over whole-tissue
PCR, as infection of tumor cells can thereby be distinguished
from infection of infiltrating cells, and active infection can be
differentiated from latent virus.

The role of HHV-6 in other illnesses is still under
investigation, which can be problematic when choosing
controls. For example, HHV-6 has been investigated as a
contributing/causative factor in cases of Alzheimer’s disease,
benign lymphoproliferative disorders, and certain autoimmune
conditions. Until the relationships between HHV-6 and
these conditions (as well as others) is better understood, it
is unclear whether using samples from patients with these
disorders as controls is appropriate. Likewise, using samples
from immunocompromised individuals may inaccurately
represent the HHV-6-status of healthy controls, as patients with
compromised immunity are at a much greater risk of HHV-6
reactivation, which can lead to clinical manifestations in some
instances. Whenever possible, matched normal tissues from
healthy individuals should be used as controls in order to avoid
overestimation of the prevalence and activity of HHV-6 in
healthy persons.

Since early research into the ability of HHV-6 to induce
transformation, little work has been done on this topic. The use
of animal models could be especially useful in this area, but to
date, few such models exist for the study of HHV-6. In going
forward, it will be necessary to standardize reference materials
(111), emphasize collaboration among laboratories, and perform
in vitro experiments to characterize the transforming potential of
HHYV-6, including further analysis of the functions of the viral
DR-7 gene, as well as any effects the pair of viruses may have on
other oncogenic agents.

In light of these limitations, this review will focus on studies
and case reports that have employed robust techniques that
contribute to our understanding of the correlates of HHV-6
infection. In each section, we will not focus on studies relying on
standard serological techniques, instead focusing on studies using
PCR, immunohistochemistry (IHC), in situ hybridization (ISH),
sequencing techniques, and other targeted approaches, and the
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antigen)

NA
NA

NA
NA

NA
NA

NA
NA

1/173 (0.6%)

1/161 (0.6%)

Pickaxe

AML

Cantalupo et al. (30)
Cao et al. (29)

VirusScan

Not specified

ALL, acute lymphocytic leukemia; AML, acute myelogenous leukemia, BM, bone marrow; CLL, chronic lymphocytic leukemia; CML, chronic myelogenous leukemia; IA, immunofiuorescence assay; IHC, immunohistochemistry; ISH, in

situ hybridization; MGUS, monoclonal gammopathy of unknown significance; NA, not available; NB, normal blood; Pickaxe, Pickaxe virus detection and discovery computational pipeline; VirusScan, VirusScan bioinformatics system;

WM, Waldenstrom’s macroglobulinemia.

*If quantitative data is unavailable for any given method or for controls, the data is excluded.

*Cao et al. (29) and Cantalupo et al. (30) both analyzed samples from the same database containing deep-sequencing reads from human tumors.

*IHC was performed using antibodies against p41.

1Samples HHV-6 positive by PCR.

Bold values represent the percentage of HHV-6-positive samples among samples tested.

greatest attention will be paid to those studies that differentiate
between active and latent infection, allow localization of viral
DNA/mRNA/proteins, and distinguish between HHV-6A and
HHV-6B. Likewise, we will include studies of HHV-6 detection in
hematological, neurological, gastrointestinal, gynecological, and
head and neck cancers in a series of tables, while studies detailing
the presence of HHV-6 in other cancers that are, at present, more
weakly associated with the virus, are not included. Those cancers
that do not fall under these five systems, including skin, lung,
and urological cancers, have fewer than five studies published
on their association with HHV-6 and are not included in the
tables. The tables illustrate the great variation in HHV-6 detection
across studies, highlighting the challenges involved in drawing
conclusions from many cases, particularly from detection rates
alone.

HHV-6 AS THE SOLE INFECTIOUS AGENT
IN CANCERS: BY SYSTEM/SITE

Hematological

Hodgkin Lymphoma (Table 1, Figure 1)

Using PCR, HHV-6 was detected in the lymph nodes of 13/31
(12 HHV-6B, 1 HHV-6A) nodular sclerosis cases but 0/6 tissues
from mixed-cellularity and lymphocyte-depleted HL (12), and
the mean copy number was high at 6,711.4 per ug of DNA. Other
PCR-based studies also found HHV-6 in a proportion of cases,
but those based on ISH/IHC have proven to be more fruitful.
In 1994, Krueger et al. reported HHV-6 p41 and gpl16/64/54
antigen in Hodgkin Reed-Sternberg (RS) cells (27). Four years
later, Luppi et al. detected HHV-6 p4l1 early antigen in the
so-called “mummified” RS cells in two Hodgkin disease cases
(26). The presence of viral antigen in these HL-associated cells
indicated possible viral contribution to HL.

Later, Lacroix et al. analyzed lymph node biopsies from 48
patients, 38 of which were EBV-negative, and all but three
of nodular sclerosis (NS) subtype (25). HHV-6 protein DR7B
was detected by IHC in RS cells of 74% of EBV-negative
cases, and in most of these cases (61%), DR7B was detected
only in RS cells. Among the nine patients with HHV-6/EBV
coinfections, the DR7B-positive RS cells were also positive for
the EBV oncoprotein LMP-1, a key player in EBV-induced cell
transformation. Notably, in 6 of the 9 patients with co-infections,
DR7B was detected only in RS cells; all 6 patients had the
NS subtype. In the single EBV/HHV-6+4 patient with mixed
cellularity subtype HL, only LMP-1 was found in RS cells, while
DR7B was exclusively detected in infiltrating inflammatory cells.
Both DR7A and DR7B have been shown to bind and inactivate
the tumor suppressor p53 (113), suggesting that DR7 might play
arole in lymphomagenesis (2).

The most recent study, conducted by Siddon et al., found
HHV-6 by PCR in 27 of 31 (87%) NS subtype HL lymph
node specimens. In nearly half of the HHV-6-positive cases
(48%), U94 latent antigen, p4l early antigen, and/or p98
(HHV-6B) late antigen was expressed in scattered RS cells and
leukocytes, suggesting viral replication within granulocytes and
a few RS cells (9). Collectively, the use of immunohistochemical
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FIGURE 1 | HHV-6 in nodular sclerosis Hodgkin lymphoma. (A) Presence of HHV-6 p41 by immunohistochemistry. Cytoplasmic staining of numerous large cells using
a monoclonal antibody to HHV-6 p41 (3ES clone). (B) HHV-6 U94 detection by immunohistochemistry. Staining with monoclonal antibody to HHV-6 U94 reveals
positivity in the cytoplasm of numerous large cells. (C) Presence of HHV-6 by colorimetric in-situ hybridization with multiplex probe. HHV-6 DNA present in the nuclei

of both small and large cells. From Eliassen et al. (112).

techniques has provided evidence suggestive of variable HHV-6
activity depending on HL subtype, with involvement of HHV-
6 appearing more likely among NS cases. Additionally, greater
viral load among NS cases than those of other subtypes supports
the notion that there are subtype-specific differences in the role of
HHV-6 in HL (10). Siddon et al. also reported that patients with
HHV-6+ RS cells trended toward a younger age than those with
EBV+ RS cells (p = 0.073).

The reported preferential localization of DR7 in RS cells, and
not primarily among infiltrating inflammatory cells as would be
expected as a normal distribution of latent virus or in the case of
opportunistic reactivation, suggests that HHV-6 may be involved
in HL pathogenesis (25). However, in some cases, HHV-6 was
primarily located in infiltrating granulocytes, suggesting that
HHV-6 may simply be reactivated within the immunodeficient
microenvironment of HL. While greater sample sizes and further
investigation is needed, the evidence suggestive of a role for
HHV-6 in HL is presently strongest for NS cases.

Non-hodgkin Lymphoma (Table 2)

In non-Hodgkin lymphoma (NHL), associations are weaker.
The heterogeneity of methods, types of NHL, and types of
controls included in past studies has compounded the difficulty
in assigning a role to HHV-6 in this setting. PCR-based reports
have documented an extreme range of HHV-6 positivity with

0-100% of blood/bone marrow/lymph nodes from cases testing
positive. For instance, Usui et al. detected HHV-6 in up to 6.7%
of ocular MALT tissues, while an earlier team documented a
positive rate of 28.6% (31, 38). Among some studies, the ability
to draw conclusions is limited by small sample sizes, even when
the HHV-6 species is typed, the viral load is quantified, and types
of lymphoma are differentiated (8, 12, 36). While the percentages
of positive samples can be intriguing when viewed alone, the
small sample sizes do not allow for adequate comparison. Lack
of differentiation among NHL types in other studies also limits
analysis.

By IHC/ISH, HHV-6 DNA and antigens have been detected in
AITL, MALT lymphoma, unspecified NHL, and unspecified T-
and B-cell lymphomas, but the signal was localized in scattered
cells, often plasma cells, rather than neoplastic cells (17, 26, 28,
38,43). RNA and DNA sequencing has identified HHV-6 in only
up to 2.3% of NHL cases. On the whole, neither HHV-6A nor
HHV-6B appear to be causative agents in NHL development, but
investigation into specific subtypes of NHL, such as DLBCL, may
be more constructive than viewing all types together. Moreover,
the absence of viral DNA and antigens in neoplastic cells suggests
that HHV-6 likely does not cause the development of most NHL,
but it remains to be seen whether the virus might contribute to
local immune dysfunction, or exacerbation of oncogenic effects
of other agents, that predisposes to lymphomagenesis.
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Leukemia (Table 3)

To date, the preponderance of data suggests no association
between HHV-6 and leukemia. Contrasting findings, and
differences in HHV-6 species predominating in bone marrow of
leukemia patients, may stem from the use of different probes
for HHV-6A and/or divergence in HHV-6A across geographical
areas (50, 54). If this is the case, false negatives may have
resulted. Likewise, PCR testing of blood samples has failed to
demonstrate a strong association between HHV-6 viral load and
leukemia (47, 52, 114, 115), and while serological testing has
shown increased titers of HHV-6 antibody in leukemia (116-
124), this is expected since HHV-6 reactivates in response to
immunosuppression and chemotherapy (50). The inclusion of
different subtypes of leukemia may result in skewed conclusions
because HHV-6 may not have the same role across subtypes, as in
the case of HL.

Only one group has investigated HHV-6 antigen expression
in leukemia, with intriguing results: HHV-6 early antigen p41
was detected in bone marrow cells—blasts and megakaryocytes—
of 54% of 36 patients with chronic myelogenous leukemia (56).
Since bone marrow biopsies from healthy individuals were not
readily available, comparison between these two populations
were not carried out. While this has been one of the strongest
studies on HHV-6 and leukemia as it revealed active infection in
approximately half of patients, standing alone, it is not enough to
draw any clinically significant conclusions per se. Unfortunately,
serological testing and PCR analysis of blood are inadequate in
determining the role of HHV-6 in leukemia, and these methods
fall short in differentiating between pathological and background
HHV-6 infections. As blood is a relevant sample used in
evaluating leukemia, this presents another hurdle; latent HHV-
6 or HHV-6 undergoing low-level reactivation is occasionally
present in healthy individuals. For these reasons, although many
studies have made preliminary investigations into HHV-6 in
several types of leukemia, forward progress of our understanding
of the virus in these cancers has been stunted by the reliance upon
blood PCR and serological analysis.

Neurological (Table 4)

Glial Tumors

Both HHV-6A and HHV-6B are neurotropic viruses, with glial
cells being the most common viral reservoir in the nervous
system. HHV-6B infection of the brain is associated with
encephalitis and febrile seizures, while the presence of HHV-
6A has been studied in the context of multiple sclerosis. Several
studies have shown that HHV-6 infects human astrocytes and
oligodendrocytes (125-128), and both species impair glutamate
uptake (129) and induce chemokine/cytokine dysregulation in
persistently infected glial cells (130). Long-term latent infection
is also implicated in demyelination, especially in white matter
(131).

One small study using droplet digital PCR (ddPCR) reported
HHV-6B in 3 of 19 (15.8%) formalin-fixed paraffin embedded
(FFPE) glioblastoma samples, 3 of 20 (15%) frozen glioblastoma
samples, and 2 of 10 (20%) frozen astrocytoma grade III
specimens. All were negative for cytomegalovirus (CMV) and
HHV-6A (58). The viral loads of HHV-6B in tumors ranged from

<100 to >20,000 copies/million cells. While the low viral loads
likely indicate latency, the high loads suggest active infection, or
potentially iciHHV-6. Of note, nested PCR is more sensitive, but
also more prone to false positives, than ddPCR or sequencing
analysis (132).

Analysis of 120 pediatric gliomas from 88 untreated patients
using ISH, THC, and nested PCR revealed higher rates of
expression of the proteins U57 (major capsid protein) and U31
(large tegument protein) in tumors than in non-tumor controls
(60). HHV-6 antigens were identified in 58% of low-grade
gliomas compared to 19% of high-grade gliomas and 25% of non-
glial tumors. The same group investigated the presence of HHV-6
in adult glial tumors and found that 47% of tumors tested positive
for U57 compared to 0 of 25 controls (61). Moreover, HHV-6A
early and HHV-6B late antigens were detected three times more
frequently in glial tumors than in non-glial tumors, signifying
more frequent active infection among those with glial tumors.
Whether this correlation represents opportunistic reactivation
due to the tumor will be an important avenue to explore.

These findings are supported by a more recent study, which
analyzed 40 glioma tissue specimens and 13 normal brain tissue
specimens (59). Using nested PCR, HHV-6 DNA was identified
in 17 of 40 (42.5%) glioma tissue samples, compared to only 1
of 13 (7.7%) control samples. Along the same lines, 13 of 40
(32.5%) other glioma specimens stained positively for HHV-6,
while no HHV-6 immunoreactivity was detected in normal brain
tissues. Of note, HHV-6A was isolated from the glioma cyst
fluids, and the HHV-6-infected specimens displayed higher levels
of interleukin-6 (IL-6), IL-8, and transforming growth factor-p
(TGE-B).

Taken together, the in vitro and in vivo data suggests that both
species of HHV-6 are present in glioma. The greater prevalence
of HHV-6 DNA and proteins among glial tumors compared
to controls and the altered cytokine profile in HHV-6-positive
specimens is suggestive of a potential role in gliomagenesis.
To confirm this hypothesis, further studies are necessary to
determine the localization of HHV-6 antigens, longitudinally
investigating the effects of HHV-6 infection in animal models of
glioma. Ultimately, a clinical trial is warranted to determine what
role, if any HHV-6 plays in adult and pediatric glioma.

Pituitary Adenomas

HHV-6B was recently implicated in the progression of invasive
pituitary adenomas (PAs) through the toll-like receptor 3 (TLR3)
signaling pathway. TLR3 is known to recognize double stranded
RNA; however, studies have shown that the TLR3 cascade can
also be activated by herpesviruses (133). Among 30 patients with
invasive PAs and 30 patients with non-invasive PAs, HHV-6B
DNA was detected in biopsy samples from 53.55% of invasive
cases and 30% of non-invasive cases (57). Similarly, in invasive
PA, TLR3 mRNA and protein were significantly higher than
in noninvasive PA. TLR3 activity contributes to the innate
immune response during viral infection via recognition of virus-
associated double stranded RNA, but it has also been noted for its
involvement in generating a pro-tumorigenic local environment
and in promoting tumor cell invasion and proliferaation.
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Rat pituitary adenoma G3 cells challenged with
polyinosinic:polycytidylic acid (Poly(I:C)), a TLR3 agonist
serving as a viral mimic, increased TLR3 expression and cell
proliferation through the TLR3 signaling pathway (57). In
addition, these cells expressed higher levels of Bcl-2, which can
inhibit apoptosis, and lower levels of cleaved caspase 3. NF-«B,
which is involved in cell proliferation, promotion of tumor
invasion, and activation of inflammatory cytokines, was also
activated, as were NF-kB-regulated genes for the inflammatory
cytokines MMP9, IL-6, IL-18, and TNF-a. Further studies
on whether HHV-6 plays a direct role in TLR3 activation
are necessary to confirm the significance of this association.
This is the only study of its kind, but it suggests that perhaps
the immunomodulatory capacity of HHV-6, and particularly
its effects on innate immune effectors and mediators, leads
to neurological dysfunction over time, as has recently been
suggested in Alzheimer’s disease (Readhead 2018), that may
promote oncogenesis.

Gastrointestinal (Table 5)

Gastrointestinal cancer (GIC) typically develops from a benign
polyp, becomes an adenoma, and finally transforms into a
carcinoma (134). One study detected HHV-6 in the GI tract
of 63% of healthy individuals (135), whereas another study
detected HHV-6 in 23% of liver transplant patients and 19%
of immunocompetent patients (136). HHV-6 causes a range of
GI symptoms, including diarrhea, colitis, and bacterial infection
of the digestive tract (137), and an association between biliary
complications and HHV-6 has been reported in many studies
(136, 138).

Using a bioinformatics and sequencing approach to
investigate the viral basis of 6,813 tumors and 559 adjacent
normal samples, Cao et al. found HHV-6 at a relatively high
prevalence in GICs (29). Specifically, HHV-6 was detected in 26
cases of colon adenocarcinomas (5.8% of total cases), 9 cases
of stomach adenocarcinomas (3.5%), 7 cases of esophageal
cancer (6.4%), and 6 cases of rectal adenocarcinomas (3.7%).
The virus was not detected in paired adjacent normal samples.
Cantalupo et al. analyzed tumor sample sequences from The
Cancer Genome Atlas (TCGA) as well and identified HHV-6
sequences in 3.9% of stomach cancer samples and 4.7% of colon
cancers. In contrast, the virus was neither found in 16 paired
normal stomach samples nor in 21 normal colon samples (30).
Rectal cancer samples were positive at a comparable frequency
(3.8%), but 1 of 5 normal controls was also positive. EBV and
CMV were also frequently detected in GIC, and together with
HHV-6, they were the most commonly identified viruses in
stomach and colorectal tumors. In some cases, HHV-6 was
detected by both DNA-sequencing and RNA-sequencing. This
sequencing approach has a low risk of false-positives.

In addition, HHV-6B was frequently detected in adenomatous
polyps of the colon, while mucosal biopsies from patients
without adenomas revealed neither IHC nor ISH positivity (70).
Gastrointestinal cancers, in addition to oral cancer, brain tumors
(particularly glial tumors), and NSHL represent malignancies
that deserve priority for future studies on the oncogenic capacity
of HHV-6A and HHV-6B.

Gynecological (Table 6)

Ovarian Cancer

HHV-6A also emerged as a pathogen of interest in ovarian
cancer in view of a broad-scale investigation of the ovarian
cancer oncobiome using the microarray system PathoChip,
which identified species of bacteria, fungi, parasites, and viruses
that predominated in cancer tissue when compared to control
tissue (71). Conserved and specific probes for both HHV-6A
and—6B were found in the cancer biopsies but were absent in
the 20 matched ovarian tissue samples and 20 non-matched
ovarian biopsies. Ten instances of HHV-6A integration in various
chromosomes were detected, with U47, encoding envelope
glycoprotein O, identified as the most commonly inserted
viral sequence. Most integrations were found in intronic or
intergenic regions, but some were present at exonic and sub-
telomeric loci. Of the genes that HHV-6A sequences were found
to be integrated into or located near, most were significantly
associated with cancers, and six, including CPLX1, IGFBP3, and
the oncogene SH3RF2, were associated with malignant tumor
formation (p = 8.45 x 1077). Although HHV-6A was one of
many pathogens detected more frequently in cancer tissues than
in matched controls, the association between the genes that the
virus integrated into or near to and the development of cancer, as
well as the lack of HHV-6 in non-cancerous samples, makes a case
for closer examination of integrated HHV-6 in ovarian cancer. A
single study is insufficient to draw strong conclusions from, so
reproduction of these initial findings is a logical next step.

Head and Neck (Table 7)

Oral cancer is often linked to tobacco and/or alcohol use, as well
as to HPV infections. The salivary glands serve as a reservoir for
HHV-6, which is persistently shed in the saliva. While HHV-
6 has not been shown to cause oral cancer, by facilitating the
transformation process, HHV-6 may serve as a co-factor with
HPV and chemical carcinogens found in tobacco and alcohol.

Both HHV-6 DNA and antigens were detected in early studies
using tissue samples from oral mucosal tumors (80, 81), but they
were undetectable in controls. Antigen (HHV-6 glycoprotein)
was detected by immunoperoxidase staining in transformed
squamous cells of all samples, where it was localized in the
cytoplasm, cell membrane, and nucleus; it was not found in
cells surrounding the carcinomas. Of seven HHV-6 antigen-
positive tumor samples, only five were positive for HHV-6 DNA,
suggesting relatively low levels of HHV-6 DNA within these cells
(81). The failure to detect DNA in the antigen-expressing cells
could also mean that the virus acts using a “hit-and-run” method,
in which it participates in the early phases of tumor development
by spurring oncogenic changes within the cell, but then effectively
disappears (139). Additionally, elevated levels of IgA antibodies
to HHV-6 were detected in five patients with advanced oral
carcinoma, but in none of the controls.

Follow up investigations revealed HHV-6 DNA and antigens
by PCR, ISH, and IHC in oral squamous cell, laryngeal,
and salivary gland carcinomas but not in normal oral and
salivary gland biopsies (78, 80). Many HHV-6-positive carcinoma
samples revealed HHV-6A/HHV-6B co-infection. Most recently,
HHV-6 DNA was found in 27% of FFPE tissue samples from oral
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squamous cell carcinomas (82). No association with mean viral
load or histopathologic grade was identified. The level of contrast
in HHV-6 DNA and proteins between oral cancer and control
tissues is intriguing and merits further study. The presence of the
virus in transformed cells- and not in cells outside of the tumor- is
of particular consequence, and efforts should be made to replicate
this finding with larger sample sizes. As only a single report on
HHV-6 in oral cancer has been published since the turn of the
century, renewed efforts are due to detect the presence of the
virus- active or latent- in tumor cells.

Weak Associations
Qualitative PCR performed on non-melanoma skin cancer
specimens revealed that 32% of tumors were HHV-6 positive as
compared to 15% of healthy skin specimens (140), and Cao et al.
found HHV-6 in only 0.4% of melanomas via sequencing (29).
The current data, though very limited in scope, does not favor
the involvement of HHV-6 in skin cancers and points instead
to opportunistic reactivation. A similar situation is seen in such
heterogeneous conditions as multiple myeloma, sarcoma, and
prostate, uterine, liver, kidney, thyroid, and pancreatic cancers,
for which few studies have been carried out, and associations are
weak and not supportive of an etiological role for HHV-6.
Several studies indicate that HHV-6 does not contribute to
breast cancer (78, 80, 141). Interestingly, the HHV-6B U54
tegument protein inhibits MCEF-7 breast cancer cell proliferation
in vitro by inhibiting NFAT activity (142).

HHV-6 COINFECTIONS

HHV-6 has been detected in conjunction with several other
pathogens in a range of conditions. Describing each such study is
beyond the scope of this review, so only those studies providing
the most meaningful data, in terms of their contributions to an
understanding of cooperative activity between HHV-6 and other
viruses, will be detailed.

HHV-8 in NHL (Table 2)

HHYV-6 DNA has been detected in many cases of B- and T-cell
NHL (24, 44), sometimes in addition to other viruses. Nakayama-
Ichiyama et al. (88, 89) reported dual HHV-6/HHV-8 infection
in 2 cases, a primary cutaneous large B cell lymphoma and a
diffuse large B-cell lymphoma (DLBCL) with dual HHV-6/HHV-
8 positive, EBV-negative tumor cells, and negative serology for
HIV and human T lymphotropic virus 1 (HTLV-1). The co-
localization of these viruses in tumor cells of B-cell lymphomas
is quite compelling and deserves follow-up. In a study of 191
primary effusion lymphoma (PEL) cases, HHV-6 was detected
in 18% of HHV-8-negative tumors and in 5% of HHV-8-positive
tumors (37). Since all PEL tumors are currently defined as HHV-
8-positive, the diagnosis of PEL is questionable in some of these
cases. HHV-6 infection of the HHV-8 positive B-cell lymphoma
line BCBL-1 induces HHV-8 lytic activation (143), and it has
been proposed that the simultaneous activity of an HHV-6 gene
homologous to the adeno-associated virus (AAV) type 2 rep
gene (144) and HHV-8 regulatory genes could play a role in
lymphomagenesis (145, 146).

EBV

NHL (Table 2)

B-cell (38, 46) and T-cell (35, 41) lymphomas with dual
HHV-6 and EBV positivity have also been described, often
using PCR. Standing alone, these PCR-based studies have not
provided overly compelling evidence for or against a cooperative
relationship in lymphomagenesis. In a recent case-control study
of 214 NHL cases and 214 matched controls from three
population-based prospective cohorts, seropositivity for HHV-
6A immediate-early 1 protein (IE1A), but not HHV-6B IE1, was
significantly associated with a greater risk of developing NHL of
any type (OR 1.85, 95% CI 1.04-3.29) (147). However, levels of
antibodies against EBV proteins ZEBRA and EA-D were slightly
correlated with IE1A seropositivity, and the correlation between
HHV-6A IE1A and NHL development was somewhat weaker
after adjusting for these EBV-specific antibodies, suggesting that
HHV-6A activity may interact with EBV and increase the risk of
NHL. Alternatively, an immunosuppressive or otherwise altered
environment in individuals at risk for NHL may set the stage for
HHV-6A reactivation, although the finding that HHV-6B IE1 was
not correlated with NHL argues against this. However, if this is
the case, HHV-6A activity may serve as a biomarker that can be a
predictive factor for NHL. The longitudinal nature of this study,
the differentiation between HHV-6A and HHV-6B, and the use
of a newly developed serological assay that can identify active
HHV-6 were definite strengths. Subtype-specific analysis would
be a worthwhile avenue to pursue going forward.

Among lymphomas demonstrating coinfection, the potential
of a cooperative role has been most thoroughly described in the
setting of angioimmunoblastic T-cell lymphoma (AITL). EBV
and HHV-6 have been detected in B cells and plasma cells,
respectively, of patients with AITL; neither virus was detected in
these patients’ neoplastic CD4™ T cells (35, 41). Among a cohort
of EBV-positive AITL cases with advanced pattern III histology,
some were HHV-6B-positive, whereas none of the dual-infected
cases were typed as early pattern I histology (33). While the
presence of both HHV-6 and EBV may indicate a cooperative
pathogenic role, it is also possible that it merely indicates a level
of immune dysfunction that allows for viral reactivation from
latency. Interestingly, however, HHV-6 and EBV viral loads in
the dual-positive tumors displayed an inverse relationship (i.e.,
samples with the highest EBV or HHV-6 load had relatively low
levels of the other virus) (33). Early studies also reported evidence
of HHV-6 infection in HIV-associated non-Hodgkin lymphoma
(NHL). In this immunocompromised population, HHV-6 was
found in up to 32% of B-cell lymphomas (16, 18, 19).

HHV-6 has been isolated from NHL biopsies at highly
variable rates, and the wide range of detection methods used
on neoplastic tissues, as well as the difficulty in obtaining
healthy lymph nodes for use as controls, limits the ability to
unequivocally confirm the involvement of HHV-6 in triggering
malignant transformation in NHL. However, in the face of such
ambiguity, comparison of other relevant factors can be helpful
in determining how HHV-6 affects the development of NHL.
For example, Zhou et al. found that HHV-6B viral load was
dramatically higher in AITL tissue with pattern III histology
(median 40 copies/10® cells) than in samples with pattern II
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histology (median 0.7 copies/ 10° cells) (33). While a high rate
of AITL tissue samples were positive for HHV-6, the virus
was not detected within malignant T cells; instead, infection of
plasma cells was apparent in these samples (26). These results
suggest that HHV-6-infected plasma cells may thrive in the
immunosuppressive tumor microenvironment. Similarly, EBV-
infected large B cells are typically present within AITL tumor
tissue. The presence of these two herpesviruses (HHV-6 and
EBV) in non-malignant cells within the tumor lends credence
to the notion that these viruses are opportunistic pathogens
that thrive in the immunosuppressive tumor microenvironment.
Nevertheless, a secondary supportive or contributory role for
these viruses in tumor growth cannot be ruled out.

Nasopharyngeal (Table 7)

A trend of HHV-6/EBV coinfection has been observed in EBV-
associated nasopharyngeal carcinoma (NPC). Among 34 NPC
tumor samples tested by PCR, all of which were either World
Health Organization type 2 or 3, 14.7 and 94.1% were positive
for HHV-6 and EBV DNA, respectively, while none of the
nasopharyngeal tissue samples from five controls were positive
(85). HHV-6 infection of NPC specimens has also been correlated
with heightened expression of EBV LMP-1 (84). Whether this
phenomenon is a result of HHV-6 activity or whether HHV-
6 reactivation results from the effects of NPC remains to be
determined. The difference in prevalence between HHV-6 and
EBV suggests that, if HHV-6 is involved in some cases of NPC,
it is involved in a more limited subset, and likely is not sufficient
for transformation.

Pulmonary

Neoplastic cells isolated from pulmonary adenocarcinomas that
contained HHV-6 by PCR (25%) were all co-infected with
EBV (148). Cantalupo et al. identified HHV-6 DNA and/or
RNA sequences in a small number (3.5%) of lung tumors and
paired normal lung tissue (30). HHV-6 is likely not a primary
carcinogenic agent in lung cancer, but its detection in some tumor
cells supports a possibly contributory role.

HPV

Cervical (Table 6)

There are over 100 types of HPV, of which at least 13
are important in the etiology of cervical cancer. HHV-6 has
been shown to productively infect HPV-immortalized cells,
transactivate HPV gene expression of oncoproteins, and enhance
the expression of HPV RNA (75, 76, 149). Notably, two HHV-6
clones that were previously found to upregulate the expression
of HPV-transforming genes were also found to transactivate the
long terminal repeat of HIV-1 when combined with the HIV-1
transactivator TAT-1 in cervical carcinoma cell lines (150).

In an early analysis of squamous cell carcinoma (SCC)
and cervical intraepithelial neoplasia, HHV-6A and/or B were
detected by PCR in 8% of neoplastic cases compared to 0%
of negative controls (77). In another early study, HHV-6 was
detected by IHC in 54% of cervical carcinoma samples vs.
63% of normal tissues. However, in HHV-6+4 carcinomas,
virus was present within tumor cells, raising the possibility of

differential viral activity across individuals through which HHV-
6 may be relatively common in healthy cervical tissues, but
may act as a contributory factor in cervical carcinogenesis in
predisposed individuals. Of note, while HHV-6B was found in
both cancerous and control samples, HHV-6A was only found
in the cancerous tissues (79). Recent literature has implicated
HHV-6A in cases of unexplained female infertility (151) and
tissue taken from infertile women with endometrial HHV-6A
infections has revealed an altered immune profile that points to
local immune dysregulation in response to infection. HHV-6B
has been found in the semen of healthy sperm donors as well as in
the vaginal canal of healthy women (152, 153). It is possible that
HHV-6A may be more pathogenic than HHV-6B in the female
reproductive tract.

The presence of HHV-6 in HPV-infected women has also
been correlated with a higher grade of squamous intraepithelial
lesions; while 41% of high-grade lesions were HHV-6+, none
of the normal HPV+ cervixes were HHV-6+ (72). A previous
cohort, however, did not express this pattern, and although HHV-
6 was found in 8.3% (2/24 samples) of cervical carcinomas, no
carcinoma was coinfected with HPV (74).

Urological

Conflicting PCR results have been presented on the presence
of HHV-6 in bladder cancer specimens. In one cohort, 7% of
cases were HHV-6B4-, compared to 0% of non-malignant bladder
tissue. Of the HHV-6B+ positive cases, 40% were HPV co-
infected (154). In another study, HHV-6 was found in both tumor
and normal bladder tissues in equal proportion, and HPV was
not detected in any sample (155). At present, these results are too
limited in scope to draw firm conclusions but point to a bystander
role for HHV-6.

INHERITED CHROMOSOMALLY
INTEGRATED HHV-6

It has been suggested that iciHHV-6 might predispose the
formation of marker chromosomes. In the case of a patient with
DLBCL and iciHHV-6 integration in chromosome 17p, 10% of
the metaphases analyzed contained a clone with a second HHV-
6 signal in an extra marker chromosome (86) (Table 8). The
authors pointed out that structurally abnormal chromosomes
are commonly found in DLBCL, and that the high expression
of HHV-6 U94, a protein with DNA-binding, exonuclease, and
helicase-ATP activities, may have been involved in tumorigenesis.

Recently, iciHHV-6 was found in 2 of 35 pediatric
adrenocortical tumors, and fluorescence in situ hybridization
(FISH) revealed that the HHV-6 sequences were integrated at the
telomeric region of 11pl5, a site that is commonly implicated
in this condition (156). In both cases, loss of heterozygosity
(LOH) of chromosome 11 and heightened expression of
IGF2 were demonstrated, as was paternal transmission of the
integrated virus. LOH of chromosome 11p, via duplication of
the paternal chromosome and loss of the maternal chromosome,
as well as LOH at chromosome 17 appear to be early
markers of adrenocortical carcinoma progression (157, 158).
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Integration of HHV-6 can also occur at chromosome 17p13
(159, 160), a locus that contains the TP53 tumor suppressor
gene.

On the other end of the spectrum, a single report has
documented the loss of iciHHV-6A from the telomere of
chromosome 19q in an HHV-8-negative PEL-like lymphoma
(87). Notably, loss of the integrated HHV-6A appeared to have
occurred in the early stages of lymphoma development, raising
the possibility of HHV-6A involvement in early chromosomal
dysfunction. The unique nature of iciHHV-6 among human
herpesviruses is an area deserving of greater investigation, and
the effects of integration on chromosomal stability may be among
the most intriguing subtopics in this field.

POTENTIAL MECHANISMS OF
HHV-6-ASSOCIATED NEOPLASIA

Transfection of normal mouse and human cells with HHV-
6 DNA fragments, and with the entire genome, led to the
induction of tumors in nude mice, as initially shown by
Puri, Razzaque et al. (4, 7, 161). Although the mechanism of
transformation was not determined, loss of normal chromosomes
and the presence of extra marker chromosomes were detected. In
examining viral genes (Figure 2), Kashanchi et al. demonstrated
that HHV-6 ORF-1 (DR-7) gene expression led to tumor
production (113). The ORF-1-associated oncoprotein has been
detected in non-Hodgkin lymphoma, glioblastoma, and in RS
cells of Hodgkin lymphoma (9, 25, 99), and it is thought
that it may act by binding to and inhibiting expression of
the tumor suppressor p53, which can also be bound by the
HHV-6 Ul4 protein (162). Specifically, HHV-6 infection is
thought to inhibit p53 nuclear localization, thereby limiting
its ability to inhibit cell growth and promote apoptosis
(163). These findings support the possibility that HHV-6 is
oncogenic (113).

Another HHV-6 protein, U24, has weaker associations
with oncogenicity, but recent developments merit its mention.
HNedd4L-WW3* domain (human neural precursor cell
expressed developmentally down-regulated protein  4-
like) has newly been identified as a cognate ligand of the
HHV-6A U24 protein, which is expressed in the early
stages of infection (164). Notably, Nedd4 dysregulation
has been observed in glioma (165, 166) and glioblastoma
multiforme (167).

The HHV-6B immediate-early gene U95 protein interacts
with GRIM-19 and is associated with loss of mitochondrial
membrane potential (168). GRIM-19 is involved in the oxidative
phosphorylation system and in regulation of cell death, and it
is also bound by KSHV, HPV type 16, and simian virus 40
LT proteins, as well as CMV RNA (169). The HHV-6B U95
promoter is regulated by R3, a repetitive region of HHV-6B
with NF-kB-binding sites (170). NF-kB is important in the
control of cellular proliferation and survival. As noted previously,
initial data pointed to possible HHV-6B-induced TLR3, Bcl-
2, and NF-kB up-regulation as well as down-regulation of
cleaved caspase 3 in rat pituitary adenoma cells. However, in
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FIGURE 2 | HHV-6A and HHV-6B genomic map. Representative coverage
maps of HHV-6B Z29 and HHV-6A GS reference strains. Shotgun
DNAsequencing reads from cultured virus were mapped to the NCBI HHV-6B
and HHV-6A reference genomes, NC_000898 and NC_001664, respectively.
The green stacked lines indicate the gene models for the respective viral
species. (A) HHV-6B strain Z29 yielded a homogeneous 983-bp tandem
repeat that was present at ~12.5 times higher coverage than the rest of the
genome. Sequences at the 5= and 3= ends of the tandem repeat in strain
Z29 are depicted and are different than those indicated previously (31). (B)
HHV-6A strain GS yielded a heterogeneous 1,254-bp tandem repeat that was
present at ~11.4 times higher coverage than the rest of the genome.
Sequences at the 5= and 3= ends of the heterogeneous tandem repeat in
strain GS are depicted. (C) ABI quantitative DNA material for HHV-6A GS and
HHV-6B Z29 also demonstrated similar origin tandem repeats with additional
loci with copy number differences in the GS strain. Long-distance
rearrangements between U12 to U20, U73 to R3, U86 to U95, and the
U91-to-U100/DR intergenic region are represented by curved dashed lines,
and the estimated viral subpopulation containing the respective deletion is
indicated by the percentage. From Greninger et al. (111).

order to distinguish causation from correlation, this requires
follow up and use of HHV-6B rather than a viral mimic
(57).
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IHC performed on some cancer samples has revealed an
absence of HHV-6 antigens in neoplastic cells, suggesting that
if HHV-6 plays a role in neoplasia, it may participate indirectly
(26), perhaps by modulating the tumor microenvironment or
enhancing the potential for a primary tumorigenic virus to
induce neoplasia (99). In one study, adult T cell leukemia

cells that were persistently infected with HHV-6B triggered the
growth of uninfected, neighboring cells, indicating that HHV-
6 may affect inter-cellular signaling pathways to stimulate the
growth of transformed cells that are not themselves infected
(171). Both species have robust immunomodulatory abilities
and are able to impact cytokine and chemokine expression and
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in the cytoplasm

networks (172). The ways by which each virus may produce
both immunosuppressive and inflammatory responses, both of
which can impact carcinogenesis, are myriad and too extensive
to comprehensively describe in this review.

Of interest, the HHV-6A/B gene U94 exhibits anti-
tumorigenic effects in some in-vitro carcinoma models.
Expression of HHV-6B U94 in breast cancer and cervical cancer

cell lines decreased the migration and invasiveness of the cells in
vitro, and the injection of U94-expressing cancer cells into mice
resulted in reduced tumor growth and more limited vasculature
in the resulting tumors (173). Earlier, HHV-6A was found to
reduce lymphangiogenesis and angiogenesis in vitro (174) and
limit migration of endothelial cells (174) and oligodendrocyte
progenitor cells (175). As noted previously, U54 also inhibited
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breast cancer cell proliferation in vitro (142). While the express
use of the U94 gene in vector form, in the absence of the rest of
the genome, may hold potential in arresting the development of
certain cancers, it is unclear what these anti-oncogenic properties
mean when viewed holistically, and how this particular viral gene
interacts with others that are expressed during the infectious
course.

In spite of high molecular homology between the two
HHV-6 species, it is obvious that their pathomechanisms,
including carcinogenic and co-carcinogenic effects, are different.
The two species utilize different receptors for cellular entry;
consequently, their intracellular signal transduction pathways
differ on a basic level. HHV-6A binds to CD46, which is a
complement regulatory protein (176). CD46 signal transduction
exerts positive regulation on T cell proliferation, regulatory T
cell differentiation, and IL-10 production, which is regarded as
immunosuppressive. Expression of CD46 is upregulated in many
tumors (177).

HHV-6B, on the other hand, typically binds to CD134, also
known as OX40 or tumor necrosis factor receptor superfamily
member 4 (TNFRSF4) (178, 179). Binding of a ligand to CD134
blocks apoptosis, preventing the death of proliferating T cells
and positively regulating B cell proliferation by modulating
Thl and Th2 mediated function (180, 181). These effects on
the immune system might relate to immune dysregulation and
lymphomagenesis.

Lately, there has been increased recognition of the importance
of regulation of gene expression at the posttranscriptional level.
Among small non-coding RNA (sncRNA) products, microRNA
(miRNA) produced by both infected cells and by viruses are able
to mutually regulate cellular and viral mRNA translation through
base-pair complementarity. Abnormal activity of cellular miRNA
has been associated with cancer and viral immune evasion.
Viruses express functional miRNA that target both viral and
cellular transcripts to suppress or destabilize mRNA. The net
result of either process is reduced synthesis of proteins encoded
by target mRNA.

Roseoloviruses, which are phylogenetically ancient viruses,
have not developed miRNA-associated regulatory mechanisms
as sophisticated as those of the gamma herpesviruses. Both
EBV and KSHV encode viral miRNAs (44 and 25, respectively)
that have been directly linked with malignant transformation.
Of interest, some herpesvirus miRNA (EBV-miR-BART2-5p
and KSHV-miR-K12-7), despite having evolved independently,
suppress identical cellular mRNA targets, thus developing similar
strategies to modulate host cell transformation (182).

Little attention has been paid to roseolovirus miRNA.
Only recently, five novel HHV-6A encoded sncRNAs have
been identified in Jjhan cells infected by strain U1102,
one of which is a miRNA. This HHV-6 miRNA targets
the HHV-6A immediate early (IE) gene U86 and is
consequently named miR-U86. Overexpression of miR-
U86 in transduced Jjhan cells results in significant growth
retardation and reduced cell viability (183). Current data
suggest that miR-U86 has no role in tumorigenesis. HHV-
6A alters cellular miRNA expression in infected T cells,
but too little information is currently available to draw

conclusions about the relationship between these changes and
oncogenesis (184).

Infection of Sup-T1 cells with HHV-6B, on the other hand,
results in an abundant production of sncRNAs derived from
either the direct repeat regions or the lytic origin of replication
that give rise to smaller RNA species. Four miRNAs were
identified and named hhv6b-miR-Ro6-1,—2,—3, and—6. Ro6-2 is
a seed ortholog of the human miR-582-5p, which is upregulated
in certain pituitary adenomas and downregulates expression of
TGE-p (185). Similar to the HHV-8 miR-155 ortholog miR-K12,
HHV-6B Ro6-2 may share a broad range of cellular mRNA
targets with human miR-582-5p and may modulate the host-
pathogen relationship. In cells (e.g., CD4" T cells) that do
not normally express cellular miRNA-582-5p, HHV-6B infection
may lead to Ro6-2 miRNA-mediated suppression of TGF-f.
HHV-6B encoded miRNAs are expressed in low abundance,
similar to the oncogenic MareK’s disease virus, but in contrast
to other herpesviruses (186). All in all, the similarities between
HHV-6B encoded miRNAs and oncogenic KSHV and human
miRNAs suggest that they may play roles in tumorigenesis,
though more work is needed to clarify their effects.

Roseoloviruses can also regulate cell-virus interactions
through the release of microvesicles. Viruses have evolved to
insert viral components into uninfected cells via microvesicles
(MV) that are shed from the plasma membrane, as well as
exosomes, which originate within microvesicular bodies (MVBs)
and are released into the extracellular environment. Both can be
isolated from any bodily fluid or excretion, and they can cross the
blood-brain-barrier. They can include cellular and viral proteins,
mRNAs, miRNAs, lipids, and carbohydrates. Once released,
they can be taken up through phagocytosis or pinocytosis by
neighboring or distant cells, where the contents can have direct
consequences by manipulating gene expression of the recipient
cells. HHV-6 infection dramatically increases MVB formation.
HHV-6B redirects MHC class I molecules into MVBs, and along
with gB viral proteins, they are released in exosomes. It is possible
that the MHC molecules can assist viral entry in other cells (187).
A reduction in MHC class I molecules may also contribute to
ineffective immune targeting and clearance of transformed cells
(188). In addition, HHV-6A infected HSB-2 cells tend to form
MVBs, which can contain mature virions, and the small vesicles
inside the MVBs carry the envelope glycoproteins gM and gB.
It is presumed that viral glycoproteins expressed in exosomes
may interact to form a virological synapse and promote the
efficient spreading of HHV-6A from infected to uninfected cells.
Furthermore, several reports on other viruses have shown T cell
activation in response to exosomes secreted by antigen presenting
cells (189).

Lately, studies on extracellular vesicles have indicated that
they play a significant role in tumor progression (190). Although
data on HHV-6-associated microvesicle pathomechanisms is
limited, comparisons with other carcinogenic herpesviruses
might help to elucidate their possible tumorigenic effects. EBV,
for example, can introduce viral antigens, RNA, and growth
factors into other cells. Unfortunately, the absence of active viral
infection in these targeted cells may hamper the verification
of a causal link between the virus and diseases in which viral
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infection has been implicated. KSHV was also found to modulate
the microenvironment through packaging of viral factors in
exosomes. The viral factors increased cell migration and IL-6
production, and promoted a switch to glycolytic metabolism in
recipient endothelial cells (191), all of which have been implicated
in carcinogenesis (192, 193). Further studies on HHV-6A and
HHV-6B associated MVs and exosomes are required to verify
their direct or indirect carcinogenic effects.

Finally, both iciHHV-6 and community strains (71) of
HHV-6 may affect chromosomal stability or transcription of
genes associated with malignancy through integration into
the cellular genome. Depending on the site of integration,
telomeric disruption, loss of chromosomal integrity, and/or
disruption of genes associated with cancers may result, in
turn promoting oncogenesis. Proposed mechanisms of HHV-6-
associated oncogenesis and oncomodulation are summarized in
Figures 3, 4.

RISK FACTORS AND MOLECULAR
EPIDEMIOLOGY

HHV-6 tends to reactivate during periods of stress and

immunosuppression.  Like HHV-8, immunosuppressive
conditions-  present through inherited, environmental,
or age-associated means may be key to pathogenic

reactivation of HHV-6 resulting in oncogenic changes. While
immunosuppression triggers viral reactivation from latency,
both HHV-6A and HHV-6B are also immunomodulatory
viruses that affect the functions of natural killer cells and T
cells, as well as other immune cells, cytokines, and chemokines
(172). In establishing persistence, the viruses employ strategies
to evade detection and elimination by immune cells, which
can result in down-modulation of immune cell activities. The
effects of infection are myriad, time-dependent, and vary across
individuals. Genetic factors are likely to affect the extent of
HHV-6-asscoiated immunomodulation and outcomes during
and after primary HHV-6 infection, although the contribution
of genetics in HHV-6-associated illness is largely unknown.
Likewise, environmental influences may impact the types of
changes that the viral infection induces in individuals. In terms
of HHV-6A and HHV-6B themselves, it is possible that certain
variants are more prone to contributing to oncogenesis or in
dampening the immune response.

HHV-6B reactivates frequently in patients after receiving
hematopoietic stem cell transplantation for hematological
malignancies (194) and has been shown to impair late
reconstitution of CD4™ T cells, likely by affecting thymopoiesis
(195-197). A weaker immune response as a consequence of
HHV-6 infection may allow for circumstances beneficial for the
continuation of neoplasia, as immune cells may be less effective
in detecting and destroying abnormal cells. It has been suggested
that HHV-6 infection contributes to the progression of GIC
through the promotion of lymphopenia and immunosuppression
(134), and in some instances, atypical lymphoproliferative
disorders progress to overt malignant lymphoma, particularly
in the setting of immunodeficiency (198, 199). Virus-mediated

dysregulation of cell proliferation, differentiation, and cell death
may play a role (200, 201).

While both viruses have shown oncogenic potential
themselves, HHV-6A and -B-mediated transactivation of
other oncogenic agents may also play an indirect role in
tumorigenesis. In general, herpesviruses, but especially beta
herpesviruses, are known for transactivating each other and
several other heterologous viruses. HHV-6A U16 and U30 gene
products transactivate E6 and E7 of HPV-16 in cervical epithelial
cells (149). Additionally, HHV-6A activates EBV from latency
(202), increases EBV early gene expression (203), and bolsters
its transformative capacity. Meanwhile, EBV renders B cells
susceptible to HHV-6 infection (203, 204). HHV-6A has also
been shown to transactivate the long terminal repeat of HIV-1
in double infected cells (205), and several gene products of
HHV-6A have been identified as possessing HIV-1 activating
potential independently of each other (206). Soluble mediators
(e.g., TNF-a) released from HHV-6A-infected lymphoid cells
also upregulated HIV-1 infection in other cells carrying the virus
(207). All of these effects could consequently facilitate AIDS
and AIDS-associated tumor progression. HHV-6A (208) and
HHV-6B (209) activate human endogenous retrovirus (HERV)
K18 superantigen expression, and some HERV species have been
implicated in teratocarcinoma and other germline tumors.

Exploring biomarkers and performing functional studies to
investigate interactions between HHV-6 activity and genetic
variants related to molecular/cellular pathways involved in
immune surveillance and clearance of transformed cells, as well
as to susceptibility to other infections, will be valuable going
forward.

CONCLUDING REMARKS

Detection of viral RNA/DNA in tumor tissue by PCR and
sequencing is the first step in elucidating the role of a virus in
tumors. Given the presence of numerous reactive inflammatory
cells and stromal cells within tumor tissue, PCR positivity may
arise from non-tumor cells. As such, the next step would be direct
localization of virus to tumor cells by immunohistochemistry, in-
situ hybridization, and/or electron microscopy. These techniques
require high quality tumor tissue, high sensitivity and specificity
of the detection reagents, and simultaneous running of proper
positive and negative controls. Even if the virus is localized
to tumor cells, the percent positivity of tumor cells is likely
important since one would expect that if the virus is involved in
tumor growth, then it should be present in at least a significant
fraction of tumor cells.

Cancer development follows a multistep selection course with
acquisition of genetic defects leading from a benign polyclonal
process to a malignant monoclonal process (210). In some
settings, HHV-6A/B may play a supportive role in this process.
Even if not overtly oncogenic in terms of inducing or activating
oncogenes in susceptible cells, HHV-6 may indirectly stimulate
growth and/or block apoptosis in infected cells, interfere with
epigenetic regulation and post-translational events, or potentiate
the role of other viruses, in susceptible individuals (211).
Although no definitive evidence of a direct role for HHV-6 as
a tumorigenic virus has been produced, further investigation is

Frontiers in Oncology | www.frontiersin.org

27

November 2018 | Volume 8 | Article 512


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

Eliassen et al.

Human Herpesvirus 6 and Malignancy

warranted, especially for nodular sclerosis Hodgkin Lymphoma,
glial tumors, gastrointestinal tumors, and oral cancers.
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