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Oral squamous cell carcinoma (OSCC) is a major concern with high morbidity and

mortality worldwide, even with the current knowledge and the advancement in treatment.

OSCCs diagnosed at late-stage often require wide-excision with or without neck

dissection, radiotherapy, or chemotherapy. When deemed successful, treatment often

results in diminished quality of life, impaired function, and disfigurement. Strategies for

early detection are urgently needed for patients afflicted with this disease. Inflammatory

protein plasma biomarkers have shown to be potential tests for early detection and

disease monitoring in several cancers. There has been no study on inflammation-related

plasma biomarkers in OSCC. The objectives of the study were to use a multiplex

approach to screen plasma-derived biomarkers and to examine the association of

measurable proteins with OSCC. A total of 260 plasma samples (210 OSCC and 50

normal controls) were collected to measure for concentration of inflammatory related

biomarkers using electrochemiluminescence multiplex assay. After screening of 82

potential biomarkers of the first 160 OSCC, 16 cytokines, chemokines, and growth

factors were identified and verified in the second set of samples containing 50 OSCC

and 50 normal. After adjustment of age and batch effects, the adjusted differential

expression analysis showed that the OSCCs were markedly lower in 14 biomarkers

and significantly higher level of interleukin 1 receptor antagonist (IL1Ra). By performing

unsupervised clustering analysis, we observed distinctive groups of normal and two

subgroups of OSCC. Linear regression of IL2, IL1Ra, and macrophage inhibitory factor

(MIF) showed high accuracy in classifying OSCC with sensitivity of 0.96 and specificity

of 0.92. In conclusion, this is the first paper to identify potential inflammatory plasma

protein biomarkers of patients with OSCC. With further validation, the set of biomarkers

can potentially be used to assist in early detection of OSCC when the disease is localized

and in more treatable stage.
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INTRODUCTION

Oral squamous cell carcinoma (OSCC), the most common form
of oral cancer, remains a global health issue accounting for
274,000 new cases and 145,000 deaths each year (1, 2). Despite
advancement in treatment, the improvement of 5-year survival
rates (30–60%) is diminutive mainly due to the aggressive nature
of this disease and its high recurrence rates in lymph nodes
and distant organs (3, 4). Early detection of cancerous lesions
at more localized and treatable stages can potentially improve
this decimal outcome. However, OSCCs are often caught at late
stage which largely relies on regular screenings with invasive
diagnostic biopsies. In addition, post-treatment complications
include scarring and trauma which often cause tissue alterations
and can preclude identification of early recurrence. Moreover,
repeated biopsies for post-treatment monitoring is impractical
and can further traumatize the yet-to-heal mucosal surface.
Therefore, there is a need for a non-invasive tool for early
detection of OSCC to improve clinical treatment and patient’s
quality of life.

The advancement of genomic technologies has made it
possible for early detection of key biological events that
contribute to tumorigenesis of OSCC. It is largely accepted that
OSCC, like other cancers, is a genetic disease characterized
with loss of heterozygosity (5, 6), deregulation of cell cycle or
proliferation proteins expression (7–10), and dysregulation of
microRNA expression (11–14). Harnessing the immune response
directed against tumors is another promising event given the
well-established evidence of immune-related molecules reacting
toward tumor antigens in a variety of cancer types. Given
such, identification of biomarkers that are specific to the OSCC
environment would provide an effective strategy for cancer
screening.

The circulatory system has been known to constitute of
components that reflect diverse physiological and pathological
states. Therefore, the sampling of blood, as opposed to tissue
biopsies, is an attractive avenue for developing a relatively less-
invasive screening test, especially with the advent of proteomic
technologies such as mass spectrometry or microarray-based
assays. Previous studies comparing serum or plasma levels
between healthy controls, premalignant, andOSCC have revealed
significant differences in several proteins such as angiogenic
factor (15–17), cytokines, chemokines, and growth factors (18–
21). The objectives of this study were to use a multiplex
approach to screen plasma-derived biomarkers and to examine
the association of measurable proteins with OSCC.

MATERIALS AND METHODS

Study Population
The OSCC patients were identified from a pan-Canadian surgical
trial (NCT01039298) (22). Among the 443 patients enrolled
between 2010 and 2016, we identified 210 OSCCs from the
oral anatomical sites (ICD-10 site codes of C02.0—C06.9)
with at least 3 years of post-surgery follow-up. The blood
samples were collected at time of surgery, processed within
4 h of collection, and had not gone through any freeze-thaw

cycle. Patient baseline demographic data included age, sex,
ethnicity, smoking history, exposure to second-hand smoke,
and alcohol consumption. Clinical-pathological data included
lesion anatomical site, clinical assessment of tumor size and neck
lymphadenopathy, tumor grade, depth of invasion. Outcome
data included overall survival, disease-specific survival, and
development of nodal disease during post-surgery follow-up.

In addition to the OSCC samples, there were 60 normal
samples used. Ten samples were from existing normal blood
samples collected for other studies and served as a baseline
normal for Cohort 1; 50 plasma samples from participants of the
British Columbia Generations Project (BCGP) were requested
based on one-to-one matching criteria for age (±5 years old),
sex, and smoking history. These participants, recruited between
2010 and 2016, had no known cancer history at the time of
blood collection up to the last data update in November 2017.
Pre-analytical conditions were the same as those of the OSCC
samples, including processing whole-blood samples within 4 h
of collection and samples had not gone through any freeze-
thaw cycle. These BCGP samples served as baseline normal in
comparative analyses. Supplementary Tables 1, 2 summarize the
study population by Cohort. The study schema is illustrated in
Figure 1.

This study was carried out in accordance with the
recommendations of University of British Columbia Clinical
Research Ethics and the BC Cancer Research Ethics General
Guidance Notes (GNs), BC Cancer Agency Research Ethics
Board. This study utilized the clinical information and samples
collected from existing studies which were approved by the BC
Cancer Agency Research Ethics Board (REB#H09-03090 and
REB#H08-01354, respectively). The present study was approved
under REB#17-02031.

Sample Preparation
Whole blood samples were collected in EDTA vacutainer tubes
(Becton Dickinson, Franklin Lakes, NJ, USA), either at time
of surgery for OSCC or at the time of enrollment to BCGP,
stored at 4◦C, and processed within 4 h of collection. The OSCC
whole blood samples were centrifuged at 1,500 × g for 15min
at room temperature to separate blood plasma which were then
stored at −80◦C until usage. The BCGP whole blood samples
were processed for plasma separation in accordance to BCGP’s
standard operating protocol, with centrifugation at 1,300× g for
10min at 4◦C (23).

Electrochemiluminescence Multiplex
Assays
Plasma protein expression was measured based on multiplex
electrochemiluminescence (ECL) detection assays using
commercially available kits from Meso Scale Diagnostics (MSD)
(Rockville, MD, USA). We first screened potential OSCC
biomarkers among the 82 biomarkers across Cohort 1 (150
OSCC and 10 normal; Figure 1). These 82 biomarkers were
included in the V-PLEX Angiogenesis Panel 1 Human Kit (n
= 3, K15190D), V-PLEX Vascular Injury Panel 2 Human Kit
(n = 5, K15198D), U-PLEX TGF-β Combo Human (n = 3,
K15241K), and U-PLEX Biomarker Group 1 Human (n = 71,
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FIGURE 1 | Study scheme and samples. *Includes: 60 new OSCCs and 10 OSCCs from Cohort 1. OSCC, oral squamous cell carcinoma; BCGP, British Columbia

Generations Project.

K15081K). The screening results from Cohort 1 are summarized
in Supplementary Table 3.

Based on the differential expression analysis from Cohort 1
and the current literatures (24–26), we identified 16 candidate
biomarkers and verified them by performing ECL assays (V-
PLEX Angiogenesis Panel 1 Human Kit, n= 3; V-PLEX Vascular
Injury Panel 2 Human Kit, n = 3; U-PLEX Biomarker Group
1 Human, n = 10) on Cohort 2 (60 OSCC and 50 BCGP
normal; Figure 1). The verification results of 16 biomarkers in
Cohort 2 are summarized in Supplementary Table 3. To assess
the assay’s reproducibility, we also randomly selected 10 OSCC
samples from Cohort 1 and repeated the measurement for the 16
candidate biomarkers as part of Cohort 2.

All ECL assays were conducted as per the manufacturer’s
protocols. Briefly, supplied 96-well plates were washed and
coated (for U-PLEX kits) with monoclonal antibodies followed
by addition of serially diluted calibrator standard in duplicates
and plasma samples (20 to 50 µL with dilution factor as
per assay protocol), incubation with shaking (1–2 h, room
temperature), washing (three times each well), addition of 20–50
µL SULFO-TAG conjugated secondary monoclonal antibodies,
and final incubation with shaking (1–2 h, room temperature).
MSD Read Buffer was added to each well right before loading
the plates for signal detection on the QuickPlex SQ 120 (Meso
Scale Diagnostics, LLC, Rockville, MD, USA). Pre-analytical
data processing was performed on MSD Discovery Workbench
software version 4.0.12 to calculate the concentration of each
biomarker in each sample based on the standard curves generated
from calibration standards using the four-parameter logistic
fit.

Statistical Analysis
All data analysis was performed using R version 3.4.4. For
comparative analyses, we considered the BCGP samples as the
“normal” group as opposed to the “diseased” OSCC group.
Patient demographics and clinical-pathological characteristics
were compared by using Student’s t-test for continuous variables
or Fisher’s exact test for categorical variables. All statistical tests
at p < 0.05 were considered significant.

To screen for potential OSCC biomarkers, we performed
unpaired two-group Wilcoxon Mann-Whitney test to compare
the concentration level between OSCC and normal in Cohort 1.
Those with p < 0.05 after correction for multiple testing with
Benjamin-Hochberg (BH) procedure were considered significant

as candidate biomarkers for verification in Cohort 2. Finally,
differential expression analysis on the 16 candidate biomarkers
was performed on the 210 OSCC against 50 BCGP normal.

To examine the association between biomarker
concentrations and OSCC, we first used logistic regression
analyses to assess the potential impact of patient demographic
variables, selecting those with p < 0.05 as potential confounding
factors. Linear regression analyses for differential expression
between OSCC and normal were then performed for each
biomarker, adjusting for confounding variables and batch-effect
that may hinder with clustering analysis.

To investigate presence of subgroups of samples, we used
hierarchical clustering (pheatmap v1.0.10) (27) with input
as the concentration (pg/mL) data matrix for the candidate
biomarkers across the 210 OSCC and 50 normal samples
to identify subgroups within the study population. We used
Ward.D2 for the clustering method with Pearson correlation
and Euclidean as the distance measures for clustering the
columns and rows respectively. Further, the relationship among
candidate biomarkers in OSCC or in normal samples is
presented by network visualization (qgraph v1.5) (28) with
input of Pearson correlation coefficient matrix of log10
transformed concentration. The output is a network composed
of circles of nodes, which each represents a candidate
biomarker, connected by lines that represent strength of
significant correlation with p < 0.05, i.e., the greater the
distance between two biomarkers, the lower the correlation
and absence of connecting lines denotes zero correlation.
The placement of the nodes represents how biomarkers
cluster.

To explore the potential of these biomarkers in detection
of OSCC, we first performed LASSO penalized regression
analysis (glmnet v2.0-16) (29) to identify biomarkers and
baseline covariates that best classify OSCC with highest
accuracy. The regression model input was log10 transformed
biomarker concentration. We randomly partitioned the entire
study population (n = 260) into training set for model
development and test set for evaluation of the fitted model. The
biomarkers with highest discriminative performance were tested
for classification performance by computing their sensitive and
specificity in classifying normal and OSCC in the test set. A
receiver operating characteristic (ROC) curve was then generated
(pROC 1.12.1) (30) with area under the curve (AUC) estimation
of predictability for OSCC.
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RESULTS

Study Population
Patient demographics are summarized in Table 1 (OSCC and
BCGP normal) and tumor characteristics are summarized in
Supplementary Table 2. OSCC patients were mainly middle-
aged, ever-smoked, and White; compared to BCGP participants,
the OSCC patients were older (p < 0.001) (Table 1). Majority
of OSCC lesions were on the tongue (66.7%) and early-staged
(72.3%). In addition, 33.3% of the patients had loco-regional
recurrence, 18.1% died of disease, and 10.9% died of other
cause (Supplementary Table 2). We performed multivariate
logistic regression analysis to assess the potential association of
demographic variables with OSCC (Table 1). Age and ethnicity
were significantly associated with OSCC.

Differential Expression of Plasma
Biomarker Level Between OSCC and
Normal
We first screened for potential candidate biomarkers from
Cohort 1 (150 OSCC and 10 normal) by comparing the
concentration of 82 biomarkers using unpaired two-group
Wilcoxon Mann-Whitney Test (Supplementary Table 3). The
results showed 16 biomarkers with p < 0.05 after correction
for multiple testing. Among these, we selected bFGF, CRP, I309,

ICAM1, IL10, IL1a, IL1Ra, IL2, IL6, MCP3, MCSF, MIF, MIP1a,
SAA, Tie2, and VEGFD as candidate biomarkers for further
verification in Cohort 2 (Supplementary Table 3).

To assess the differential expression between 210 OSCC and
50 BCGP normal for the 16 candidates, we performed linear
regression analysis with adjustment for age, ethnicity, and batch
as confounding variables (Table 2). This revealed 15 candidate
biomarkers that were significantly differentially expressed (p <

0.05) with 14 significantly lower and IL1Ra significantly higher
in OSCC samples, comparing to BCGP normal (Table 2 and
Figure 2A). Given the objective was to identify biomarkers
for early detection of OSCC, we also performed differential
expression analysis between normal (n = 50) and early-stage
OSCC (T1/T2 and DOI ≤ 10mm; n = 152) (31), and between
early-stage and late-stage OSCC (T3/T4 and/or DOI>10mm,
n = 58) (Table 1). We observed similar results in differences
between normal and early-stage, but there was significantly
higher concentration of CRP and SAA in late-stage OSCC
(Supplementary Tables 5, 6).

Unsupervised Clustering of Biomarker
Expression Reveals Subgroups of Samples
To investigate the extent of heterogeneity of biomarker across the
260 samples, we performed unsupervised hierarchical clustering
which revealed 3 main clustered groups (CGs) of samples

TABLE 1 | Demographics of study population.

Multivariate logistic regression

Variables Total (n = 260) BCGP (n = 50) OSCC

(n = 210)

Early-stage

OSCCa

(n = 152)

Late-stage

OSCCa

(n = 58)

OR (95% CI) pc

Age, mean ± SD 62.4 ± 13.5 56.8 ± 8.27 63.8 ± 14.2 63.9 ± 14.4 63.3 ± 13.9 1.0 (1.0–1.0) <0.001

Age, median

(1–3 Qtile)

62

(53.8–71.4)

60

(49.0–62.0)

63.7

(54.5–75.4)

63.5

(54.5–75.5)

64.2

(55.3–73.4)

AGE GROUP

<50 56 (21.5) 14 (28.0) 42 (20.0) 31 (20.4) 11 (19.0) 1

50–62 77 (29.6) 24 (48.0) 53 (25.2) 37 (24.3) 16 (27.6) 0.74 (0.3–2.1) 0.56

>62 127 (48.8) 12 (24.0) 115 (54.8) 84 (55.3) 31 (53.4) 3.1 (1.0–9.3) 0.04

SEX

Male 139 (53.5) 29 (58.0) 110 (52.4) 75 (49.3) 35 (60.3) 1

Female 121 (46.5) 21 (42.0) 100 (47.6) 77 (50.7) 23 (39.7) 1.3 0.58

ETHNICITY

White 194 (74.6) 42 (84.0) 152 (72.4) 107 (70.4) 45 (77.6) 1

Otherb 66 (25.4) 8 (16.0) 58 (27.6) 45 (29.6) 13 (22.4) 3.6 (1.3–10.7) 0.01

SMOKING HISTORY

Never 122 (46.9) 25 (50.0) 97 (46.2) 71 (46.7) 26 (44.8) 1

Current 63 (24.2) 14 (28.0) 49 (23.3) 32 (21.1) 17 (29.3) 0.9 (0.4–2.6) 0.90

Former 71 (27.3) 11 (22.0) 60 (28.6) 45 (29.6) 15 (25.9) 1.3 (0.4–3.6) 0.66

Unknown 4 (1.5) 4 (1.9) 4 (3.0)

aOSCC patients were categorized based on the AJCC 8th Edition Cancer Staging System for head and neck cancers (31). Early-stage OSCC consists of T1 or T2 with depth of invasion

(DOI) < 10mm; late-stage OSCC consists of T3 or any tumor >10mm DOI, or T4, or lymph node positive.
bOther ethnicity includes Aboriginal (n = 2, early-stage OSCC) and Asian (n = 8, BCGP; n = 43, early-stage OSCC; n = 13, late-stage OSCC).
cStatistical analysis was performed excluding unknown data (n = 4, Smoking History)

BCGP, British Columbia Generations Project; OSCC, oral squamous cell carcinoma; OR, odds ratio; CI, confidence interval.
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TABLE 2 | Differential expression analysis between OSCC and BCGP samples.

Biomarkera Total (n = 260) BCGP (n = 50) OSCC (n = 210)

Mean ± SD Median

(1Q−3 Qtile)

Mean ± SD Median

(1Q−3 Qtile)

Mean ± SD Median

(1Q−3 Qtile)

Fold

changeb
pb

bFGF 1.2 ± 0.5 1.2

(0.8–1.6)

1.7 ± 1.6 1.6

(1.4–1.7)

1.1 ± 0.5 1.0

(0.7–1.4)

0.61 <0.0001

CRP 6.5 ± 0.7 6.4

(6.0–6.9)

7.1 ± 7.2 6.7

(6.4–7.2)

6.4 ± 0.7 6.4

(6.0–6.9)

0.82 0.2

I309 1.7 ± 0.2 1.7

(1.5–1.8)

1.9 ± 1.4 1.9

(1.8–2.0)

1.6 ± 0.2 1.6

(1.5–1.7)

0.77 <0.0001

ICAM1 6.1 ± 4.9 6.1

(5.8–6.5)

6.3 ± 6.1 6.3

(6.2–6.4)

6.1 ± 0.5 6.0

(5.8–6.5)

0.67 <0.0001

IL10 0.3 ± 0.2 0.2

(0.1–0.4)

0.5 ± 0.3 0.5

(0.3–0.7)

0.2 ± 0.2 0.1

(0.09–0.3)

0.79 <0.0001

IL1a 0.4 ± 0.3 0.4

(0.2–0.7)

0.6 ± 0.3 0.6

(0.4–0.7)

0.3 ± 0.2 0.3

(0.2–0.5)

0.64 <0.0001

IL1Ra 2.3±0.3 2.2

(2.1–2.4)

2.2 ± 1.7 2.5

(2.1–2.2)

2.3 ± 0.3 2.3

(2.1–2.4)

1.15 0.006

IL2 0.4 ± 0.4 0.2

(0.06–0.7)

1 ± 0.6 0.9

(0.8–1.1)

0.2 ± 0.3 0.1

(0.03–0.3)

0.61 <0.0001

IL6 0.7 ± 0.3 0.7

(0.6–0.9)

1 ± 0.7 1.0

(0.9–1.1)

0.7 ± 0.2 0.6

(0.5–0.8)

0.77 <0.0001

MCP3 1.2 ± 0.3 1.3

(1.0–1.5)

1.6 ± 1.3 1.6

(1.4–1.7)

1.2 ± 0.3 1.1

(1.0–1.4)

0.64 <0.0001

MCSF 1.1 ± 0.2 1.1

(0.9–1.2)

1.1 ± 0.6 1.1

(1.0–1.2)

1.1 ± 0.2 1.1

(0.9–1.2)

0.83 <0.0001

MIF 4.4 ± 0.2 4.4

(4.2–4.6)

4.6 ± 3.8 4.6

(4.6–4.7)

4.3 ± 0.2 4.3

(4.2–4.5)

0.76 <0.0001

MIP1a 1.9 ± 0.4 1.8

(1.6–2.1)

2.1 ± 1.7 2.1

(1.9–2.2)

1.8 ± 0.4 1.7

(1.5–2.1)

0.71 <0.0001

SAA 6.7 ± 0.7 6.7

(6.4–7.1)

7.4 ± 7.8 7.1

(6.8–7.3)

6.6 ± 0.8 6.6

(6.3–7.0)

0.74 0.03

Tie2 3.5 ± 0.2 3.5

(3.4–3.6)

3.6 ± 3 3.6

(3.5–3.6)

3.5 ± 0.2 3.5

(3.4–3.6)

0.92 0.009

VEGFD 2.8 ± 0.2 2.8

(2.7–29)

2.9 ± 2.8 2.8

(2.7–2.9)

2.8 ± 0.2 2.8

(2.7–2s.9)

0.87 0.002

aBiomarker mean and median was calculated from log10 (pg/ml+1) transformed measurements.
bDifferential expression analysis was adjusted for age, ethnicity, and batch-effect.

(Figure 2B). The CG1 comprised mainly normal (65.7%) while
most of the OSCC were clustered into CG2 and CG3, with
CG2 showing distinctively lower levels of ICAM1, I309, MCP3,
MIP1a, and IL1a. Comparing between CG2 and CG3, similar
baseline demographics and clinical-pathological characteristics
were observed (Supplementary Table 4), suggesting that there
are other clinical or biological factors associated with the
clustering. Interestingly, compared to CG3, there were more
CG2 OSCC with greater tumor size of T3/T4 (9.9 vs. 5.3%)
and lymph node positive at time of surgery (21.7 vs. 13%),
and that significantly more late-stage OSCC were in CG2
(p = 0.005). This suggests that the plasma level of these
biomarkers may infer the staging of tumor at time of initial
diagnosis.

Given that the biomarkers were also clustered into three
groups by hierarchical clustering, we investigated the relationship
among them by computing Pearson correlation coefficients

with correlation network visualization (Figure 3). The network
of BCGP normal (Figure 3A) consisted of strong and tight
correlations (thick red lines) for most of the biomarkers,
except MIH and bFGF showing negative correlation (thin faded
black line). In contrast, OSCC (Figure 3B) showed 2 tight
clusters (MCP3, I309, ICAM1, MIP1a, and MCSF; IL2, IL6,
and IL10) with less number of biomarkers, a separate but close
relationship between MIF and bFGF, and negative correlations
of ICAM to IL2/IL10, I309 to Tie2, and MCSF to IL2/IL10,
and MIP1a to IL10 (faded black lines). This suggests that
there are subgroups of OSCC which may differ in biological
processes introducing the noise to the relationship between these
biomarkers. In addition, there was an inverse relationship for
several markers where the correlation is positive in BCGP normal
but negative in OSCC. This may also reflect the consequences
of response mechanism of certain cytokines in presence of a
tumor.
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FIGURE 2 | Expression analysis of plasma biomarkers. (A) Volcano plot of log2 transformed fold change vs. log10 transformed p-values showing differential

expression for each biomarker across comparative sample set (n = 260) calculated by linear regression tests with adjustment of age, ethnicity, and batch-effect.

Significantly differentially expressed biomarkers are labeled with light blue solid dots for p < 0.05 and red solid dots for p < 1e-5. The distribution of concentration

(log10(pg/ml+1)) is summarized with boxplots displayed in alphabetical order of biomarker. (B) Heatmap of unsupervised hierarchical clustering of biomarkers across

the comparative sample set (n = 260). Column labels represent the disease group of samples: Blue: BCGP; Red: OSCC; and 3-group (k = 3) clustering by Pearson

correlation and Euclidean distance measurement: Green, Clustering Group (CG1) (n = 70), Orange: Clustering Group (CG2) (n = 115); Brown, Clustering Group (CG3)

(n = 75).

Discriminative Performance of Plasma
Biomarkers
As a preliminary step to investigate the diagnostic performance
of these circulating biomarkers, we randomly partitioned the 260
samples into training (n = 195, 158 OSCC and 37 normal) and
test (n = 65, 52 OSCC and 13 normal) sets. LASSO penalized

regression was performed on the training set which selected

MIF, IL2, and IL1Ra as variables that best classified OSCC and

normal. These selected variables were then applied to the test
set. Although the test set was small, the model achieved high

performance with AUC of 0.96, sensitivity of 0.96, specificity of

0.92, PPV of 0.98 and NPV of 0.86 (Table 3 and Figure 4).
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FIGURE 3 | Network visualization of correlation between biomarkers. For both BCGP (A) and OSCC (B) networks, each biomarker is a circle with lines representing

significant correlation (Student’s t-test, alpha = 0.05) between biomarkers, with red and black for positive and negative correlation, respectively. The line thickness

represents the strength of the correlation, the thicker the lines, the stronger the correlation and vice versa.

TABLE 3 | Discriminative performance of biomarkers.

Biomarker(s) AUC (95% CI) Se. Sp. PPV NPV

IL2 0.9077 (0.8098–0.9654) 0.9038 0.9231 0.9792 0.7059

IL2+MIF 0.9538 (0.871–0.9904) 0.9615 0.9231 0.9804 0.8571

IL2+MIF+IL1Ra 0.9538 (0.871–0.9904) 0.9615 0.9231 0.9804 0.8571

AUC, area under the ROC curve; CI, confidence interval; Se., sensitivity; Sp., Specificifiy;

PPV, positive predictive value; NPV, negative predictive value.

FIGURE 4 | Receiver Operator Characteristic (ROC) curves illustrating

classification performance of modeled biomarkers on OSCC vs. BCGP normal

among the test set. The curves illustrate performance range for each of the

biomarkers (IL2, blue line; MIF, red line; IL1Ra, purple line) The combination of

the 3 biomakers (black line) achieved AUC of 0.95 (95% CI, 0.87–0.99).

DISCUSSION

OSCC, with poor survival and significant impact on quality of
life, has been an under-studied disease. As an immune inhibitory
disease, it is known to be associated with increased expression
of cytokines and chemokines at the tumor microenvironment
with mounting evidence associating these inflammatory changes
with stages of diseases and recurrence (32, 33). Therefore,
circulating biomarkers may also reflect the pathological disease
states and blood samples which constitute detectable proteins
can potentially be used to screen for OSCC. By comparing to
normal samples, this is the first study to identify a set of potential
plasma inflammatory protein biomarkers to distinguish OSCC
from normal.

Sampling of blood is a more convenient and a relatively less
invasive means of sample collection compared to invasive tissue
biopsies. In addition, examining blood protein components
provides an indication of a systemic analysis of the changes in
the presence of cancer. Comprehensive proteomics approach
is suitable for biomarker discovery; however, it can be costly
in conducting the assay and executing proteomic analysis
while integrating sources of variables contributing to aberrantly
expressed proteins. The MSD, an ECL-based platform, is
commercially available and can be customized to screen or
measure a set of targeted protein expressions, and has shown
promising robust results for screening of diseases (34, 35).
Moreover, compared to the enzyme-linked immunosorbent assay
(ELISA), ECL has been found to have higher sensitivity with
capability of multiplex up to ten biomarkers per sample. As
the first step of biomarker screening, we used MSD as our
approach to screen for potential targets and verify them in an
independent set of test samples. In our study, we have assessed
the potential confounding impact on age. Comparing to the
normal controls after adjustment for age and batch effects, all
differentially expressed biomarkers remained significant.
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Our study samples were subjected to only 1 to 2 freeze-
thaw cycles. The process of freeze-thawing or storage time has
been investigated for its effect on detectable concentration of
blood proteins. Studies have found that freeze-thaw, up to a
maximum of five cycles, and long-term storage of samples at
−80◦C had minimum changes to the concentrations of blood
plasma proteins (36–38). A recent study investigated the effects
of freeze-thaw by comparing concentrations of inflammatory
proteins, of which 9 overlap with our panel (39). No significant
differences were found between never-frozen and at least one
freeze-thaw cycle. For a blood-based diagnostic test in clinical
settings, immediate processing of fresh samples is convenient.
However, to be cost-effective in clinical settings, MSD assay
should analyze 80 collected samples. Thus, subjecting samples to
at least one freeze-thaw cycle may be unavoidable. Nevertheless,
if the plasma biomarkers in this study are validated as OSCC
specific, more economical clinical platforms, such as ELISA, can
be designed to test on fresh-blood samples in clinical settings.

The most intriguing observation from this study is the
significant low level of these biomarkers in OSCC, compared to
normal samples. Although this was unexpected, OSCC is known
to be an immune inhibiting disease; therefore, the observed low-
level expression may reflect this. Another possible explanation
is that tumor-tissue associated inflammatory-related proteins are
present at higher concentration at the tumor tissues than in the
blood. Further investigation of the expression of these targets
at the tumor tissue, unaffected tissues, and correlated to the
circulating levels may shed light of its underlying mechanism.
However, given the multifaceted nature of these biomarkers, in
which expression is affected by a variety of signaling pathways,
the underlying biological explanation of the observed expression
requires further experiments which are beyond the scope of this
study. Nevertheless, with the observed blood level we were able
to estimate the performance in classifying OSCC which achieved
high sensitivity and specificity.

The present study found strong association between OSCC
and decreased level of proteins involved in immune response,
including IL2, MIF, and IL1Ra. IL2 is one of the key cytokines
with regulatory role in T-cell expansion and activation through
main signaling pathways (STAT, PI3K-AKT, and MAPK) that
mediates the survival, proliferation, differentiation, activation,
and cytokine production in different types of immune cells
(40, 41). IL2 is predominantly produced by antigen-stimulated T
cells, NK cells, and activated dendritic cells. The absence of IL2,
thus, infers the characteristic of immune deficient head and neck
cancer, including OSCC (42). We observed almost undetectable
trace of circulating IL2 in OSCC.

MIF is a pro-inflammatory cytokine constitutively expressed
and readily to be secreted by activated immune cells promoting
cell proliferation and angiogenic activities, facilitating detection
of antigens, and production of other inflammatory cytokines
(43). In regard to carcinogenesis, high expression ofMIF has been
found to inhibit regulatory effects of p53 mediated apoptosis in
tumor-cell lines, and cytotoxic CD8+ T cells (44, 45). In addition,
MIF was also demonstrated to activate T cell through production
of pro-inflammatory molecules, including IL2 and IL6 (44). The
low expression of MIF may explain the observed low level of IL2.

IL1Ra is structural variant of IL1 ligand with anti-
inflammatory effects by competitively binding to IL1 receptors.
Therefore, the elevated level of IL1Ra in circulation may indicate
the presence of inflammatory effects of IL1 in tumor tissues
which trigger the IL1Ra to counterbalance the signaling pathways
activated by IL1. This suggests expression of IL1Ra plays a role
in demoting the progression of tumor (46). Several studies have
demonstrated the expression of IL1Ra to be positively correlated
with progression and lymph node metastasis (47–49), inhibit IL-
1 mediated prostate cancer regression (50), and increased growth
rate of glioblastoma cells (51). In our study, the expression of
IL1Ra is markedly higher in patients with OSCC compared to
normal controls. In addition, we observed significantly higher
level of IL1Ra in OSCCs that developed lymph node disease (fold
change 1.1, p = 0.03). These results may be suggesting that an
increase in IL1Ra was to reduce the tumor-mediated production
of IL1 (52) and could propose value in assessing disease severity.

To explore the correlation among the candidate biomarkers
using network visualization, we have observed interesting reverse
relationships between biomarkers between OSCC and normal
BCGP samples. For example, bFGF was negatively correlated
with MIF among normal BCGP samples but showed significant
positive correlation between MIF and several other biomarkers.
This reflects previous reports demonstrating the production
of MIF in presence of growth factors and inducing tumor
growth (53, 54).We also observed significant negative correlation
between ICAM1 and IL10 among the OSCC samples suggesting
the inhibitory role of IL10 on ICAM1 and T-cell activation
(55). In addition, the biomarkers among OSCC clustered to
more subgroups suggesting biological difference within OSCC;
although we did not have significant differences between
clustered groups in regards to demographics, tumor clinical-
pathological characteristics, or outcome.

The limitations of the study should be considered. First, this
is not a large-scale mass spectrometry or a microarray study
to comprehensively interrogate the complex plasma proteome.
Therefore, biological sources of variability in observed expression
such as protein isoforms, or pre- or post-transcriptional
modifications could not be identified. Instead, we wanted
to apply a clinically translational platform to investigate the
clinical value of immune-related biomarkers derived from easily
accessible biosamples. Second, the retrospective nature of this
study limits our full control over pre-analytical processing
parameters, such as centrifugation time and speed, between
laboratories, However, to our knowledge, there have been few
reports of how centrifugation speed would significantly affect the
detectable concentration of these proteins. A few studies may
even suggest that plasma-derived proteins are relatively robust
to various sample processing methods (56, 57). In regards to
study population, the normal matched samples from the BCGP
are the best available samples that are most representative of
the general non-OSCC population with comprehensive data
collections on demographics, smoking and no known any cancer
history with follow-up. However, we do not have detailedmedical
information on whether there is presence of oral premalignant
diseases, autoimmune diseases, and use of immunomodulators
or other related conditions which could put this population
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at an increased risk of developing malignancies, which in
turn may contribute to observed biomarker alterations. Third,
50% of the OSCC in this study was non-smokers, which
is different from other geographic regions where tobacco-
related OSCC remains high. Therefore, it is worth to note
that our OSCC population may not be generalized. Lastly, the
observed aberrantly expressed protein may be due to changes
in metabolic states or other physiological states that could
not be captured in this study. This limitation applies to all
blood biomarker studies due to the varying genetic and non-
genetic explanations, e.g., medical comorbidities and diets, in the
population (58).

Future work is warranted to determine mechanisms by which
most of these identified biomarkers are under-expressed inOSCC
compared to normal. Other future directions may include a
validation study with samples collected from different institutes
with the determination of the best methods (e.g., ELISA vs.
ECL) and cut-offs for various targets identified from this study.
In addition, studies to investigate the temporal levels of these
markers by repeating measurements before, post-treatment, and
at time of local-regional recurrences or years into disease-free
follow-up are of importance and can help to determine the value
of these biomarkers in early identification of local and regional
recurrence during the follow up.

In conclusion, this is the first paper to identify potential
inflammatory plasma protein biomarkers of patients with OSCC.
With further validation in larger sized cohort including paired
blood samples collected over the course of disease management,

the set of biomarkers has potential to assist in early detection of
OSCC.
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