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Urokinase plasminogen activator receptor (uPAR), a member of the lymphocyte antigen 6

protein superfamily, is overexpressed in different types of cancers and plays an important

role in tumorigenesis and development. In this study, we successfully targeted uPAR

by CRISPR/Cas9 system in two human cancer cell lines with two individual sgRNAs.

Knockout of uPAR inhibited cell proliferation, migration and invasion. Furthermore,

knockout of uPAR decreases resistance to 5-FU, cisplatin, docetaxel, and doxorubicin

in these cells. Although there are several limitations in the application of CRISPR/Cas9

system for cancer patients, our study offers valuable evidences for the role of uPAR in

cancer malignancy and drug resistance.
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INTRODUCTION

Urokinase plasminogen activator (uPA) receptor (uPAR), also known as CD87 and encoded
by PLAUR gene, is a member of the lymphocyte antigen 6 protein superfamily (1). uPAR
is a glycoprotein consisting of 313 amino acid residues with only the extracellular domain,
no transmembrane and intracellular structures, and is attached to the cell membrane via
glycosylphosphatidylinositol anchors (1). uPAR binds to and activates uPA to cleaving plasminogen
to plasmin, thus triggering the remodeling of extracellular matrix and playing a key role in cell
adhesion, migration, proliferation, and survival (2). Besides uPA, uPAR can interact with other
proteins, including vitronectin, integrins, and EGFR, etc to regulate multiple signal pathways (2).
Compared to normal tissues, uPAR is highly expressed in many human cancers including lung,
breast, gastric, colorectal, pancreatic, bladder, and prostate cancers, etc (3). The expression of uPAR
in these cancers promotes the proliferation, metastasis, and invasion of cancer cells (3). Therefore,
uPARmay be an important biomarker and target for cancers. Indeed, many inhibitors of uPAR have
been developed. The inhibitors blocks the interaction of uPARwith uPA, including: small molecules
UK1 (4), WX-UK1 (5), WX-671 (6), etc; peptides Mupain-1 (7), AE105 (8), ATF (9), etc; and
monoclonal antibody ATN-291 (10). In addition, there are inhibitors that inhibit the interaction
of uPAR with integrins, including: peptides P25 (11), a325 (12), H245A (13), etc; and monoclonal
antibody ATN-658 (14). However, the poor affinity and bioavailability limit the application of these
inhibitors in clinic. Consequently, it is necessary to develop new approaches to target uPAR for
treatment cancer and other diseases.
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The RNA-guided clustered regularly interspaced short
palindromic (CRISPR) in combination with a CRISPR-
associated nuclease 9 (Cas9) nuclease system is a novel gene
editing technology by delivering the Cas9 complexed with a
synthetic guide RNA (gRNA) into a cell to cut the desired
genome location, allowing existing genes to be removed and/or
new ones added (15). Due to the advantages of faster, cheaper,
more accurate, and efficient, CRISPR/Cas9 system has been
widely used as a basic biology research tool, development of
biotechnology products and potentially to treat diseases (16).
In this study, we used CRISPR/Cas9 system targeting uPAR to
verify the role of uPAR in cancers.

MATERIALS AND METHODS

Cells and Reagents
The two multidrug resistant cancer cell lines HCT8/T and
KBV200 were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% FBS, penicillin (100 U/ml) and streptomycin
(100 ng/ml) at 37◦C in a humidified atmosphere of 5%
CO2. Restriction endonuclease BsmBI was from New England
Biolabs. Polyetherimide (PEI) was from Ploysciences. Cisplatin
was from Shandong Qilu Pharmaceutical. 5-FU, docetaxel,
and doxorubicin were from LC Laboratories. Puromycin was
from Selleck Chemicals. Methylthiazolyldiphenyl-tetrazolium
bromide (MTT) was from ApexBio Technology. Anti-uPAR
(D121140) antibody was from Shanghai sangon biotech. Anti-
Vinculin antibody (BM1611) was fromWuhan Boster Biotech.

Vector Generation, Lentivirus Production,
and Transduction
LentiCRISPRv2 vector (fromAddgene #52961) was digested with
BsmBI and ligated with annealed oligonucleotides (uPAR-sg1-
F: 5′-CACCGGACCAACGGGGATTGCCGTG-3′, uPAR-sg1-
R: 5′-AA-ACCACGGCAATCCCCGTTGGTCC-3′; uPAR-sg2-F:
5′-CACCGGGACCACGATCGTGCGCTTG-3′, uPAR-sg2-R: 5′-
AAACCAAGCGCACGATCGTGGTCCC-3′). HEK293T were
transfected using PEI at 70% confluency with recombinant
vectors and packaging vectors pMD2G and psPAX2. Viral
supernatant was harvested 96 h after transfection and stored at
−80◦C. HCT-8/T and KBV200 cells were transducted with viral
supernatant containing 10µg/ml polybrene, and were selected
with 100 and 10µg/ml puromycin respectively to establish the
stable cell lines.

Genomic PCR and Sequencing Analysis
The genomic DNA of cells was extracted with the QuickExtract
DNA extraction kit following the manufacturer’s protocol
and amplified with a pair of primers (Detection 1-F:
5′-GACAACGGACAGACTGGAA-3′, Detection 1-R: 5′-
CCGAATCGCTCTAAGTGG-3′) designed for the target region
of interest using a Pfu DNA polymerase. Followed by agarose gel
electrophoresis and ethidium bromide staining, the purified PCR
products were sequencing with an ABI 3131xl Genetic analyzer.

Western Blot Analysis
Cells were harvested and lysed in RIPA buffer (1% NP-
40, 0.5% sodium deoxycholate, 0.1%SDS, 10 ng/ml PMSF,
0.03% aprotinin, 1µM sodium orthovanadate) at 4◦C for
30min. Lysates were centrifuged for 10min at 14,000×g and
supernants were stored at −80◦C as whole cell extracts. Protein
concentration was quantified using with Bradford assay. Proteins
were separated on 10% SDS-PAGE gels and transferred to
polyvinylidene difluoride membranes. Membranes were blocked
with 5% BSA and incubated with the indicated primary
antibodies. Corresponding horseradish peroxidase-conjugated
secondary antibodies were used against each primary antibody.
Proteins were detected using the chemiluminescent detection
reagents and films.

Cell Morphology Assay
Cells were seeded on glass cover slips for 24 h and then fixed in
4% paraformaldehyde for 20min and permeabilized with 0.1%
Triton X-100 for 15min at room temperature. The coverslips
were incubated in the dark with 100 nM rhodamine-phalloidin at
room temperature for 30min. Nuclei were counterstained with
100 nM DAPI. The coverslips were rinsed in PBS and inverted
on a drop of anti-fade mounting media on a glass slide. Then,
these slides were sealed with neutral balsam and viewed under
the confocal microscope.

Cell Viability Assay
Cells were seeded into a 96-well plate at a density of 5,000
cells/well and treated with various concentrations of agents
for 72 h. Then 10 µl MTT was added to each well at a final
concentration of 0.5 mg/ml. After incubation for 4 h, formazan
crystals were dissolved in 50 µl of DMSO, and absorbance
at 570 nm was measured by plate reader. The concentrations
required to inhibit growth by 50% (IC50) were calculated from
survival curves as previously described (17).

Sphere Formation Assay
Cells were trypsinized, suspended in medium containing 0.3%
agar and 10% FBS and seeded at a density of 5× 102 cells/well in
a 12-well plate. The agar–cell mixture was plated onto a bottom
layer with 0.5% agar. Then treated cells were incubated in a
humidified incubator and fresh medium was added every 3 days.
Two weeks later, colonies were analyzed microscopically.

Cell Migration Assay
Cells were seeded into a 6-well plate, and reached 80–90%
confluence, the cell monolayer was wounded using a sterilized
10 µl pipette tip and washed with PBS two times. Cells were
allowed to migrate for 12, 24, and 36 h in serum-free medium,
and the wounds were observed and captured. The gap lengths
were measured from the photomicrographs.

Cell Invasion Assay
Cell invasion assays were performed with a modified Boyden
chamber (Corning) containing matrigel-coated polycarbonate
membrane filter (6.5mm diameter, 8µm pore size). Cells
were plated in the upper chamber and the lower chamber
contained medium with 10% FBS, and incubated for 24 h
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at 37◦C in 5% CO2. Non-migrated cells were scraped
from the upper surface of the membrane, and migrated
cells remaining on the bottom surface were photographed
and counted.

Statistical Analysis
The experimental data of this paper are the results of three
independent repetitions. The data obtained is presented in the
form of an average and a standard deviation. Statistical analysis

FIGURE 1 | Knockout of uPAR by CRISPR/Cas9 system. (A) The map of lentiCRISPRv2 vector. (B) The locations and sequences of two sgRNAs of uPAR. (C) The

protein expression levels of uPAR were examined by Western blot, and vinculin was used as loading control. The genomic DNA of cells was amplified and sequenced

by the designed primers. The sequencing comparison and original data of HCT8/T (D) and KBV200 (E) cells are shown.
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of data differences using t-test method. A P-value of <0.05 was
set as the criterion for statistical significance.

RESULTS

Knockout of uPAR by CRISPR/Cas9
System
To target uPAR with CRISPR/Cas9 system, we firstly used
lentiCRISPRv2 vector which expresses both hSpCas9 and the
chimeric guide RNA (Figure 1A) linked respectively, with
two targeting sequences from exon 2 of human uPAR gene
(PLAUR) end with a 5′NGG3′ PAM (protospacer adjacent motif)
sequence (Figure 1B). Then, the two successfully generated
vectors expressed sgRNA1 (sg1) or sgRNA2 (sg2) to target
uPAR were identified by sequencing. To establish cell lines
stably expressed sgRNA to target uPAR, HCT8/T, and KBV200

cells were selected with puromycin after transduction with
LentiCRISPRv2 viral supernatant. As shown in Figure 1C, the
protein levels of uPAR were undetectable by western blot in
both HCT8/T and KBV200 cells stably expressed either sg1
or sg2. To further identify the genomic change of targeting
uPAR by CRISPR/Cas9 system, the genomic DNA of cells was
extracted and amplified using the designed primers by PCR
reaction. The sequencing results of PCR productions showed
that 1 base was inserted into the target position of HCT8/T
uPAR-sg1 cells and 3 base mismatches and a large deletion
in the target position of HCT8/T uPAR-sg2 cells (Figure 1D).
There were 16 base deletions and 12 base mismatches in
the target position of KBV200 uPAR-sg1 cells and 51 base
deletions and 3 base mismatches in the target position of
KBV200 uPAR-sg2 cells (Figure 1E). These data suggest that cells
with stable knockout of uPAR by CRISPR/Cas9 system were
successfully established.

FIGURE 2 | Knockout of uPAR alters cell morphology. The morphology of HCT8/T (A) and KBV200 (B) cells was obtained with confocal microscope.
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Knockout of uPAR Alters Cell Morphology
To explore the effect of knockout of uPAR on cell morphology,
we stained cells with Rhodamine-labeled phalloidin and DAPI.
The results showed that HCT8/T and KBV200 cells with uPAR
knockout underwent morphologic changes from spindle-shaped
phenotype to round phenotype (Figures 2A,B), indicating that
knockout of uPAR alters cell morphology.

Knockout of uPAR Attenuates Cell
Proliferation
To investigate the effect of knockout of uPAR on cell
proliferation, we detected cell proliferation by MTT and sphere
formation assays. As shown in Figure 3A, knockout of uPAR

inhibited the growth of HCT8/T and KBV200 cells. Further
sphere formation assay showed that knockout of uPAR reduced
the sphere number and size of HCT8/T and KBV200 cells
(Figures 3B–E). These results suggest that knockout of uPAR
attenuates cell proliferation.

Knockout of uPAR Inhibits Cell Migration
To examine the effect of knockout of uPAR by CRISPR/Cas9
on cell migration, wound healing assay was used to detect
cell migration. The results showed that cell migration was
reduced in HCT8/T and KBV200 cells with uPAR knockout
(Figure 4), indicating that knockout of uPAR inhibits
cell migration.

FIGURE 3 | Knockout of uPAR attenuates cell proliferation. (A) Cell proliferation was evaluated by MTT assay. Representative spheres images and quantification of

HCT8/T (B,C) and KBV200 (D,E) cells were determined by sphere formation assay. **P < 0.01 vs. corresponding control.
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FIGURE 4 | Knockout of uPAR inhibits cell migration. Cell migration was determined with wound healing assay. Representative migration images and quantification of

HCT8/T (A,B) and KBV200 (C,D) cells were shown. *P < 0.05 and **P < 0.01 vs. corresponding control.

Knockout of uPAR Inhibits Cell Invasion
To further evaluate the effect of knockout of uPAR by
CRISPR/Cas9 on cell invasion, transwell assay was used to
detect cell invasion. As shown in Figure 5, cell invasion
was reduced in HCT8/T and KBV200 cells with uPAR
knockout, suggesting that knockout of uPAR inhibits
cell invasion.

Knockout of uPAR Decreases Multidrug
Resistance
To study the effect of knockout of uPAR by CRISPR/Cas9
on multidrug resistance, four chemotherapeutical drugs
5-FU, cisplatin, docetaxel, and doxorubicin were used to
treat cells, and cell survival was detected by MTT assays.
As shown in Figure 6, the cell survival curves shifted
to downward, and IC50 values of these four drugs were
reduced in HCT8/T and KBV200 cells with uPAR knockout.
These data indicate that knockout of uPAR suppresses
multidrug resistance.

DISCUSSION

Recently, it has been demonstrated that knockout of uPAR
using CRISPR/Cas9 system in mouse neuroblastoma Neuro
2A cells inhibit cell proliferation, reduce the number of Ki-67
positive cells, and down-regulate the mRNA expression level
of TrkC receptor (18). In the current study, we successfully
targeted uPAR in two cancer cell lines by CRISPR/Cas9 system
with two individual sgRNAs. Knockout of uPAR suppresses
cell proliferation, migration and invasion. Moreover, knockout
of uPAR decreases resistance to 5-FU, cisplatin, docetaxel, and
doxorubicin in these cells. Previous studies have shown that high
expression of uPAR leads to small cell lung cancer, head and neck
squamous cell carcinoma, and malignant pleural mesothelioma
resistant to chemotherapy (19–21). uPAR promotes the resistance
to tamoxifen in breast cancer by activated ERK1/2 activity (22),
and confers the resistance to gefitinib in non-small-cell lung
cancer through activated EGFR/pAKT/survivin signal pathway
(23). Therefore, uPAR plays important roles not only in cancer
malignancy but also in drug resistance.
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FIGURE 5 | Knockout of uPAR inhibits cell invasion. Cell invasion was determined with transwell assay. Representative invasion images and quantification of HCT8/T

(A,B) and KBV200 (C,D) cells were shown. **P < 0.01 vs. corresponding control.

FIGURE 6 | Knockout of uPAR decreases multidrug resistance. Cells survival was measured by MTT assay. The representative growth curve of HCT8/T (A) and

KBV200 (B) cells treated with the indicated concentrations of 5-FU, cisplatin, docetaxel, and doxorubicin for 72 h were shown.
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CRISPR/Cas9 system has been widely applied in exploring
the molecular mechanism of tumorigenesis, generating the
models for cancer research and identifying the targets for cancer
treatment, etc. A genome-wide CRISPR screen shows that loss-
of-function mutations of some genes including NF2, PTEN,
CDKN2A, TRIM72, FGA, miR-152, miR-345, and so on are able
to drive tumor growth and metastasis in a mouse model (24).
Using CRISPR/Cas9 technology to target MAN2A1-FER fusion
gene inhibits tumor proliferation and metastasis in the mouse
models of prostate and liver cancer (25). Colorectal cancer from
normal human intestinal epithelium organoids are generated
by introducing mutations in the tumor suppressor genes APC,
SMAD4 and TP53, and oncogenes KRAS and/or PIK3CA with
CRISPR/Cas9 system (26, 27). Liver tumors in mice are occurred
by using hydrodynamic injection of CRISPR/Cas9 plasmids and
sgRNAs that directly target the tumor suppressor genes PTEN
and p53 (28). Mouse pancreatic ductal adenocarcinoma models
are established by introducing 13 sgRNAs of different tumor
suppressor genes into expression vectors and then transferred
them to mouse pancreatic tissue (29). CDC25A is identifies as
a determinant of sensitivity to ATR inhibitors by a genome-
wide CRISPR screen (30). Deletion of genes such as NF1 and
MED12 with CRISPR/Cas9 system is associated with resistance
to vemurafenib (31).Moreover, the combination of CRISPR/Cas9
gene editing technology and immunotherapy, especially with
CAR-T cell therapy, will have enormous therapeutic potential
in leukemia, lymphoma, and some solid tumors (32, 33). Using
CRISPR/Cas9 system can produce universal CAR-T cells by
simultaneously targeting TCR and HLA-I (34) and enhanced
CAR-T cells by deleting T cell inhibitory receptor or signaling
molecule genes such as PD1 and CTLA4 (33, 35). We previously
have demonstrated that targeting ABCB1 by CRISPR/Cas9-based

genome editing reverses ABCB1-mediated multidrug resistance
in cancer cells, resulting in the increase of the sensitivity
and intracellular accumulation of the anti-cancer drugs (36).
Although there are several limitations such as off-targets and
delivery in the clinical application of CRISPR/Cas9 technology, it
is believed that CRISPR/Cas9 system will benefit cancer patients
in the near future.

In summary, our results have demonstrated that targeting
uPAR by CRISPR/Cas9-based genome editing causes knockout
of uPAR in human cancer cell lines, resulting in attenuation of
cell proliferation, migration, invasion and multidrug resistance.
Our study offers valuable evidences for the role of uPAR in cancer
malignancy and drug resistance.
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