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The lack of in-depth knowledge about the molecular determinants of glioblastoma (GBM)

occurrence and progression, combined with few effective and BBB crossing-targeted

compounds represents a major challenge for the discovery of novel and efficacious

drugs for GBM. Among relevant molecular factors controlling the aggressive behavior

of GBM, chloride intracellular channel 1 (CLIC1) represents an emerging prognostic and

predictive biomarker, as well as a promising therapeutic target. CLIC1 is a metamorphic

protein, co-existing as both soluble cytoplasmic and membrane-associated conformers,

with the latter acting as chloride selective ion channel. CLIC1 is involved in several

physiological cell functions and its abnormal expression triggers tumor development,

favoring tumor cell proliferation, invasion, and metastasis. CLIC1 overexpression is

associated with aggressive features of various human solid tumors, including GBM,

in which its expression level is correlated with poor prognosis. Moreover, increasing

evidence shows that modification of microglia ion channel activity, and CLIC1 in

particular, contributes to the development of different neuropathological states and

brain tumors. Intriguingly, CLIC1 is constitutively active within cancer stem cells (CSCs),

while it seems less relevant for the survival of non-CSC GBM subpopulations and for

normal cells. CSCs represent GBM development and progression driving force, being

endowed with stem cell-like properties (self-renewal and differentiation), ability to survive

therapies, to expand and differentiate, causing tumor recurrence. Downregulation of

CLIC1 results in drastic inhibition of GBM CSC proliferation in vitro and in vivo, making

the control of the activity this of channel a possible innovative pharmacological target.

Recently, drugs belonging to the biguanide class (including metformin) were reported

to selectively inhibit CLIC1 activity in CSCs, impairing their viability and invasiveness,

but sparing normal stem cells, thus representing potential novel antitumor drugs with

a safe toxicological profile. On these premises, we review the most recent insights into
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the biological role of CLIC1 as a potential selective pharmacological target in GBM.

Moreover, we examine old and new drugs able to functionally target CLIC1 activity,

discussing the challenges and potential development of CLIC1-targeted therapies.

Keywords: glioblastoma, cancer stem cells, CLIC1, biguanide, metformin

AN INTRODUCTION TO CANCER STEM
CELLS IN HUMAN GLIOBLASTOMA

Glioblastoma (GBM) is the most aggressive and prevalent
primary brain cancer in adults, characterized by morphological,
cellular, and molecular heterogeneity leading to invasive growth
and resistance to therapy (1). Despite the use of aggressive
multimodal treatments, GBM invariably recurs, and the median
overall survival time of patients is extremely poor (∼15
months after diagnosis) (2). The high drug resistance and
recurrence rate of GBM is mainly ascribed to a sub-population
of cancer stem cells (CSCs) within the tumor mass (3).
GBM CSCs (GSCs) share functional features with neural stem
cells, including self-renewal and multipotency, as well as the
over-activation of biochemical signaling pathways (i.e., Sonic
hedgehog, Akt, and Wnt/β-catenin). On the other hand, GSCs
possess distinct genetic and epigenetic alterations which sustain
their in vivo tumorigenic potential: through asymmetric division
GSCs give rise to all the differentiated non-tumorigenic cells
forming the bulk of the tumor mass, while their stem cell-like
properties provide them with inherent resistance and evasion of
apoptosis (4–6).

Phenotypically, GSCs are characterized by the expression
of a combination of stem cell markers (e.g., CD133, Olig2,
Sox2, Nanog), although different GSC populations exist, and
a unique tumor-related phenotype has not been yet identified.
Several proteins contribute to the maintenance of the stem-like
phenotype, the aggressiveness, and the white matter invasiveness
of GSCs, including CD44, sprouty2, Notch, tGLI1, and PrP

(7–11). Moreover, the microenvironment in which GSCs develop

is extremely complex, harboring non-neoplastic stromal cells,

mesenchymal stem cells (MSCs), endothelial cells, immune cells,
and other glial cell types, organized to compose the tumor niches
(12). A dynamic and reciprocal crosstalk between GSCs, GBM
bulk cells and the microenvironment cells occurs in the niches,
via paracrine signals, mainlymediated by chemokine systems (for
ex. CXCR4/7-CXCL12) (13) or direct cell-cell interactions. This

microenvironment contributes tumor progression, invasion,
angiogenesis, escape from immune surveillance, drug resistance,

as well as to GSC maintenance, favoring the retaining of the

stem-like properties (14, 15).
GSCs sustain neovascularization via the release of pro-

angiogenic factors and vascular transdifferentiation (16), and are

able to secrete cytokines inducing immune suppression (17, 18).
Moreover, alteration of metabolic programs (i.e., the Warburg

effect) drives the aggressive phenotype of GSCs providing them

biosynthetic molecules useful for rapid growth (19).

Cytotoxic drugs, such as temozolomide, might favor
a mutagenic selection of treatment-resistant GSC clones,

further increasing GSC genetic heterogeneity, which
represents a relevant mechanism for tumor recurrence
(20). In addition, GSC and non-GSC populations retain
dynamic interconversion through self-differentiation
and de-differentiation, respectively (21, 22). Given the
capacity of GSCs to generate all the different tumor cell
populations composing the tumor mass, GSC targeting
agents should be used in combination with existing
therapies to arrest tumor growth and improve the
clinical outcome.

Overall the complex nature of GSCs makes their eradication
the main therapeutic goal for GBM, but a still unsolved challenge
(23). In fact, conventional antitumor drugs spare GSCs, allowing
tumor re-growth. Potential innovative strategies to eradicate
GSCs from tumors are directed to: (i) impair specific pathways
crucial for GSC survival and functioning (i.e., Notch, Wnt, Sonic
hedgehog); (ii) targeting GSC perivascular or hypoxic niches; (iii)
block metabolic and/or epigenetic modifications providing GSCs
with stem-like properties. However, GSCs frequently activate
multiple compensatory signaling pathways, change phenotype
along tumor progression, displaying genetic heterogeneity, high
plasticity and diversity of stemness markers, nullifying potential
effective therapies (24). The identification of the distinctive
GSC Achilles heel is an urgent goal for GBM treatment, since
innovative therapeutic approaches identified for other cancer
types left the survival of GBMpatients practically unchanged over
the past decades.

ION CHANNELS IN CANCER: CLIC1
FUNCTIONAL EXPRESSION AND
THERAPEUTIC POTENTIAL

Ion channels are integral membrane proteins that form
pores through which enable the passage of ions between
cell compartments, regulating electrical excitation, cell
proliferation, motility, survival, and maintaining tissue
homeostasis. Structural defects or dysregulated functioning
of ion channels play a pathogenic role in several human diseases
including cancer. In particular, alterations of ion channel
activity contribute to malignant transformation, inducing
aberrant cell cycle rate, inability to activate the apoptotic
program, and increased migration and invasion abilities
(25). Genes encoding ion channels involved in oncogenic
transformation (26) are differentially expressed in cancer and
normal cells, in breast cancer (27), lung adenocarcinoma (28),
and GBM (29).

While the role of plasma membrane channels has been
extensively studied, less is known about intracellular ion
channels. These molecules, inactive in the cytoplasm, are able to
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auto-insert into membranes where they act as functional integral
ion channels, and have been recently recognized to regulate cell
cycle, apoptosis, cell adhesion and motility (30). In this scenario,
pharmacological modulation of intracellular ion channels would
represent a potential innovative therapeutic option.

Among the ion channels whose aberrant expression and
activity is relevant for neoplastic transformation, the chloride
intracellular channel (CLIC) family recently gained particular
attention. The sixmembers of CLIC group (CLIC1-6), are present
in both soluble and membrane-associated forms, displaying
cell-specific expression and biological functions in mammalian
tissues, not functioning as conventional chloride channels but
possessing peculiar physiological roles in each different cell type
(31). CLIC1 is the most widely expressed and studied channel
of this family, in both physiological and pathological conditions,
including brain functioning and cancer cell proliferation (32).

Overview of the Mechanisms of CLIC1
Activation and Related Physiological
Functions
CLIC1 is a metamorphic protein (33) able to switch from a
soluble cytoplasmic conformation to a transmembrane isoform
(tmCLIC1) (34). Thus, CLIC1 exists in three different states:
a monomeric soluble form, an oxidized soluble dimeric
intermediate form, and an integral membrane form. The
soluble monomer contains a thioredoxin-like N-domain with a
glutathione binding site. The formation of the dimer is stabilized
through a disulfide bond which connects two conserved cysteine
residues, Cys-24 and Cys-59, which are essential for channel
assembly, as the mutation of each one of them prevents the
channel formation (34). Cys-24 residue is also required for
the protein redox regulation, rising the hypothesis that CLIC1
membrane insertion could be controlled by reactive oxygen
species (ROS) signaling (35, 36). Membrane association implies
the formation of oligomeric CLIC1 complexes (37).

The ability to form the channel pore was confirmed in
artificial lipid bilayers by Littler et al. (38). Membrane-associated
CLIC1 exposes the N-terminal region to the extracellular
space, determining the ability to activate a selective chloride
conductance. Both oxidizing conditions and changes in pH levels
control CLIC1 membrane insertion. In fact, CLIC1 membrane
insertion is not only dependent on the level of cellular oxidation,
as suggested by the observation that the dimeric intermediate
form is reversible under reducing conditions, but its assembling
within lipid bilayers and channel activity are also dependent on
pH, beingminimal at pH 7 and reaching themaximum rate at± 2
pH units (39, 40). Mutation of two histidine residues, His-74 and
His-185, impairs CLIC1 pH sensitivity, preventing membrane
insertion at acidic pH 5.5 (41).

CLIC1 Signaling in Brain Function
CLIC1 is almost ubiquitously expressed in human tissues,
including the central nervous system (CNS) where it is
expressed in both excitable and non-excitable cells. CLIC1 is also
present, in cytoplasmic conformation, in microglia, the brain
intrinsic immune system (42, 43). Being chronic inflammation

of the CNS during neurodegenerative disorders sustained by
activated glia, tmCLIC1 was involved in the pathophysiology
of Alzheimer’s disease, considering that the neurodegenerative
process implies an overproduction of ROS mediated by activated
microglia (42, 44). This phenomenon can be reproduced in vitro
stimulating microglial cells with amyloid β (Aβ) peptides:
Aβ-activated microglia is characterized by high proliferative
rate, production of large amount of ROS, and sustained by
tmCLIC1 activity (42). Though tmCLIC1 rapidly increases in
response to Aβ stimulation, it is rarely detectable in quiescent
microglia cells (45). Indeed, CLIC1 downregulation in microglia
by small interfering RNA or its inhibition using the channel
blocker IAA94 and/or specific antibodies, prevents Aβ-induced
neurotoxicity (45). Analogously, CLIC1 activity is a pre-requisite
for ROS overproduction in β-amyloid-activated microglia (42).
All together these findings indicate that tmCLIC1 plays a crucial
role in the microglial inflammatory state characterizing the
neurodegenerative processes, and support therapeutic targeting
for neuroprotective strategies (44).

CLIC1 in Cancer
In the last years, growing evidence highlighted the role of
CLIC1 as key factor in tumor development and progression.
Working as a chloride channel, tmCLIC1 plays an essential
role in tumorigenesis, controlling cell volume regulation (46),
cell migration and invasion (47–49), and neoangiogenesis (50).
CLIC1 is overexpressed in several human solid tumors, as
compared to the surrounding normal tissue. For example, CLIC1
gene expression is significantly increased in bladder (51), in
situ breast ductal (52) and ovarian (53) carcinomas, and it
has been linked to oncogenic functions and poor prognosis in
colorectal (48), gastric (49), hepatocellular (54), gallbladder (55),
pancreatic (56), and lung carcinomas (57), and sarcomas (58).
Bioinformatic analysis (cBioPortal/TCGA datasets) of CLIC1
mRNA levels in several human aggressive carcinomas (breast,
colorectal, esophagus, liver, ovarian, stomach, prostate, thyroid,
uterine, head & neck, and pancreas) shows that this channel is
expressed at similar levels in all the different types of neoplasia,
with a small increment only in colorectal, head & neck and
pancreatic cancers (Figure 1). These data suggest the relevance
of this channel in the development and progression of most
malignant neoplasms. Moreover, CLIC1 gene is highly conserved
among tumors in the various districts, with only 2% of patients
carrying missense or non-sense mutations, clearly indicating that
its role in tumorigenesis is more related tomembrane localization
and activity than to mutations.

The expression and function of several ion channels are
altered in GBM cells, and, within chloride channels, changes
in CLIC1 gene expression have been frequently detected
(51). CLIC1 mRNA and protein levels are up-regulated
in GBM as compared to normal brain parenchyma. The
analysis of TCGA database identified a weak correlation
with tumor stage, displaying lower expression in low grade
gliomas than in GBM (Figure 1), suggesting a potential role
for this channel in the malignant behavior of this tumor.
Similarly, CLIC1 expression levels directly correlated to
GBM aggressiveness in experimental models (30). Beyond
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FIGURE 1 | CLIC1 mRNA expression levels in various human carcinomas and mutations found according to the cBioPortal/TCGA datasets.

expression levels, in vitro and preclinical in vivo studies
analyzing CLIC1 channel function in malignant transformation
and progression, shed new light on its biological and clinical
significance in tumors. CLIC1 channel activity is involved
in invasion and migration through ROS-mediated MAPK
pathway in colon cancer cells (46, 48), and gastric cancer
cells (49, 59). Also the metastatic process has been associated
to CLIC1 functioning in gallbladder and hepatocellular
carcinomas (55, 60).

The abundance of tmCLIC1 expression in cancer and its high
activity in all the cells with sustained proliferation rate, raised the
hypothesis of an oncogenic role of CLIC1 (43, 56).

CLIC1 Role in Cell Cycle Progression of
Cancer Cells
Different chloride channels are involved in cell division and
specifically in the regulation of cell cycle progression, showing
a functional activity restricted to a specific cell cycle phase, the
G1/S transition (61, 62). In physiological conditions, CLIC1 is
mostly cytoplasmic and, upon an oxidative burst, it transiently
inserts into the plasma membrane. However, after persistent
oxidative stress and/or alkaline cytoplasmic pH, the integral
membrane channel form becomes constitutive. Oxidation and
cytoplasm alkalization are hallmarks of cancer cells (63, 64) and
both conditions promote G1/S cell cycle progression (65, 66).
Intriguingly, high ROS production, cytoplasm alkalization, and
the subsequent G1/S transition occur in the same time-window in
which CLIC1 is active as ion channel (43, 67). Indeed, tmCLIC1
functional expression undergoes a well-defined timing, as shown
by electrophysiology measurements, demonstrating that chloride
current increases along G1/S phase progression, reaching a
peak just before G1/S transition (68) (Figure 2). Fluorescence
intensity analysis of tmCLIC1 by TIRF microscopy supports

these results, demonstrating a different localization of the protein
during the different phases of the cell cycle (67). Moreover, the
inhibition of CLIC1 activity with the specific blocker IAA94
(69), or using an antibody targeting the NH2 extracellular
portion of the channel, induces the accumulation of cancer cells,
including GSCs, in the G1 phase with a consequent delay of
cell cycle progression (68). Elevated ROS levels and alkaline pH
can result from the overexpression and/or hyperactivation of
NADPH oxidase and Na+/H+ exchanger 1 (NHE1), respectively,
and both NADPH oxidase and NHE1 activities are impaired
by targeting CLIC1 function (67). In this scenario, functional
expression and activation of tmCLIC1 trigger a feed-forward
mechanism which involves the activity of NAPDH oxidase and
NHE1 establishing a vicious loop which generates a cellular
microenvironment that favors the abnormal proliferative rate of
tumor cells (67).

Role of CLIC1 in Cancer Stem Cell
Proliferation
The relevance of CLIC1 in tumor biology, and for GBM in
particular, is further supported by the observation that tmCLIC1
is highly expressed in patient-derived GSC sub-populations
(30, 68). Moreover, CLIC1-mediated chloride current is higher
in GSCs isolated from neurospheres and expressing stemness
markers (nestin, Sox2, Olig2), than in the differentiated GBM cell
counterpart (68). Inhibition of CLIC1 activity using IAA94 (69),
anti-CLIC1 N-terminus antibodies, or CLIC1 downregulation
using small interfering RNA, causes a reduction of self-renewal,
proliferation and in vivo tumorigenic ability of patients-derived
GSCs (30, 68, 70).

This evidence strengthens the idea that CLIC1 plays a
critical role in the tumorigenic potential of GBM-derived
stem/progenitor cells. The differential functional expression
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FIGURE 2 | Scheme of the proposed mechanism by which metformin and other biguanides interacts with CLIC1 in glioblastoma stem cells. CLIC1 is a main regulator

of GSC functioning once expressed into the plasma membrane and acting as chloride ion channel (tmCLIC1). CLIC1 activity promotes cell cycle progression and cell

division. While in normal cells this functional expression transiently occurs during G1/S phase transition, it is constitutive in cancer cells leading to accelerated growth

rate. Metformin (and other biguanides) directly interact with the extracellular portion of the active tmCLIC1, interfering with its activity and inhibiting cell cycle

progression with high specificity toward GSCs, due to the high activity of CLIC1 in these cells. The insert shows a schematic representation of the putative molecular

site of CLIC1 blockade by metformin: (A) In the closed state of CLIC1, the side chain of Arg29 makes an interaction that destabilizes the closed state. This facilitates

the opening of the channel; (B) Metformin (and possibly other biguanides) interacts with the amino terminus of the channel, presumably in the vicinity of Arg29 side

chain responsible for pore opening, stabilizing the closed state and blocking the channel activity [modified from Gritti et al. (68)].

of CLIC1 between GSCs and their differentiated counterpart
could represent a possible strategy to selectively recognize and
hit the tumor stem cell subset. Thus, tmCLIC1 represents
a potential ideal target for antineoplastic treatments,
also as chemo-sensitizing approach which, hitting CSC
subpopulations, may increase tumor responsiveness to
conventional anticancer therapies.

THERAPEUTIC POTENTIAL OF CLIC1
PHARMACOLOGICAL TARGETING IN
GLIOBLASTOMA

Rationale for Targeting CLIC1
To date, GBM represents the biggest challenge for cancer
therapy. The main reason for the failure of GBM treatments
is represented by tumor occurrence in one of the most critical
area of human body, physically shielded by the skull and
pharmacologically isolated by the BBB. Although GBM, as every
tumor, represents a detriment from a clinical point of view,
cancer cells may be considered an evolutionary successful model,
being able to dynamically adapt the changing microenvironment
and reprogram their own physiology setting in a new steady state.
Tumor cells are in a chronic hyper-activated (allostatic) state (71)
that supports their abnormal proliferative rate. A novel strategy
for GBM treatment could be to hit one or more components
that promote the assessment of the chronic allostatic state,
restoring the physiological homeostasis (67). Several proteins,
including NADPH oxidase and NHE1 exchanger, involved in the
establishment of the allostatic condition (72, 73) are crucial for

survival of both cancerous and normal cells, therefore limiting
the possibility of their pharmacologic or genetic targeting. In this
scenario, the peculiar ability of CLIC1 to change its functional
localization depending on the activation state of the cells could
be a compelling strategy to impair tumor cell proliferation and/or
survival with a higher efficacy in CSCs (67). The possibility
to selectively hit the CSC fraction could be instrumental for
a more efficient activity of standard antineoplastic drugs, also
considering that CLIC1 inhibition-dependent delay of G1/S
phase transitionmight also favor microglia activity toward tumor
cells, and potentiate conventional cytotoxic therapies.

Cellular and molecular steps through which ion channels,
including CLIC1, support malignant cell phenotype and
specifically CSC features (enhanced survival and proliferation
rate, self-renewal, migration ability, and resistance to apoptosis
and chemo- or radio-therapy) are still not completely defined.
However, a growing bulk of evidence is currently available to be
exploited in pre-clinical investigation or in medicinal chemistry
studies for the identification of novel compounds able to target
ion channels involved in cancer cell proliferation.

CLIC1 displays several peculiar features which render this
channel an ideal pharmacological target in cancer cells. First,
CLIC1 is overexpressed in several cancer types as compared
to non-cancer cell counterparts; second, its activity is pivotal
for cancer cell functioning; third, although in physiological
conditions it is ubiquitously expressed, its chloride channel
activity, absolutely dependent on its membrane insertion, is
constitutive only in tumor cells and, in particular, in the CSC
compartment (32). In fact, the translocation of CLIC1 to the
membrane is reversible and the channel activity is transient
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in normal cells, with only few channels active at a given
time. On the contrary, in cancer cells the specific intracellular
microenvironment generated by the high production of ROS and
low pH levels (74, 75) enhances CLIC1 functional expression
promoting its constitutive membrane localization as an active ion
channel (67). Given that tmCLIC1 is largely more abundant in
GSCs than in healthy tissues (30), the possibility to specifically
hit the transmembrane isoform could be a promising novel
therapeutic approach for GBM. Indeed, a successful therapy
should slow-down the proliferation of GBM cells, preventing
relapses by inhibiting GSCs with the minimum possible systemic
toxicity. However, IAA94, the only known compound able to
block CLIC1 activity in vitro (69), can’t be used as a potential drug
for GBM due to its off-target toxicity in vivo.

Importantly, recent studies identified the well-known
antidiabetic drug metformin as a compound able to impair
tmCLIC1 activity (68) (Figure 2). Metformin is a generally very
well tolerated type 2 diabetes (T2D) first line drug, which displays
antineoplastic effects, although the molecular mechanism at
the basis of this effect is still debated. Thus, understanding at
a molecular level how metformin interferes with cancer cell
proliferation and the role of CLIC1 in such effect might improve
its repositioning as antitumor agent or, alternatively, allow the
development of structural-related molecules showing higher
efficacy and potency against tmCLIC1.

DEVELOPMENT OF PHARMACOLOGICAL
TOOLS TO TARGET CLIC1 ACTIVITY TO
COUNTERACT GLIOBLASTOMA CANCER
STEM CELL TUMORIGENESIS

The low clinical outcome of the available therapeutic approaches
for GBM urges the identification of novel molecular targets and
new molecules able to hit them. In this respect, as detailed
in the previous paragraphs, CLIC1 represents a potential ideal
candidate, for its relevance in GSC biology and its functional
irrelevance in normal cells. If these premises are confirmed, a
selective CLIC1 inhibitor should have high efficacy against tumor
cells and low toxicity on the normal cell counterparts.

Unfortunately, the introduction of new molecular entities
in clinics is becoming more and more difficult, due to
the outraged increased costs of development and the tighter
regulatory rules. Therefore, in the last years the approval of
novel chemotherapeutics, with the only exception of biologicals,
faces a significant slow-down. Drug repositioning, a strategy
based on the identification of new disease indications and/or
molecular targets for existing compounds, represents a drug
discovery strategy which bypasses all the preclinical and early
phase clinical trials and allows a faster, more efficient and less
expensive way to bring molecules from bench to bedside. This is
especially true if the studied drug has already proven good safety
and tolerability profile in humans (76). Interestingly, a CLIC1
inhibitory activity was reported in some Chinese traditional
medicine molecules, identified by bioinformatic strategies (77),
although most attention has been dedicated to the effects
of metformin a biguanide antidiabetic drug. In particular, it

was shown that metformin is a powerful CLIC1 inhibitor in
GSCs (78), and its repositioning as GBM drug could have a
significant impact for the treatment of these patients. However,
metformin represents the most studied repurposed drug in
oncology in almost all human tumors and several intracellular
mechanisms were proposed to mediate these effects. Thus, to
show that CLIC1 inhibition is a primary target for this drug
in GBM a pharmacological class effect should be demonstrated,
showing that also structurally related drugs (i.e., containing
a biguanide moiety) have the same biochemical mechanism
(CLIC1 inhibition) and clinical effects (antitumor activity).

In the next sections we will discuss the general pharmacology
of metformin (and of other biguanides), the evidence of their
antiproliferative effects, and data showing that CLIC1 is one of
the main molecular targets involved in the inhibition of GSC
proliferation and invasiveness induced by this class of drugs,
highlighting the pros and cons of their possible use for treatment
of GBM.

Pharmacology of Biguanides
Biguanides are a class of drugs whose functional group
consists of two guanidines linked by a common nitrogen
(Figure 3); biguanides have a broad range of medical indications
spanning from the first line pharmacological approach for
T2D, by metformin and its derivatives phenformin and
buformin (although the latter compounds are no longer
used in therapy), to antimalarial prophylaxis and therapy
by proguanil, and antiviral and antimicrobial activity by
moroxydine, chlorophenylbiguanide, and chlorhexidine.

Original interest in biguanides derived from their potential
antimalarial effects, particularly by proguanil the first compound
of this class used in 1950, and still a current antimalarial drug.
Proguanil is a synthetic arylbiguanide acting as oral prodrug
and is considered the safest antimalarial compound; in vivo
it is metabolized to the active derivative cycloguanil, which
contains a cyclized biguanide moiety and acts as dihydrofolate
reductase and folate synthesis inhibitor within malaria parasites
(79). Proguanil is used for both malaria prophylaxis and
treatment, in combination with atovaquone or cloroquine (80).
The observation that this drug may cause hypoglycemia as
side-effect, triggered the development of the dimethylbiguanide
metformin (81).

Metformin was licensed as anti-diabetic agent in the UK
in 1958, but only in 1995 in the USA, due to concerns
about lactic acidosis and cardiac mortality, which, however,
are now considered as very rare occurrences. Among the
different biguanides introduced for diabetes therapy in late
1950s, metformin shows the better safety profile and tolerability
(82). Two other biguanides, phenformin (phenethyl biguanide)
and buformin (N-butyl biguaninde), although more potent
than metformin as hypoglycemizing agents, were discontinued
in 1970s due to the same adverse events (lactic acidosis
and cardiac mortality) but occurring at higher rate than
observed with metformin (83). In T2D patients, glucose-
lowering effect of metformin is attributed to the reduction of
hepatic glycogenolysis and gluconeogenesis, enhancement of
insulin receptor tyrosine kinase activity, improvement of insulin
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FIGURE 3 | Structures of drugs possessing a biguanide moiety as pharmacophore. The presence of the biguanide moiety in clinically-relevant compounds,

highlighting their actual clinical applications, is evidenced by the dotted squares. Figure includes compounds affecting CLIC1 activity to inhibit GSC proliferation and

self-renewal.

sensitivity, and reduction of enteric glucose absorption (84).
Metformin also induces peripheral glucose uptake, increasing
glucose transporter GLUT4 activity, and glycogen synthesis,
stimulates glucagon-like-peptide-1 (GLP-1) release, and reduces
lipolysis and triglyceride levels.

Moroxydine, is another heterocyclic biguanide proposed in
the 1950s as anti-influenza agent. Moroxydine exhibits anti-viral
activity against RNA and DNA viruses, and was originally used
for prophylaxis or therapy of viral infections. Moroxydine has
negligible side effects, but very little information exists on its
mechanism of action (85). Despite its favorable pharmacological
profile, moroxydine has been scanty investigated, and only
recently it has gained new interest as potential anti-hepatitis C
agent (86).

Repositioning of Metformin and Other
Biguanides as Antitumor Agents
Repositioning of Metformin as Anti-tumor Agent
On the basis of several epidemiological and preclinical
observations, several biguanides have been proposed to
possess anti-neoplastic activity; to date, metformin is the most
promising application of repositioning of a non-oncological
drug as anti-cancer agent. Epidemiologic studies suggested a
correlation between chronic use of metformin in T2D patients
and the reduction of incidence and related mortality of several
solid tumors, when compared to T2D patients treated with

other classes of hypoglycemic drugs (87–89). These observations
triggered a series of pre-clinical and clinical investigations
in several tumor types to detail the antitumor mechanism
of action of metformin and its potential efficacy as adjuvant
agent in clinics (90, 91). In diabetic patients, metformin use
was correlated to a reduced risk of development of different
cancer types, including pancreatic cancer (92), and lung and
hepatocellular carcinomas also increasing survival time (93–95).
However, to date non-univocal results were reported in the many
studies published. Some meta-analyses confirmed a significant
association between metformin use and lower incidence of
pancreatic, liver, renal, endometrial, prostate, breast, colorectal,
and ovarian carcinomas, while no correlation was found in other
studies (96–103). Metformin use in T2D patients with HER2-
positive breast cancer was associated with a better outcome
(104) and a meta-analysis in breast cancer patients reported
a significant association between metformin therapy and the
reduction of all-cause mortality without observing a reduction of
breast cancer incidence in these subjects (105).

Repositioning of Other Biguanides
Although less investigated than metformin, also other biguanides
were shown to possess anti-cancer activity. Phenformin exerts
antitumor activity in preclinical models in vitro and in vivo,
using ovarian cancer (106) NSCLC (107), and hepatocellular
carcinoma (108) cells, and pancreatic cancer patient-derived
xenografts (109); moreover, phenformin was also reported
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to selectively affect the CSC compartment (110). Other
studies showed that the antitumor activity of phenformin
in mammary cancer was dependent on the inhibition of
angiogenesis, apoptosis, and epithelial-mesenchymal transition
(EMT) (111–113). The anti-cancer activity of buformin
in rat mammary breast cancer carcinogenesis was also
reported (114, 115).

However, compared to the other biguanides, the evidence of
a potential broad antitumor activity, associated with the overall
safety and low cost, has opened a new horizon for repurposing of
metformin in oncology (87, 116, 117).

Repurposing of Biguanides for Targeting of CSCs
Several preclinical studies reported that metformin is effective
against CSC subpopulations, the key target for all antitumor
pharmacological approaches, at odd with most conventional
anti-neoplastic drugs which have little or no effect on CSCs
(118). Selective anti-cancer properties of metformin have been
described in CSC-like cultures derived from colorectal (119),
gastric (120), breast (121, 122), prostate (123), pancreatic
(124, 125), and ovarian (126) carcinomas and osteosarcoma
(127, 128). Metformin effects on CSCs include the impairment
of self-renewal and survival, decreased expression of stemness
markers, the slow-down of cell cycle progression and inhibition
of invasiveness. Moreover, a chemo-sensitizing activity of
metformin, helping to overcome refractory CSCs to radiotherapy
(129), and chemotherapeutic agents (130) has been also
described. As far as GBM, metformin was reported to synergize
with temozolomide (131) and reduce the acquired resistance to
this alkylating agent (132).

While most of the human tumors, at least at preclinical
level, are affected by metformin, this drug is almost completely
harmless for normal cells. The low toxicity observed in
T2D patients after chronic treatment already suggested this
eventuality, but it was directly demonstrated by in vitro
experiments, in which metformin concentrations able
to reduce CSC viability were ineffective in normal cells,
including MSCs (68, 70, 133). These data clearly suggest
that a tumor-specific target should mediate metformin
antitumor effects.

To date, mainly pharmaco-epidemiologic and preclinical data
were at the basis of the assumption that metformin may be
useful in cancer prevention or treatment. However, hundreds
of clinical trials are in progress to validate this hypothesis
(see www.clinicaltrials.gov). Translation from retrospective to
prospective trials however, is not easy-going also in light of
several biases often present in retrospective studies (134). Some
preoperative or neo-adjuvant window of opportunity studies
reported a decrease in the expression of Ki-67, a marker of
cell proliferation, after metformin treatment in breast, prostate,
and endometrial cancers (135–137), although another study
found no effects in breast cancer (138). An unpublished study
(NCT01620593) found a significant decrease of prostate-specific
antigen (PSA) after treatment of prostate cancer patients with
metformin, while, in ovarian cancer (NCT01579812) no changes
in progression-free and overall survival were reported (www.
clinicaltrials.gov). Only few prospective studies have been to date
published, reporting that metformin provided benefit in patients

in colorectal adenoma and, in association with paclitaxel, in
non-small cell lung cancer patients (139, 140).

Phenformin has been evaluated in a clinical trial
(NCT03026517) in combination with dabrafenib and trametinib
(RAF and MEK inhibitors, respectively) in patients with
BRAF-mutated melanoma, but, till now, no results are available.

Overall the available literature data about the clinical
antitumor efficacy of metformin are not conclusive, possibly
due to the heterogeneous composition of patient cohorts, the
study design, pharmacokinetics and posology discrepancies, as
well as variable responses in different cancer types (141). Thus,
repositioning of metformin and, potentially, other biguanide
derivatives, in oncology is still a controversial topic, and results
from clinical trials that are going to be concluded in the next
years in different cancer types, mainly investigating the adjuvant
efficacy of metformin in association with chemo- and radio-
therapy, will provide a clearer picture of its clinical impact.

Notwithstanding these unsolved problems, a huge amount of
data has been produced to detail the molecular mechanism(s) of
the antiproliferative activity of metformin.

Molecular Mechanisms of Metformin
Antitumor Effect
Although numerous experimental studies analyzed the
antiproliferative, pro-apoptotic, and anti-invasive activity
of metformin, at present, the exact molecular mechanisms
through which this drug exerts its antitumor activity is only
partially known. In fact, most of the possible intracellular
pathways involved in tumor cell proliferation have been reported
to be affected by metformin treatment in different cancers.
Consequently, not only metformin seems to not display tumor
specificity but also its activity seems to involve a wide plethora of
intracellular signaling pathways.

The classical intracellular pathway proposed as molecular
target for metformin antitumor effects has been derived by the
mechanism activated in the liver to control glucose release (142).
Metformin affects the energetic balance interfering with the
complex I enzymes within mitochondrial respiration, reducing
ATP content and the ATP/ADP ratio (143). This alteration,
altogether with a direct regulation via liver kinase B1 (LKB1),
causes the activation of the cellular energy sensor AMP-
activated protein kinase (AMPK), which in turn leads to the
inhibition of mTOR (144, 145), a kinase acting as crucial
mediator of tumor cell metabolism (146). AMPK, activated after
metformin treatment, was reported to directly phosphorylate
PD-L1 causing its endoplasmic reticulum (ER) accumulation
and ER-associated protein degradation. In fact, breast cancers
from metformin-treated patients exhibit reduced PD-L1 levels,
which enhances cytotoxic cell immunity against cancer cells
(147). In addition, metformin, lowering the plasma levels of
insulin and insulin-like growth factors, might indirectly inhibit
the PI3K/Akt/mTOR pathway (148). AMPK activation following
metformin treatment has been described in several human cancer
cell types including breast (149, 150), endometrial (151), ovarian
(152), pancreatic (153, 154), lung (155), prostate (123), head and
neck (156), and colon carcinomas (157), often correlating with
antiproliferative effects.
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However, AMPK-independent pathways have gained
increasing attention. Metformin was reported to directly inhibit
mTOR signaling by inactivating Rag GTPases (158), or inducing
cell cycle arrest through REDD1, a negative regulator of mTOR
(159). Furthermore, several other intracellular effectors were
reported to be modulated by metformin treatment to reduce
cell proliferation, including, among others, the VEGF/PI3K/Akt
pathway (160) in prostate cancer cells, Sonic hedgehog (Shh)
signaling pathway in gastric cancer cells (161), inactivation of p38
MAPK and activation of ERK3 (both effects leading to inhibition
of mTORC1, in which AMPK was only partially involved) in
intrahepatic cholangiocarcinoma cells (162), reversal of the
activation of ERK1/2 in ovarian cancer cells (163), inhibition
of CLIC1 in gallbladder cancer cells (164); metformin also
counterbalanced the overactivation of Notch1/Hes1 signaling
observed in colorectal cancer patients (165), and induced
apoptosis via the up-regulation of adenosine A1 receptor in
human colorectal cancer cells (166). Other putative mechanisms
of metformin anti-tumor activity involve the reduced RANKL
(167) or caveolin 1 (168) expression in breast CSCs, and HIF-1α
gene expression in oral squamous cell carcinoma cell lines,
which caused inhibition of cell proliferation and migration (169).
Moreover, metformin antiproliferative activity was also ascribed
to enhanced autophagy in cancer cells, which causes cell cycle
arrest or apoptosis (170, 171), and the modulation of miRNA
activity (172, 173).

In addition, metformin downregulates ROS production of
through inhibition of mitochondrial complex I (174, 175), and
possesses anti-inflammatory and immunomodulatory activity,
affecting energy metabolism of immune cells and stimulating
CD8+ tumor infiltrating lymphocytes leading to a cytotoxic
response against cancer cells (176); moreover, metformin
enhances immune response in vivo in mouse melanoma model
(177), and inhibits NF-κB nuclear localization and Stat3 activity
in breast cancer CSCs (178).

Metformin disrupts TGFβ-mediated oncogenesis and
invasiveness (179) either by direct binding (180) or by
blocking autocrine TGFβ1 signaling (181). TGFβ1-dependent
metastasization and invasive effects are mainly mediated by
epithelial-to-mesenchymal transition (EMT). In this context
metformin acts as EMT suppressor in different epithelial tumors
(e.g., melanoma, colon, breast, lung, prostate, and thyroid
cancer cells) (182–185). In prostate cancer, metformin represses
EMT and metastasis by targeting the COX2/PGE2/STAT3 axis
(186), while in breast cancer the AKT/mTOR/ZEB1 pathway
was involved (187). Metformin also directly affects cancer cell
metabolism interfering with glycolysis and the tricarboxylic
acid cycle, decreases the production of ATP, NADH-linked
respiration in cells and mitochondria, and the aspartate
biosynthesis (188, 189), while induces indirect antiproliferative
effects reducing hormones, cytokines and growth factor
production (144, 190, 191).

Altogether, these preclinical studies, reporting metformin
ability to modulate multiple, apparently unrelated mechanisms,
strongly support its antitumor activity. However, the unexpected
and unprecedented high number of different intracellular
mechanisms regulated by a single drug in such different tumor

cell types, suggests that most of these intracellular pathways could
be indirectly modulated, being downstream from a common
tumor-specific target directly affected by metformin.

However, it is worth to note that several unsolved issues are
present in these studies. First, metformin concentrations used to
cause antitumor effects in all in vitro studies here reported, largely
exceed those obtained by the antidiabetic doses, and are difficult
to be reached in patients. A second issue puzzling the anti-cancer
use of metformin is its hydrophilic nature which limits its passive
diffusion into cells (192), making necessary organic cationic
transporters (OCT1, OCT2, and OCT3) for its internalization
within cells (193, 194) and to cross the blood-brain barrier (195).
The overexpression of these transporters is considered at the
basis of the observation that metformin concentration in tissues
is much higher than in plasma, and in tumors higher than in
normal cells. Intratumor accumulation of metformin, induced by
OCTs, has been involved in the direct antineoplastic activity of
this biguanide (196). For example, in mammary tumor-bearing
rats and in ovarian tumor biopsies form metformin-treated
patients, metformin effects were dependent on high intratumor
concentrations, which in the mammary cancer model were
related to OCT2 expression (197, 198). Thus, it was suggested
the possibility to potentiate metformin antiproliferative activity,
obtaining clinically relevant concentrations due to the specific
drug accumulation within tumors. This opportunity was
demonstrated using pharmaceutic preparations and routes of
administration different from the oral way (i.e., subcutaneous)
allowing a topical tumor treatment (199–201).

Potential Role of Metformin and Other
Biguanides as Antiproliferative Agents for
Glioblastoma Stem Cells
Although in vitro studies reported the antiproliferative and
proapoptotic efficacy of several drugs on GSC cultures (202–
204), the same activity in patients was never reported. Thus, the
lack of effective antitumoral drugs for GBM patients, pushed the
testing of metformin repositioning in in vitro and in vivo GBM
models (78).

Metformin reduces survival and proliferation rate not only
of GBM cell lines (131, 205–207) but also of patient-derived
GSC cultures (68, 70, 208–211) suggesting its efficacy to impair
mechanisms involved in cancer cell stemness. This effect is
time-dependent, since prolonged treatment caused significant
antiproliferative effects also for relatively low concentrations
(68). Importantly, metformin interference with GSC activity was
further supported by the observation that, beside proliferation,
several distinctive stemness features were also impaired in
metformin-treated cultures, including self-renewal ability, as
shown by colony-forming and spherogenesis assays (70, 132,
210, 211), migration and invasiveness (132, 210, 211) (Figure 4),
and EMT (187), which is activated in GSCs to sustain GBM
aggressiveness (212).

Metformin was also tested in combination therapy with
classical anti-cancer drugs, mainly the alkylating agent
temozolomide, the GBM standard of care. In vitro and
in vivo studies describe a potential synergism between the
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FIGURE 4 | CLIC1 inhibition leads to the inhibition of glioblastoma stem cell

proliferation, self-renewal, and invasiveness. Inhibition of CLIC1 activity by

metformin and other biguanides causing a decrease in the chloride current

induces several inhibitory effects in GSCs, including: (A) cell cycle arrest and

cell accumulation in G1 phase, acting (B) selectively in GSCs, while sparing

normal stem cells (NSC); (C) impairment of GSC self-renewal ability; and (D)

inhibition of the invasive behavior.

antiproliferative effects of metformin and temozolomide in
GBM cell lines and GSCs (131, 132, 206, 207, 213). Moreover, a
strong synergism between the antitumor effects of metformin
and in vitro cell irradiation (5Gy), in the presence or absence of
temozolomide, was also reported in GBM U87, U251, LN18, and
SF767 cells (206).

Also in GBM several intracellular mechanisms mediating the
antiproliferative and anti-invasive activity of metformin were
reported. These include the inhibition of STAT3 (214) and
Akt (70), the induction of apoptosis by increasing Bax/Bcl-
2 ratio, reduced ROS production when co administered with
temozolomide (213), or the downregulation of AKT-mTOR
signaling pathway (207). Although some studies proposed an
AMPK-dependent mechanism for the antitumor activity of
metformin (208, 209, 215, 216) in other studies the inhibition of
proliferation and self-renewal occurred in the absence of AMPK
activation (70). Moreover, comparing the effects of metformin
with a “pure” AMPK activator, the peptide A769662, which was
unable to inhibit mTOR and GBM cell proliferation, it was
shown that metformin suppresses GBM proliferation enhancing
PRAS40–RAPTOR association to inhibit mTOR, independently
of AMPK (217). Although this issue is still debated, recent
data seem to confirm that the activation of AMPK and the
inhibition of mTOR are not the main targets in GBM. In fact,

on one hand a randomized phase II study assessing the efficacy
of everolimus in combination with chemoradiation showed that
mTOR inhibition does not improveGBMpatients PFS (218), and,
on the other, AMPK was shown to be chronically activated under
cancer-associated stress conditions, to increase proliferation and
survival. Moreover, AMPK inhibition reduces viability of patient-
derived GBM stem cells (GSCs) (219), clearly indicating that,
at least in GBM, AMPK activation cannot justify metformin
antiproliferative effects and different molecular targets have to
be found.

Furthermore, several studies showed that metformin activity
was selectively directed against GSCs rather than differentiated
glioma cells (68, 70, 211), indicating that a CSC-specific target
mediates its activity.

In vivo, metformin significantly impairs GBM growth either
after subcutaneous (206–208, 217) or intracranial grafting (210,
213, 220) in immunocompromised mice. These effects were
obtained mainly after i.p. injection, although in one study
(207) metformin was administered per os by gavage. In the
cited studies, metformin induced a slow-down in tumor growth
and prolonged mice survival, mainly acting in synergy with
temozolomide or 2-deoxyglucose, inducing a significant effect
also in temozolomide-resistant cells (213). However, it is worth to
note that most studies were carried out on human GBM cell lines
(mainly U87, U251) and only in few cases patient-derived GSCs
were used (208, 210).

Phenformin exerts antitumor effects in GSCs overcoming
resistance to temozolomide, suppressing GSC self-renewal via
the reduction of the expression of stemness and mesenchymal
markers, and the increase of miR-124, miR-137 and let-7
expression (221). Phenformin activity has been also analyzed as
potential way to disrupt energetic/metabolic pathways sustaining
GSC survival and proliferation (222, 223). In vivo, phenformin
added to the drinking water, caused a significant inhibition of the
growth of GBM, in an orthotopic model in which patient-derived
GSCs were grafted in nude mice (221), confirming that beside
metformin also other biguanides are active against GBM.

In fact, biguanides, unrelated to the antidiabetic drugs
(i.e., moroxydine, and cycloguanil) were also reported to
significantly reduce proliferation, self-renewal and invasiveness
of GSCs, showing higher in vitro potency than metformin (211).
This observation suggests that antitumor activity against the
GBM stem cell-like compartment is a common feature of all
biguanides. However, if this is true, all the biguanide moiety-
containing molecules have to act through a common intracellular
mechanism and all the other pathways proposed for metformin
antitumor activity should represent tumor-specific downstream
effectors dependent on a common effector which represents the
direct biguanide target.

CLIC1 as Preferential Molecular Target
Mediating Metformin, and Other
Biguanides, Antitumor Effects in
Glioblastoma Stem Cells
The controversies about the anticancer mechanisms of
metformin led to overemphasize the role of AMPK in GSC
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antiproliferative effects, since the liver anti-hyperglycemic
activity of this drug is mediated through the activation of this
kinase (142). However, a growing bulk of evidence reported, in
different cancer models, and in CSCs in particular, that (i) several
AMPK-independent pathways are activated by metformin
(70, 217); (ii) contrarily to what initially hypothesized, AMPK
agonists enhance cancer cell proliferation and metabolism
under metabolic stress (i.e., A-769662), while metformin and
phenformin inhibit these cellular functions in an AMPK-
independent manner (224); (iii) other compounds with a
biguanide structure (i.e., moroxydine and cycloguanil), used
with different clinical indications, and devoid of AMPK-related
effects in the liver, induce the same anti-proliferative and
anti-invasive activity in GSCs (211). The latter evidence strongly
supports the possibility that, in GSCs, a common molecular
target can be hit by all the biguanide-based compounds
representing a new pharmacological class effect.

In this line of research, the observation that metformin and
related compounds exert their activity on CSCs, not only in
GBM (70, 208, 210, 211, 221) but also in different tumor types,
such as breast cancer (121), while differentiated cells composing
the tumor mass are relatively spared, clearly indicates that
biguanides should interact with a CSC-specific target. In recent
years, among the possible cancer-specific molecular targets for
metformin, CLIC1 has been proposed to represent the main
transducer of the biguanide effects in GSCs (68, 211). As detailed
in the previous paragraphs, CLIC1 behaves as CSC-specific target
because, although expressed in most normal and differentiated
(non-stem) tumor cells, it is mainly present as inactive cytosolic
monomer, with a very low activation rate (68, 211). This
activation kinetics renders non-CSC subpopulations (and normal
cells) relatively independent from CLIC1 for proliferation and
survival. Conversely, CLIC1 is functionally expressed in GSCs,
where it shows a constitutive activity with a peak at the G1-
S transition (67), and its activity is absolutely necessary for
GSC proliferation (Figure 2). Metformin treatment causes a
significant inhibition of CLIC1 activity, measured by voltage-
clamp electrophysiology experiments (Figure 4), reaching at high
concentrations (5–10mM) the same efficacy observed using
IAA94. Electrophysiology experiments showed that metformin
perfusion decreases the whole cell current that cannot be
further reduced by the perfusion of IAA94. Current/voltage
relationships show that the current amplitudes, at different
membrane potentials, are superimposed, suggesting that the
two drugs converge on the same molecular target (68). By
single amino acid mutation experiments, metformin was also
shown to directly interact with tmCLIC1 through Arg29 located
within the inner side of the pore structure of the channel (68)
(Figure 2). Interestingly this binding site is different from that of
IAA94 identified as the external Cys24 (35) allowing a possible
discrimination between the effects of the two drugs.

CLIC1 blockade directly correlates with the antiproliferative
effects of metformin causing GSC arrest in the G1 phase
of the cell cycle. Conversely, metformin, used at the same
concentrations, was harmless for cells in which CLIC1 activity
was negligible (i.e., MSCs or differentiatedGBM cells) confirming
the specificity of these effects for GCSs (Figure 4). Moreover,

the down-regulation of CLIC1, while reducing the growth
rate of GSCs (30) also diminished the antiproliferative activity
of metformin, corroborating the hypothesis that, at least in
these cells, CLIC1 is the main target of this biguanide (68,
211). This evidence implies that, although metformin directly
or indirectly modulates different intracellular signaling, the
inhibition of CLIC1 activity is sufficient and necessary to
induce antiproliferative activity, at least in GSCs. Moreover, it
is important to remark that the inhibition of a GSC-specific
molecular target (i.e., tmCLIC1) confers metformin with high
selectivity against tumor cells, while sparing normal cells, as
also confirmed by the known very low toxicity observed when
metformin is used as antidiabetic agent. This observation
provides the molecular basis for metformin repositioning as
promising novel antitumor agent, being at the same time
highly effective toward tumor cells and causing low systemic
toxicity (78).

A main issue in metformin-induced tmCLIC1 blockade (and
in its antitumor activity, in all the tumor models analyzed) is
the high drug concentration (up to 10mM) required to induce
an effect.

Thus, a potential new a therapy could be really successful
if retains the efficacy and the discrimination capability among
healthy and cancer cells, provided by CLIC1 localization, and
the ability to block tmCLIC1, as metformin, but acting at lower
doses. The search for novel, more potent tmCLIC1 inhibitors can
have a big advantage whether the channel targeting ability can
be shared by different structurally-related molecules representing
a pharmacological class effect for biguanides. In this line, it is
relevant that also phenformin and buformin, former antidiabetic
biguanides, were reported to behave as anti-tumor agents (114).

The possible role of CLIC1 as molecular determinant of
biguanide antitumor class effect has been recently analyzed
in several patient-derived GSC cultures (211). In this study,
metformin and phenformin, representative of the antidiabetic
biguanides for which antitumoral activity was already proposed,
were compared with two antimalarial compounds, proguanil
and cycloguanil, and the antiviral compound moroxydine.
All these molecules inhibited GSC proliferation, self-renewal,
migration and invasion, showing a much higher potency
that metformin (up to 50 fold lower IC50 than metformin
observed with cycloguanil). However, proguanil effects were
not specific since it was similarly toxic for GSC and normal
stem cells. The direct effects of these molecules on CLIC1
activity were measured by electrophysiology experiments. All
the compounds, but proguanil, exerted a significant inhibition
of CLIC1-dependent ion current, acting at potency and efficacy
related to the respective antiproliferative activity. The lack of
efficacy of proguanil as far as CLIC1 inhibition, was proposed
to be dependent on the simultaneous presence of the 1-(4-
chlorophenyl) ring and the bulky 5-isopropyl group on the
rigid biguanide skeleton, thus preventing the access to CLIC1
pore region.

Evidence from this study strengthen the hypothesis that
molecules containing a biguanide moiety are potent CLIC1
inhibitors and, consequently, drugs able to selectively interfere
with GSC proliferation, migration and self-renewal. Importantly,
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higher potency than metformin on both cell proliferation
and CLIC1 activity inhibition was also demonstrated by these
biguanides, suggesting that more easily reachable concentrations
of these drugs could be similarly active as the high doses of
metformin. Although all these drugs have known limitation for
chronic use in patients with GBM, these data demonstrated
that CLIC1 inhibition is not only a pharmacological property
of metformin, but it may represent a class effect endowed of all
the compounds containing a biguanide structure. The relevance
of this information resides in the possibility to develop novel
biguanide containing drugs, which retain the safety profile of
metformin but endowed with increased efficacy and potency
toward GSCs.

CONCLUSIONS AND FUTURE
PRESEPECTIVES

At odd with most malignant tumors, therapeutic perspective
for GBM did not significantly progress in the last decades.
In this context, GSCs play a central role in drug resistance,
being still extremely elusive as far biological features and
pharmacological sensitivity. However, the recent identification
that CLIC1 activity is necessary for GSC proliferation, self-
renewal and invasiveness, while it is dispensable for most non-
transformed normal cell populations, opened new perspectives
in the potential development of new therapeutics for this still
incurable tumor. This observation found new strength after
the recent report that metformin is an efficient inhibitor of
CLIC1 activity, although with low potency (IC50: 10–30mM)
(211). These data are extremely relevant due to the strong
interest in metformin repositioning as antitumoral agent. Several
epidemiological, preclinical, and, more recently, some clinical
trials are addressing the efficacy of this biguanide in basically all
the human tumor types. Conversely, pharmacokinetic and even
pharmacodynamic issues are still unsolved to better translate
this information in a clinical setting. In particular, as far as

GBM is concerned, the main intracellular mechanism associated
to metformin antiproliferative activity, the activation of AMPK
and the consequent mTOR inhibition, had to be discarded
since AMPK was discovered to promote GSC proliferation.
Thus, metformin antiproliferative activity has to depend on
a completely different mechanism from its glucose-lowering
effects. Among all the reported intracellular pathways affected by
metformin in tumor cells, the inhibition of CLIC1 activity is of
particular interest since it is GSC-specific (thus its targeting does
not affect normal cell viability), in line with the low toxicity of
the drug when chronically used in T2D patients. Moreover, this
effect was directly evaluated by electrophysiology measurement
preventing the possibility of effects mediated indirectly by other
biochemical regulators. This observation supports that, in GSCs,
the inhibition of CLIC1 is a common effect different drugs
containing a biguanide structure.

In conclusion, the inhibition of CLIC1 is a novel and
unexpected biguanide class effect, which could be used to develop
novel drugs with a strong efficacy against GSCs. In fact, although
all the biguanides to date tested as inhibitory of CLIC1 activity in
GSCs are not completely satisfactory as far as pharmacokinetics
and long term tolerability, we believe that this information might
pave the way for the identification of novel structurally-related
molecules, which in future will provide a better clinical outcome
for GBM.
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