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Transitional cell carcinoma (TCC) represents the most frequent type of bladder cancer.

Recently, studies have focused on molecular tumor classifications in order to diagnose

tumor subtypes and predict future clinical behavior. Increased expression of HER1

and HER2 receptors in TTC is related to advanced stage tumors. Lapatinib is an

important alternative to treat tumors that presents this phenotype due to its ability

to inhibit tyrosine kinase residues associated with HER1 and HER2 receptors. This

study evaluated the cytotoxicity induced by LAP-loaded nanocapsules (NC-LAP)

compared to LAP in HER-positive bladder cancer cell. The cytotoxicity induced

by NC-LAP was evaluated through flow cytometry, clonogenic assay and RT-PCR.

NC-LAP at 5µM reduced the cell viability and was able to induce G0/G1 cell cycle

arrest with up-regulation of p21. Moreover, NC-LAP treatment presented significantly

higher apoptotic rates than untreated cells and cells incubated with drug-unloaded

nanocapsules (NC) and an increase in Bax/Bcl-2 ratio was observed in T24 cell line.

Furthermore, clonogenic assay demonstrated that NC-LAP treatment eliminated almost

all cells with clonogenic capacity. In conclusion, NC-LAP demonstrate antitumoral effect

in HER-positive bladder cells by inducing cell cycle arrest and apoptosis exhibiting better

effects compared to the non-encapsulated lapatinib. Our work suggests that the LAP

loaded in nanoformulations could be a promising approach to treat tumors that presents

EGFR overexpression phenotype.

Keywords: bladder cancer, her-positive, epidermal growth factor receptor (EGFR), tyrosine kinase inhibitor,

nanocapsules, lapatinib

INTRODUCTION

Bladder cancer (BC) is a heterogeneous disease which presents several molecular characteristics
associated with different clinical outcomes (1). Urothelial or transitional cell carcinoma (TCC)
represent the most frequent type of bladder cancer (2) and are classified into two subtypes tumors
depending on the formation pathway: non-muscle invasive bladder cancer (NMIBC) or muscle
invasive bladder cancer (MIBC) (3). NMIBC are confined to the mucosa (stage Ta, CIS) or
submucosa (stage T1) and are accounted for 60–80% of the diagnosed bladder cancer cases (4).
The histological evaluation is the gold standard for the classification of the tumor allowing the
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implementation of the best possible therapeutic alternative. This
strategy also allows the evaluation of the risks of recurrence
and progression of the disease (5, 6). However, recent studies
have focused on tumor classifications considering theirmolecular
characteristics in order to diagnose tumor subtypes and establish
the best possible therapeutic alternative (7, 8).

Molecular analyzes have shown that approximately 75%
of transitional cell carcinomas overexpress epidermal growth
factor receptors (EGFR) and their level of expression is directly
related to advanced stage tumors (9, 10). EGFR receptors
consist of a family of four receptors, EGFR (ErbB1/Her1),
EGFR2 (ErbB2/Her2), EGFR3 (ErbB3/Her3), and EGFR4
(ErbB4/Her4) (11, 12), which play an important role in the
control of cell proliferation and differentiation (13). However,
the EGFR signaling pathway has also been associated with
tumor progression and development, through the activation of
pathways that result in angiogenesis and increased metastatic
potential (14, 15).

HER1 and HER2 receptors have shown altered expression
in several types of cancers, including bladder cancer (16, 17).
EGFR have in common an extracellular binding domain, a
transmembrane portion and an intracellular domain of tyrosine
kinase (18, 19). Thus, the pharmacological inhibition of the
tyrosine kinase intracellular domain represents an important
approach in the development of therapies against tumors
which overexpress EGFR. Moreover, it is known that tyrosine
kinase inhibitors represent an important class of drugs used in
oncology (20).

Lapatinib is a dual tyrosine kinase inhibitor, due to its ability
to inhibit both HER1 receptors and HER2-associated tyrosine
kinase receptors (21). It was approved in 2007 by the American
Food and Drug Administration (FDA) for treatment of advanced
or metastatic breast cancer (22) and it is considered an important
alternative in the therapy of HER-positive tumors. However,
lapatinib presents low bioavailability and low solubility in water
(23, 24). Therefore, the nanoencapsulation of lapatinib represents
an important approach to increase its apparent solubility in
water and consequently its therapeutic effects. In this context,
several nanocarriers are under development with the aim of
improving therapeutic efficacy of antitumor drugs, improving
their solubility, enabling to target them in a specific way and
releasing the drug in a controlled manner (25, 26). Knowing
that in vitro studies are efficient systems which allows the rapid
evaluation of different patterns of responses, the objective of
this study was to evaluate the cytotoxicity induced by Lapatinib-
loaded nanocapsules in HER-positive bladder cancer cell.

MATERIALS AND METHODS

Preparation and Physicochemical
Characterization of the Formulations
Lapatinib-loaded nanocapsules (NC-LAP) were prepared by
interfacial deposition of pre-formed polymer method (27).
Briefly, an organic phase (66mL of acetone and 9mL ethanol)
containing the polymer (PCL, 0.3000 g), sorbitan monostearate
(0.1155 g), copaiba oil (0.474mL) and lapatinib (0.0025 g) was

kept under magnetic stirring at 40◦C. After complete dissolution
of the components, the organic phase was injected into 90mL
of an aqueous phase, containing polysorbate 80 (0.2310 g), under
magnetic stirring at room temperature. After 10min, the solvents
were eliminated and the suspension was concentrated under
reduced pressure. The final volume was adjusted to 10mL.
Drug-unloaded nanocapsules (NC) were also prepared, omitting
the lapatinib in the organic phase. The formulations were
characterized as described below. All analyses were performed in
triplicate batches (n= 3).

Drug Content and Encapsulation Efficiency
An analytical method for the quantification of lapatinib was
validated using high performance liquid chromatography with
UV detection (HPLC-UV). The analysis was performed with
a Perkin Elmer Series 200 chromatograph with detection at
260 nm and column Phenomenex Lichrosphere R© C18 (4.6 ×

150mm, 4µm). The composition of the mobile phase was 60%
ammonium acetate (20mM, pH 3.3) and 40% acetonitrile, flow
rate of 0.8mL min−1 and injection volume of 20 µL. The
analytical method was specific, linear in the range of 1–20 µg
mL−1 (r = 0.9987), precise (RSD <2%) and accurate (99.87 ±

2.63%). The drug content in theNC-LAP (200µL of formulation)
was determined by diluting the samples in 5mL of the mobile
phase. The solution was sonicated for 30min, and then filtered
through a 0.45µm pore size membrane (Millipore, USA) and
assayed by HPLC-UV. The Lapatinib encapsulation efficiency
was determined after ultrafiltration-centrifugation (Ultrafree-
MC 10 kDa, EMD Millipore, Billerica, MA, USA) at 2,688 ×

g for 10min. The ultrafiltrate was quantified by HPLC-UV and
the encapsulation efficiency (EE) percentage was calculated by
the difference between the total and non-encapsulated drug
concentrations divided by the total content multiplied by 100.

Size Distribution, Zeta Potential, and
pH Measurements
The particle size and the size distribution were determined by
laser diffraction (Mastersizer R© 2000, Malvern Instruments, UK)
aiming to evaluate the absence of micrometric particles. The
sample was added to the equipment sampling apparatus in an
amount sufficient to obtain at least 2% obscuration. The particle
size was expressed by the volume-weighted mean diameter [D
(3, 4)], and by the diameters calculated at percentiles at 10, 50,
and 90 [d0.1, d0.5, and d0.9, respectively] of the size distribution
curve. The polydispersity values (Span) were determined using
(Equation 1):

Span = d(0.9)− d(0.1)/d(0.5) (1)

The mean particle size (z-average diameter), polydispersity
index and zeta potential were determined by dynamic light
scattering (DLS) at 25◦C using a Zetasizer R© Nano ZS (Malvern
Instruments, UK). After adequate dilution of samples (250×)
in purified and filtered water the correlogram was obtained
and the z-average diameter and PDI were calculated by the
method of Cumulants. The zeta potential values were determined
by electrophoretic mobility in the Zetasizer R© instrument
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after diluting the samples in 10mM NaCl aqueous solution
(500×). The pH values were determined using a calibrated
potentiometer (DM-22 Digimed, Brazil) via direct measurements
of the formulations.

Cell Culture and Experimental Conditions
This study was performed using human bladder cancer cell
line T24 (EGFR-expressing human bladder carcinoma cell line)
obtained from Rio de Janeiro Cell Bank (PABCAM, Federal
University of Rio de Janeiro, Brazil). The transitional cell
carcinoma cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum
(FBS), 1% L-glutamine and 1% penicillin/streptomycin at 37◦C
and 5% CO2 in a humidified incubator. All experiments were
performed using cells in the logarithmic growth phase and
the results were obtained by averaging three independent
experiments performed in triplicate for each experiment. The
IC50 (concentration that inhibits 50% of cell growth) was
also calculated using GraphPad Prism 7.0 Software. The
drug vehicle DMSO was calculated to never exceed 0.5%
per well.

Viability Assay
The transitional bladder carcinoma cells viability after different
conditions of treatments and time was evaluated by flow
cytometry using Guava ViaCount Reagent. T24 cell line was
plated in 24-well plates at a density of 5× 104 cells per well. After
adherence period, cells were incubated with medium containing
non-encapsulated Lapatinib (LAP) at concentrations of 3.12,
6.25, 12.5, and 25µM; Lapatinib-loaded nanocapsules (NC-LAP)
at concentrations of 0.625, 1.25, 2.5, 5, and 10µM and with
the relative volume of these concentrations of drug-unloaded
nanocapsules (NC) for 24, 48, and 72 h. After the different
incubations times, cells were washed with phosphate buffered
saline (PBS; Gibco R©, Carlsbad, USA), centrifuged and stained
according to the manufacturer’s instructions and analyzed using
the Muse Cell Analyzer (EMDMillipore Corporation).

Apoptosis Induction Analysis
The ability of the different treatments to induce apoptosis against
bladder carcinoma cells was assessed by flow cytometry using
the Muse R© Annexin V and Dead Cell Assay kit (EMD Millipore
Corporation). For this analysis, T24 cells were plated in 24-well
plates at a density of 5× 104 cells per well. After 24 h of adhesion,
cells were incubated with 5µM of Lapatinib in its free form
(LAP), with 5µM of Lapatinib-loaded nanocapsules (NC-LAP)
and with this relative volume of drug-unloaded nanocapsules
(NC) for 48 h. After 48 h of treatment, cells were washed with
PBS, trypsinized and centrifuged at 1,200 rpm for 10min. After
centrifugation, 1 × 105 cells were stained according to the
manufacturer’s instructions and analyzed using the Muse Cell
Analyzer (EMDMillipore Corporation).

Cell Cycle Analysis
Cell cycle analysis was performedwith the objective of identifying
cell populations in different phases of the cell cycle after
different treatments. For this analysis, T24 cells were plated

in 24-well plates at a density of 5 × 104 cells per well.
After 24 h, cells were incubated with 5µM of Lapatinib (LAP),
with 5µM of Lapatinib-loaded nanocapsules (NC-LAP) and
with this relative volume of drug-unloaded nanocapsules (NC)
for 48 h. Afterwards, cells were detached, fixed with 70%
ethanol and stained according to the manufacturer’s protocol.
DNA content measurement was analyzed by propidium iodide
staining using Guava Cell Cycle reagent kit (Merck Millipore
Corporation) and analyzed in Muse Cell Analyzer (EMD
Millipore Corporation).

Analysis of Colony Formation
Clonogenic assay was performed to determine the ability of
the different treatments to reduce cell colonies formation. For
this assay, T24 cell line was plated in 6-well plates at a
density of 2 × 103 cells per well. After 24 h, cells were treated
with 5µM of Lapatinib (LAP), with 5µM of Lapatinib-loaded
nanocapsules (NC-LAP) and with this relative volume of drug-
unloaded nanocapsules (NC) for 48 h. After 48 h of treatment,
the medium was replaced, and the cells were maintained
under controlled atmosphere (37◦C with 5% CO2 and 95%
humidity) for 15 days. After this period, the medium was
removed and the cells were washed with PBS, fixed with
methanol:acetone (3:1) and stained with crystal violet for 20min.
Subsequently, colonies were diluted in 33% acetic acid and
the absorbance of each well was read on a microplate reader
at a test wavelength of 595 nm. The perceptual of colony
formation was calculated by comparing themeans of absorbances
obtained from the different treatments and the absorbance
values will be proportional to the number of stained cells in
the colonies.

Analysis of Gene Expression
The analyses of gene expression associated with apoptosis
induction and cell cycle arrest were investigated by Quantitative
Real-Time PCR (qRT-PCR). Cells were added to 24-well plates
at a density of 2 × 105 cells per well and grown at 37◦C
in a humidified atmosphere of 5% CO2, 95% air for 24 h.
Cells were then treated with 5µM of Lapatinib (LAP), with
5µM of Lapatinib-loaded nanocapsules (NC-LAP) and with
this relative volume of drug-unloaded nanocapsules (NC) for
8 h. Total RNA isolation, cDNA synthesis, and qRT-PCR were
conducted as previously described (28). Briefly, total RNA was
isolated using the TRIzolTM Reagent (InvitrogenTM, USA). RNA
concentration and quality were evaluated using the Nanovue
4282 spectrophotometer (GE Healthcare) and A260/A280 and
A260/A230 ratios were analyzed. Samples were then digested
with DNase by DNA-free kit (Ambion, USA) and cDNA
synthesis was performed using the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, UK) according to the
manufacturer’s protocol. Quantitative Real-Time PCR reactions
were performed on a Stratagene Mx3005P Real-Time PCR
System (Agilent Technologies, USA) using SYBR Green PCR
Master Mix (Applied Biosystems, UK) and the specific primers
described in Table 1. The relative expression data were calculated
according to the 2−11Ct method and were presented as fold
changes (29).
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TABLE 1 | Primers sequences used in this study.

Gene Sequence 5′-3′

p21 For TGTCCGTCAGAACCCATGC

p21 Rev AAAGTCGAAGTTCCATCGCTC

Bax For ATGCGTCCACCAAGAAGC

Bax Rev ACGGCGGCAATCATCCTC

Bcl-2 For GTGTGGAGAGCGTCAACC

Bcl-2 Rev CTTCAGAGACAGCCAGGAG

Caspase-3 For CAGTGGAGGCCGACTTCTTG

Caspase-3 Rev TGGCACAAAGCGACTGGAT

Caspase-8 For GGATGGCCACTGTGAATAACTG

Caspase-8 Rev TCGAGGACATCGCTCTCTCA

Caspase-9 For CCAGAGATTCGCAAACCAGAGG

Caspase-9 Rev GAGCACCGACATCACCAAATCC

GAPDH For GGATTTGGTCGTATTGGG

GAPDH Rev TCGCTCCTGGAAGATGG

Data Analysis
Data were expressed as mean ± standard error of the mean
(SEM) from three independent experiments performed in
triplicate for each experiment. IC50 value was determined by non-
linear regression analysis in the GraphPad Prism 7.0. Software,
data are expressed as mean ± SD. Data set were analyzed using
one or two-way analysis of variance (ANOVA) followed by Tukey
post-hoc test for multiple comparisons and significance level was
considered at P < 0.05 in all analyses.

RESULTS

Lapatinib-Loaded Nanocapsules
Macroscopically, the liquid formulation present an opalescent-
white aspect with homogeneous appearance and an odor
characteristic of copaiba oil. The total lapatinib content in the
NC-LAP was 98.77 ± 2.01% relative to the theoretical value
(0.247 ± 0.005mg mL−1), with an encapsulation efficiency of
100%. The formulation containing the drug (NC-LAP) and a
control formulation (NC) were analyzed by laser diffraction to
determine their particle size distributions. The curves showed
unimodal particle size distributions with diameters smaller than
1µm (Figure 1). Formulations had mean diameters [D (3,
4)] of 148 ± 9 nm (NC) and 146 ± 4 nm (NC-LAP) with
polydispersity (Span) of 1.347 ± 0.046 (NC) and 1.406 ±

0.052 (NC-LAP), indicating adequate particle size and narrow
size distributions. Since no microscopic contamination was
detected by laser diffraction, the formulations were analyzed
by dynamic light scattering, electrophorectic mobility and
potentiometry. The physico-chemical characteristics (z-average
diameter, polydispersity index, zeta potential and pH) are listed
in Table 2.

The results showed in Table 2 corroborated with the
laser diffraction analyses, demonstrating similar particle
size, as well as low polydispersity index indicating that
the presence of lapatinib in the formulation did not affect

FIGURE 1 | Particle size distribution by volume (laser diffraction):

nanocapsules (NC) and lapatinib-loaded nanocapsules (NC-LAP).

TABLE 2 | Results of physicochemical characterization of nanocapsule

suspensions.

Parameter NC NC-LAP

Z-average diameter (nm) 167 ± 9 172 ± 8

Polydispersity index 0.093 ± 0.010 0.100 ± 0.012

Zeta potential (mV) −8.28 ± 0.77 −8.85 ± 1.76

pH 5.92 ± 0.10 6.14 ± 0.15

Results are expressed as mean ± SD.

theses parameters (P > 0.05). In addition, as observed, the
formulations of nanocapsules showed low zeta potential
values and slightly acid pH values. It is worth mentioning
that the mechanism of stabilization for both formulations,
NC and NC-LAP, was based on the steric hindrance
provided by the polysorbate 80 located at the particle-water
interface (30).

NC-LAP Reduce Viability of Transitional
Bladder Carcinoma Cells
NC-LAP was able to reduce T24 cells viability showing
cytotoxic potential against bladder carcinoma cells (Figure 2A).
The results demonstrated that 5µM of NC-LAP reduced
cell viability to 73.39, 45.88, and 32.63% after 24, 48, and
72 h, respectively. Non-encapsulated Lapatinib demonstrated
inhibitory capacity at 12.5 and 25µM after 48 h of treatment,
showing viability of 63 and 32.98%, respectively (Figure 2B).
Drug-unloaded nanocapsules (NC) showed no cytotoxicity
up to 10µM after 72 h of treatment (Figure 2C). The IC50

values, after 24, 48, and 72 h of treatment, for NC-LAP
were 6.8 ± 1.2, 5.1 ± 0.6, and 4.5 ± 0.9µM, respectively,
while for LAP in its free form were 17.2 ± 2.8 and 18.7
± 1.9µM after 48 and 72 h, respectively. IC50 values for
NC and for LAP after 24 h were higher than the maximum
concentration tested.
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FIGURE 2 | NC-LAP (A), LAP (B), and NC (C) effect on T24 cells viability assessed by flow cytometry. Cells were treated with Lapatinib (LAP) at concentrations of

3.12, 6.25, 12.5, and 25µM, with Lapatinib-loaded nanocapsules (NC-LAP) at concentrations of 0.625, 1.25, 2.5, 5, and 10µM and with relative volume of these

concentrations of blank nanocapsules (NC) for 24, 48, and 72 h. The data are expressed as means ± SEM of three independent experiments. Two-way ANOVA with

Tukey post-hoc was used to analyze statistical significance. (*) represents the significant difference between the different concentrations. The P-value represents the

significant difference between treatment times. The differences were considered significant at P < 0.05.

NC-LAP Induces Apoptosis
The rates of early or late apoptosis assessed by flow cytometry
showed that NC-LAP at 5µM induced apoptosis in 48.57%
of cells (early or late apoptosis), indicating that NC-LAP
is more efficient than solution of free drug in equivalent
concentration, which induced 37.65% of the cells (Figure 3).
NC treatment was not able to induce apoptosis under analyzed
conditions (P < 0.05).

Cell Cycle Arrest Induced by NC-LAP
The percentage of cells at the different phases of the cell
cycle (G0/G1, S, and G2/M) was analyzed by flow cytometry
and it is demonstrated in Figure 4. The results showed that
only treatment with NC-LAP at 5µM for 48 h was able to
induce G0/G1 cell cycle arrest in T24 cells when compared
to the control group. On the other hand, there were no
statistical differences in the S and G2/M phases between
tested groups.

NC-LAP Reduces Colony Formation in
Transitional Bladder Carcinoma
The analysis of colony formation was assessed after treatment
with NC-LAP or LAP, as well as the amounts of NC
for 48 h. The results showed that NC and NC-LAP at
5µM have antitumoral potential, reducing T24 colony
formation when compared to the control group. However,

NC-LAP treatment was able to reduce on average 12.3×
the absorbance rate when compared to control group
(Figure 5). LAP treatment showed no reduction in colony
formation (P > 0.05).

NC-LAP Changes Apoptosis and Cell Cycle
Genes Expression Levels
The relative mRNA expression of p21, BAX, and Bcl-2 genes
was assessed by qRT-PCR. As demonstrated in Figure 6A, none
of the treatments change BAX expression levels in T24 cells.
However, Bcl-2 levels were 4.5-fold decreased after treatment
with NC-LAP at 5µM when compared to the control group.
Interestingly, Bax/Bcl-2 ratio increased in T24 cells after 5µM of
NC-LAP treatment compared to that observed in untreated cells
and LAP and NC treated cells. No effect in mRNA expression
levels was observed after NC treatment (P> 0.05). Although NC-
LAP treatment increased Bax/Bcl-2 ratio and the percentage of
cells in early or late apoptosis, there was no increase in expression
levels of caspase 3, 8, and 9 (Figure 6C).

The expression level of p21 gene is shown in the Figure 6B.
NC-LAP treatment was able to change gene expression profile
showing a higher fold induction (10x-fold) when compared to
the control group. LAP and NC at 5µM showed similar fold
induction when compared to the control group and treatment
with NC-LAP (P > 0.05).
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FIGURE 3 | NC-LAP treatment induces apoptosis in T24 cells. T24 cells were incubated with medium (control), LAP or NC-LAP at 5µM, as well as the relative

amount of NC for 48 h. (A) Dot Plot shows the percentage of cell live or early/late apoptosis after each treatment determined by Muse® Annexin V and Dead Cell

Assay. Dot Plot Upper: Medium (left side) and NC (right side). Dot Plot Bottom: LAP (left side) and NC-LAP (right side). (B) The graphic represents the expressed data

by mean ± SEM with data from three independent experiments. The one-way ANOVA with Tukey post-hoc was used to determine statistical significance. Different

capital letters indicate significant differences between means of live cells as well different lowercase letters indicate significant differences between means of cells in

early/late apoptosis. Significance was considered at P < 0.05.
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FIGURE 4 | NC-LAP treatment induces cell cycle arrest in T24 cells. T24 cells were treated with LAP or NC-LAP at 5µM, as well as the relative amount of NC for

48 h. Cell cycle arrest analysis was assessed with propidium iodide staining and flow cytometry. Data are represented by the mean ± SEM with data from three

independent experiments. Two-way ANOVA with Tukey post-hoc was used to analyze statistical significance. (*) represents significant difference (for each phase)

between the different treatment in relation to the control group. Significance was considered at P < 0.05.

FIGURE 5 | NC-LAP inhibited the T24 cells colony formation. Cells were treated with LAP or NC-LAP at 5µM, as well as the relative amount of NC for 48 h.

(A) Shows absorbance relative to each well and (B) shows photographs of representative clonogenic assay plates. Data are represented by the mean ± SEM from

three independent experiments. One-way ANOVA with Tukey post-hoc was used to analyze statistical significance. Different letters indicate significant differences

between the means. Significance was considered at P < 0.05.

DISCUSSION

Nanotechnology tools have been widely used as drug delivery
systems in cancer therapy research (31, 32). These tools have
proven to be effective for cancer therapy through controlled
drug delivery at specific sites, providing higher intratumoral
concentration of chemotherapeutics (33). It has also been shown
by our group that nanotechnology-based drug delivery systems
could be an important alternative to overcome the resistance
developed by cancer cells to drugs (34, 35).

Lapatinib (LAP) is an intracellular inhibitor of tyrosine
kinase. Therefore, for its pharmacological action it is crucial
that lapatinib is internalized by tumor cells. LAP carried in
nanocapsules ensures this increase cellular uptake through
the capacity of internalization of the nanocapsules by

endocytosis process of the cells (36). In addition, lapatinib-loaded
nanocapsules enable an improvement in its oral bioavailability
and aqueous solubility and could minimize the ability of LAP to
bind albumin or alpha-1 glycoprotein in the blood (37). Herein,
we synthesized lapatinib-loaded nanocapsules (NC-LAP) in
order to evaluated its cytotoxic activity against HER-positive
bladder cancer cells.

The NC-LAP formulation prepared presented appropriate
size distributions, indicating a high homogeneity of the particle
size (172 ± 8 nm). Nanoparticles with this range of size have
enhanced permeability and retention effect (EPR) for drug
accumulation in tumors and induced a more efficient therapeutic
effect (38, 39). The low zeta potential values observed in our
formulation is due to the non-ionic character of polysorbate
80 used in the aqueous phase of the nanocapsule suspensions.
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FIGURE 6 | NC-LAP increased Bax/Bcl-2 ratio and led to up-regulation of p21 in T-24 cell line after 6 h of treatment. The gene expression profile was determined by

qRT-PCR and data were normalized using GAPDH levels. (A) Proapoptotic (Bax) and Antiapoptotic (Bcl-2) gene expression. (B) p21 expression gene. (C) Expression

levels of caspase 3, 8, and 9 after 6 h. Data are represented by the means ± SEM from three independent experiments. The one-way ANOVA with Tukey post-hoc

was used to analyze statistical significance. Significance was considered at P < 0.05. Significance was considered at P < 0.05. Different letters indicate significant

differences between the means and different symbols (* and #, asterisk and sharp, respectively) indicates difference in the Bax-Bcl-2 ratio levels between groups.

Nanocapsule suspensions also showed slightly acid pH values, as
expected for formulations containing poly (ε-caprolactone) and
copaiba oil (40). Studies have shown that polymer nanomaterials
may exhibit more than just inert functions and can alter the
expression profile of selected genes and drastically alter cellular
responses to these agents (41–43). Thus, it is expected that drug-
free nanoformulations have minimal antitumor effect, especially
in long term treatment, as observed in the clonogenic assay.
The physicochemical characterization of the formulations is a
crucial step aiming to ensure that nanotechnological properties
are achieved (44).

In this study, encapsulation of LAP resulted in a statistically
significant increase of lapatinib cytotoxicity against T24 bladder
cancer cells. Treatment with 5µM of NC-LAP significantly
reduced T24 cells viability and similar results were obtained
only with 25µM of LAP. We also demonstrate here that
the reduction in the percentage of viable cells remains after
72 h of treatment, suggesting the sustained release of the drug
in the nanoformulation. It is worth mentioning that drug-
unloaded nanocapsules did not show any cytotoxic effect at these
concentrations in our study. More than that, through clonogenic
assay we demonstrate that NC-LAP treatment completely
inhibited the ability of cells to form new colonies. Clonogenic
assay identifies cells that maintain their reproductive capacity
(45) and is an important method to determine cell reproductive

capability reestablishment after treatment with cytotoxic agents
(46). In this work, almost all cells with clonogenic capacity
were eliminated after NC-LAP treatment which was not true for
non-encapsulated LAP treatment.

Studies have shown that lapatinib is able of strongly inhibit
cell proliferation and induce cell cycle G1 arrest and apoptosis
in bladder cancer cells (47). Here we also demonstrate that
NC-LAP was able to induce the T24 cell to apoptosis. The
apoptotic process can be activated through death receptors
or via mitochondria, characterizing the intrinsic or extrinsic
pathway for caspase activation (47). In the present study,
treatment with NC-LAP had no effect on the expression levels
of caspases measured by RT-PCR. On the other hand, NC-LAP
treatment resulted in increasing of Bax/Bcl-2 mRNA expression,
suggesting that the apoptotic process may be occurring through
mitochondria activation, which is controlled by the balance and
interactions between members of the Bcl-2 family proteins (48).
It has been proposed that the ratio between Bcl-2 and Bax
genes seems to be crucial to determine the fate of the cell and
an increase of Bax/Bcl-2 ratio results in loss of mitochondrial
membrane potential and consequently cell death (49).

In this work, NC-LAP also led to cell cycle arrest in
G0/G1 phase, which was not observed for non-encapsulated
LAP. RT-PCR analysis showed that NC-LAP treatment also
up-regulated p21 expression levels. The cell cycle progression is
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a process regulated by the activity of cyclin-dependent kinases
(Cdk) (50). The p21 protein inhibits the cyclin-dependent kinases
pathways regulating negatively the cell cycle progression (51).
Cycle arrest at G0/G1 transition in human bladder cancer
cells may have been due to the enhanced of expression of
p21 with a decrease in cyclin E1, CDK2, and CDK4 kinase
levels (52). Our data also suggest that cell viability reduces
after NC-LAP treatment due to accumulation of cells in the
G0/G1 phase of the cell cycle and induction of apoptosis. In
addition, after NC-LAP treatment, it was possible to observe an
almost complete inhibition of cells with reproductive potential.
Our data agrees with the literature, since it has already been
reported that lapatinib strongly inhibited cell proliferation and
induced cell cycle G1 arrest and apoptosis in bladder cancer
cells (17, 47).

In conclusion, we demonstrate that Lapatinib-loaded
nanocapsules showed cytotoxic effect against HER-positive
bladder cancer cell. NC-LAP reduced the viability of T24
bladder cells, inducing G0/G1 cell cycle arrest through up
regulation of p21; reducing colony formation and leading cells
to apoptosis with increase of Bax/Bcl-2 expression. However,
further studies are necessary to understand the pharmacokinetic
and toxicological effects of NC-LAP formulation.
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