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Cancer immunotherapies aimed at neutralizing the programmed death-1 (PD-1) immune

suppressive pathway have yielded significant therapeutic efficacy in a subset of cancer

patients. However, only a subset of patients responds to antibody therapy with either

anti-PD-1 or anti-PD-L1 antibodies. These patients appear to have so-called “hot”

tumors containing tumor-reactive T cells. Therefore, checkpoint blockade therapymay be

effective in a larger percentage of cancer patients if combined with therapeutics that also

activate tumor-reactive T cells. Radiotherapy (RT) is a prime candidate for combination

therapy because it facilitates activation of both local antitumor immunity and antitumor

immunity at non-radiated, distant sites (abscopal response). However, RT also promotes

tumor cell expression of PD-L1 and facilitates the development of myeloid-derived

suppressor cells (MDSC), a population of immune suppressive cells that also suppress

through PD-L1. This article will review how RT induces MDSC, and then describe two

novel therapeutics that are designed to simultaneously activate tumor-reactive T cells

and neutralize PD-1-mediated immune suppression. One therapeutic, a CD3xPD-L1

bispecific T cell engager (BiTE), activates and targets cytotoxic T and NKT cells to kill

PD-L1+ tumor cells, despite the presence of MDSC. The BiTE significantly extends the

survival time of humanized NSG mice reconstituted with human PBMC and carrying

established metastatic human melanoma tumors. The second therapeutic is a soluble

form of the costimulatory molecule CD80 (sCD80). In addition to costimulating through

CD28, sCD80 inhibits PD-1 suppression by binding to PD-L1 and sterically blocking

PD-L1/PD-1 signaling. sCD80 increases tumor-infiltrating T cells and significantly extends

survival time of mice carrying established, syngeneic tumors. sCD80 does not suppress

T cell function via CTLA-4. These studies suggest that the CD3xPD-L1 BiTE and sCD80

may be efficacious therapeutics either as monotherapies or in combination with other

therapies such as radiation therapy for the treatment of cancer.
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INTRODUCTION

Checkpoint inhibitors that inactivate the programmed death-
1/programmed death ligand-1 (PD-1/PD-L1) pathway protect T
cells from anergy and apoptosis and have significantly improved
the survival of cancer patients with certain types of malignancies.
As a result, antibodies to PD-1 and PD-L1 are now FDA-
approved for the treatment of Hodgkin’s disease, melanoma,
merkel cell, non-small cell lung, head and neck, gastroesophageal,
bladder, urothelial, renal cell, and hepatocellular cancers, and are
being tested in numerous other types of cancer.

Cancers with high mutation rates and de novo tumor-
infiltrating lymphocytes have response rates of 53–87%, while
tumors with lower levels of mutations have response rates of
approximately 20% [reviewed in (1)]. Tumor cell mutations
render tumor cells immunogenic, resulting in the activation of T
cells which traffic to the sites of tumor [tumor-infiltrating T cells
(TIL)]. T cell activation and function are characterized by many
factors including the expression of PD-1 and by the production of
interferon gamma (IFNγ), which is also a potent inducer of PD-
L1. Therefore, inherently immunogenic tumors are more likely
to be candidates for PD-1/PD-L1 antibody therapy, particularly
if the mutations are present in the cancer stem cells and also
expressed in the progeny of the stem cells (2).

TIL are a key component for the efficacy of PD-1/PD-L1
therapy; however, not all tumors have a high rate of mutation
and do not contain TIL. Therefore, alternative strategies for
increasing TIL are being developed. Radiotherapy (RT) is a
prime candidate because it facilitates activation of anti-tumor
immunity at both locally radiated and distant non-radiated
sites (abscopal response) (3, 4). However, RT also promotes
tumor cell expression of the checkpoint blockade molecule
PD-L1 (5, 6). Multiple studies in mice (6, 7) and patients
(8–10) have demonstrated that checkpoint blockade inhibitors
(CBI) such as antibodies to PD-1 and PD-L1 delay tumor
progression and increase overall survival, thus confirming the
suppressive role of PD-1/PD-L1 activity. As a result, there is
extensive interest and enthusiasm for combining checkpoint
blockade immunotherapy with RT (3, 4, 11–16). Preclinical
studies in mice support the concept that the combination of
radiotherapy with checkpoint blockade has increased therapeutic
efficacy (17, 18), and the few clinical studies completed to
date suggest the combination approach will benefit cancer
patients (19–23).

However, RT also promotes myeloid-derived suppressor
cells (MDSC) (24), another potent immune suppressive
mechanism. MDSC use a variety of mechanisms to suppress
antitumor immunity; however, they also can express PD-
L1, and RT increases MDSC expression of PD-L1 (5, 25).
Given that RT enhances immunogenicity but also enhances
immune suppression through increased MDSC and PD-
L1, this review will summarize how RT induces immune
suppression in the context of MDSC and PD-L1 and will
describe two novel strategies for neutralizing this RT-induced
immune suppression. This information may provide the
basis for new approaches for treating cancer in combination
with RT.

RADIOTHERAPY ACTIVATES THE IMMUNE
SYSTEM BUT ALSO DRIVES
IMMUNE SUPPRESSION

Radiotherapy (RT) has been a staple of cancer treatment for some
cancers for over a century. Traditionally it was thought that
RT controls tumor progression through the induction of DNA
damage which results in tumor cell death (26). DNA damage
also causes lymphopenia (27) and therefore was considered a
deterrent to antitumor immunity. However, T cells contribute
to the regression of tumors following radiation (28), and
local radiation facilitates the development of tumor-reactive
T cells that home to the tumor microenvironment (29). Not
only does radiation affect the local radiation site, but it
can also limit/prevent progression of distant metastases. This
phenomenon is known as the abscopal effect and is mediated
by the immune system (30). These studies suggest that RT
systemically activates tumor-reactive T cells and makes RT a
logical therapy to combine with inactivation of the PD-1/PD-L1
pathway to increase patient responses.

However, RT also inhibits antitumor immunity by facilitating
the development of immune suppressive cells, such as T
regulatory cells (Tregs) (31), tolerogenic and immune
suppressive dendritic cells (DC) (32), tumor-associated
macrophages (TAMS) (33), tumor-associated neutrophils
(TANs) (34), and MDSC (24), via a series of soluble molecules
such as TGFβ (35), adenosine (36), VEGFA (37), CSF1 (24),
and CCL2 (38). It is beyond the scope of this article to discuss
all of these mechanisms, so the below discussion focuses
on MDSC, which are present in virtually all cancer patients
and are universally considered a major obstacle to cancer
immunotherapies. Descriptions of the effects of RT on other
immune suppressive cells and factors have recently been
comprehensively reviewed (3, 39–41).

MYELOID-DERIVED SUPPRESSOR
CELLS (MDSC)

MDSC are a diverse mixture of cells of myeloid lineage at
intermediate stages of differentiation. There are two broad
categories of MDSC: monocytic (M-MDSC) and granulocytic
or polymorphonuclear (PMN-MDSC). These categories are
defined based on their presence in the circulation. In humans
M-MDSC are phenotypically CD11b+CD14+HLA-DR−/low

and PMN-MDSC are CD11b+CD14−CD15+or CD66b+HLA-
DR−/low. Human M-MDSC may also express low levels
of CD15. All MDSC are negative for the lineage markers
characterizing non-myeloid cells. As apparent from their
names, M-MDSC are mononuclear and PMN-MDSC are
polymorphonuclear. A third category of human MDSC has
recently been defined. These “early-stage MDSC” (eMDSC) are
CD33+HLA-DR− and do not express either CD14 or CD15.
Mouse M-MDSC are CD11b+Ly6C+Ly6G− and PMN-MDSC
are CD11b+Ly6G+Ly6C−. Since the mouse marker Gr1 can
include both Ly6C and Ly6G, total mouse MDSC are sometimes
phenotyped as CD11b+Gr1+ (42). PMN-MDSC and neutrophils
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share the same surface markers, so phenotype alone is not
sufficient for identifying either human or mouse cells as MDSC.
Human PMN-MDSC and neutrophils have different densities
so that PMN-MDSC tend to band with mononuclear cells at
lower densities in Ficoll gradients, while neutrophils pellet at
a higher density (43). However, the definitive characteristic of
both M-MDSC and PMN-MDSC is their ability to inhibit the
activation and function of T cells (44, 45). Mouse MDSC have
been functionally characterized in more detail than human
MDSC. In the context of tumor immunity they have also been
shown to (i) polarize macrophages toward an M2-like pro-tumor
phenotype (46), (ii) inhibit naïve T cell trafficking into lymph
nodes and thereby prevent priming (47, 48); (iii) prevent T
cell expansion by sequestering cysteine (49); (iv) drive the
accumulation of Tregs (50); and (v) inhibit natural killer cell
function (51).

MDSC arise in the bone marrow (and spleen of mice) in
response to a variety of pro-inflammatory signals produced
by tumors and host cells within the tumor microenvironment
(44). The dominant driving factors are proinflammatory
mediators such as IL-1β (52, 53), IL-6 (54), TNFα (55),
prostaglandin E2 (56), high mobility group box protein 1
(57), and indole-amine2,3 dioxygenase (58). The cells traffic
through the circulation and are chemoattracted to the tumor
microenvironment by a series of chemokines such as CCL2 and
CXCL2 that are present in the tumor microenvironment. Once in
the tumor, hypoxia increases the suppressive potency of MDSC
which is predominantly driven by the transcription factor STAT3
(59). MDSC have a relatively short half-life and M-MDSC can
differentiate into non-immune suppressive myeloid cells (45).
However, there is strong homeostatic regulation such that MDSC
are rapidly replenished (60). A comprehensive discussion of
MDSC induction and function can be found in several recent
excellent review articles (61–63).

IMPACT OF RT ON MDSC

Since RT induces a local inflammatory response including
molecules such as C5a (64) which is a classical inducer of
MDSC (65), it is not surprising that RT may induce the
accumulation of MDSC. Cervical cancer patients receiving
conventional fractionated RT (CFRT) showed an increase in
levels of circulatingMDSC alongwith reduced antigen presenting
cell activity (66). In a mouse study using several prostate cancer
cell lines, fractionated low dose RT caused an increase in MDSC
in the blood, spleen, and lymph nodes. The effect was mediated
by DNA damage that caused the ABL1 kinase to translocate to the
nucleus where it bound to the promoter region of the CSF1 gene.
The resulting increase in circulating CSF1 increased myeloid cell
levels. Confirming the mouse studies, CSF1 was also elevated
in the circulation of prostate cancer patients treated with RT
(24). Tumor radioresistance via the induction of MDSC has also
been attributed to RT-mediated activation of the Stimulator of
Interferon genes (STING) pathway. Local radiation of tumor-
bearing mice resulted in tumor cell production of the type
1 interferon IFNβ which, in turn, induced CCL2, CCL7, and
CCL12 and chemoattracted CCR2+ M-MDSC to the tumor
microenvironment (67).

MDSC levels have also been suggested as potential prognostic
indicators of disease outcome. Following CFRT, hepatocellular
carcinoma patients with high levels of M-MDSC have a poor
prognosis (68).

MDSC have also been reported to have radioprotective
activity. MDSC produce high levels of arginase 1 (Arg1). Arg1
promotes tumor progression by degrading arginine, an essential
amino acid for T cell activation and function (69). Arginine
is also the substrate for the production of nitric oxide (NO)
which is generated by NO synthase (iNOS or NOS2). Under
hypoxic conditions within solid tumors NO is a radiosensitizer
that acts by reducing mitochondrial respiration (70). In an in
vitro co-culture/radiation system using mouse and human tumor
cells, Arg1-producing MDSC displayed radioprotective activity
by reducing arginine and NO (71).

RT can also reduce MDSC levels, an effect that appears to
require high dose ablative RT rather than multiple lower dose
treatments. In studies with mice, ablative hypofractionated RT
(AHFRT), but not CFRT, reduced the levels of intratumoral
hypoxia, MDSC, and VEGF, and reduced MDSC expression of
PD-L1 and VEGF receptor. Since hypoxia is a driver of PD-L1
expression (72) and VEGF is an inducer and chemoattractant
for MDSC (73), the authors concluded that AHFRT reduced
MDSC levels and function by decreasing intratumoral hypoxia
and VEGF (74). In another mouse study, therapy with a single
dose of ablative RT combined with anti-PD-L1 antibody therapy
activated CD8+ T cells that subsequently decreasedMDSC levels.
CD8T cell-mediated killing was by the production of TNFα
(5), which is surprising since TNFα is an established inducer
of MDSC (55). Another mouse study using a single high dose
radiation treatment similarly resulted in elimination ofMDSC. In
this system, the high dose irradiation generated CD40L+CD4+

T cells and CD8+ dendritic cells that through cross-priming
activated CD8+ T cells producing IFNγ (75).

In conjunction with the findings of others for T cell responses
and antitumor immunity (76), it appears that in contrast to
CFRT, AHFRT may generate a more effective abscopal response
and better antitumor immunity by limiting the accumulation
of MDSC. If AHFRT is sufficient to eliminate MDSC, then
additional strategies for reducing MDSC in patients receiving RT
may not be needed. However, if AHFRT does not sufficiently
eliminate MDSC or prevent MDSC up-regulation of PD-L1
(and potentially other ligands for checkpoint receptors), then
additional therapies targeting these cells will be necessary.
Figure 1 summarizes the conditions that drive the accumulation
and function of MDSC, and the impact of CFRT and ABHRT on
the generation of MDSC.

A BI-SPECIFIC T CELL ENGAGER (BiTE)
ACTIVATES T CELLS THAT ARE
CYTOTOXIC FOR PD-L1+ TUMOR CELLS

BiTEs are designed to activate T cells via CD3 and simultaneously
bind to tumor cells via a tumor antigen. They are single chain
recombinant proteins that contain the VH and VL regions
of an anti-CD3 mAb attached by a short linker to the VH

and VL regions of a mAb that reacts with a tumor antigen
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FIGURE 1 | Conventional fractionated radiotherapy (CFRT) increases MDSC while ablative hypofractionated radiotherapy (ABHRT) decreases MDSC. CFRT increases

the quantity of MDSC by (i) inducing the complement component C5a; (ii) causing DNA damage resulting in the up-regulation of CSF1; or (iii) signaling through STING

to increase IFNβ which up-regulates CCL2, CCL7, and CCL12, chemoattractants for MDSC. MDSC up-regulated by CFRT facilitate tumor cell survival by their

production of arginase 1 which decreases nitric oxide, a radiosensitizing molecule. ABHRT enhances antitumor immunity by reducing intratumoral hypoxia which

decreases the quantity of MDSC and MDSC expression of PD-L1, resulting in increased levels of CD40L+CD4+ T cells and CD8+ DC which activate CD8+ TIL.

FIGURE 2 | CD3xPDL1 BiTE blocks PD-L1 and induces T cell-mediated cytotoxic death. The CD3xPDL1 BiTE consists of the VH and VL regions of anti-CD3 and

anti-PDL1 linked together to form a 55 kDa single chain structure. The CD3xPDL1 BiTE binds to PD-L1 on PD-L1+ tumor cells blocking interaction with PD-1 on T

cells, thereby preventing PD-1 mediated T cell exhaustion. The BiTE simultaneously binds to CD3 on CD4+ T cells, CD8+ T cells, and NKT cells, activates the cells,

and forms a cytotoxic synapse. The activated effector cells then kill the PD-L1+ tumor cells.

(77, 78). The first BiTE, Blinatumomab, specific for CD19, was
FDA-approved for clinical use in 2014 (79). Our CD3xPDL1
BiTE uses the VH and VL regions of anti-CD3 mAb in

combination with the VH and VL regions of the human anti-
PD-L1 mAb 4A12 (80) to activate T cells and target them
to PD-L1+ tumor cells. As with other BiTEs, the CD3xPDL1
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BiTE has the potential to generate large numbers of cytotoxic
CD3+ T cells regardless of T cell receptor expression or
MHC genotype, and without costimulation, since the activation
occurs via CD3 (81–83).

Binding studies using flow cytometry as the readout
demonstrated that the∼55KDa CD3xPDL1 BiTE binds to CD3+

human peripheral blood mononuclear cells (PBMC), and to PD-
L1+ humanmelanoma, chronic myelogenous leukemia, and lung
adenocarcinoma cell lines, but not to CD3− or PD-L1− human
tumor cells. Surface plasmon resonance studies indicated that
the BiTE bound to CD3 with a dissociation constant of 2.4
× 10−10 and to PD-L1 with a dissociation constant of 1.28 ×

10−11. The ability of the BiTE to simultaneously bind to CD3+

T cells and to PD-L1 was shown by detecting bound PD-L1-
Fc to the BiTE-coated PBMC. When incubated with the BiTE
in the presence of PD-L1+ tumor cells, PBMC from healthy
human donors were activated as assessed by expression of the
activationmarkers CD69 and CD25, their proliferation, and their
production of IFNγ. Importantly, the BiTE-activated healthy
donor PBMC were more cytotoxic for PD-L1+ tumor cells than
PBMC activated by anti-CD3 mAb by itself, while PD-L1− cells
were not lysed. In vitro depletion studies demonstrated that the
CD3xPDL1 BiTE not only activated cytotoxic CD4+ and CD8+

T cells, but also activated CD3+ NKT cells (84).
Since cancer patients frequently have MDSC that inhibit T

cell activation and function, the CD3xPDL1 BiTE was also tested
for its ability to activate cytotoxic cells from small cell (SC) and
non-small cell lung cancer (NSCLC) patients. Approximately 24–
60% of the PBMC from these patients consisted of M-MDSC
(CD11b+HLA-DR−CD14+) plus PMN-MDSC (CD11b+HLA-
DR−CD15+). Despite the high levels of MDSC, the BiTE
activated CD3+ cells that specifically lysed PD-L1+, but not
PD-L1− human tumor cells (84). MDSC can express PD-L1
(85), so the ability to lyse tumor cells even in the presence of
high levels of MDSC is likely due to BiTE-mediated cytotoxicity
of the MDSC. T regulatory cells were not tested in this
study. However, since RT induces Tregs (86) and induced
Tregs may express PD-L1 (87), the CD3xPDL1 BiTE may also
eliminate these cells.

The CD3xPDL1 BiTE was tested for in vivo efficacy
using immune deficient NSG mice reconstituted with PBMC
from healthy human donors (“humanized” mice). Humanized
mice were inoculated with a spontaneously metastatic human
melanoma and 7 days later the mice were given CD3xPDL1
BiTE for 4 consecutive days and a final dose of BiTE
2.5 weeks later. BiTE treated, but not control mice, had
expanded numbers of human CD3+ cells in their spleens,
minimal numbers of MDSC, and significantly extended survival
times (84).

Collectively, these results suggest that the CD3xPDL1 BiTE
might be a useful therapeutic to combine with other cancer
immunotherapies and/or with RT. Since MDSC and PD-L1
can be induced by RT (5, 25, 66), and the BiTE expands
TIL in response to PD-L1 while inhibiting MDSC, it would
be interesting to determine if the CD3xPDL1 BiTE and RT
synergize. Figure 2 shows graphically the structure and function
of the CD3xPDL1 BiTE.

THE SOLUBLE FORM OF CD80 (sCD80)
NEUTRALIZES PD-L1 MEDIATED
IMMUNE SUPPRESSION

PD-L1 not only binds to its receptor PD-1, but also binds to the
costimulatory molecule CD80. Mutation analyses demonstrated
that PD-1 and CD80 share overlapping binding sites on PD-
L1, although the dissociation constant for PD-1/PD-L1 binding
is approximately half that of the dissociation constant for
CD80-PD-L1 binding (88, 89). This unexpected binding led
to the hypothesis that CD80 might bind to PD-L1, thereby
interfering with the binding of PD-L1 to PD-1 and facilitating
and sustaining antitumor immunity (90). Initial studies of CD80-
transfected human melanoma and lung adenocarcinoma cells
that constitutively express PD-L1 or are induced by IFNγ

to express PD-L1 suggested that CD80 inhibited the plasma
membrane expression of PD-L1, despite the transfected cells
containing PD-L1 mRNA and protein as assessed by RT-PCR
and western blotting. However, the absence of detectable PD-
L1 on the plasma membrane was subsequently shown to be due
to CD80 sterically blocking the epitope on PD-L1 recognized by
the anti-PD-L1 antibodies (91). The ability of CD80 to bind PD-
L1 and prevent PD-1 binding was confirmed by assessing the
binding of PD-1-Fcmolecules to CD80+PD-L1+ and CD80−PD-
L1+ human melanoma cells. CD80+PD-L1+ mouse tumor cells
similarly did not bind PD-1-Fc, while CD80−PD-L1+ mouse
tumor cells bound PD-1-Fc. Flow cytometry using an anti-PD-
L1 antibody that recognized a non-CD80-dependent epitope
revealed co-localization of PD-L1 and CD80 on the plasma
membrane of human tumor cells. Whereas, CD80−PD-L1+

human tumor cells anergized activated PD-1+ human PBMC
and inhibited their production of IFNγ, CD80+PD-L1+ human
tumor cells prevented anergy and maintained IFNγ production

FIGURE 3 | Soluble CD80 activates T cells, blocks PD-1 mediated immune

suppression, and promotes anti-tumor immunity. sCD80 acts as a checkpoint

inhibitor by blocking PD-L1 on tumor cells and antigen presenting cells while

simultaneously binding and activating T cells through CD28. T cells activated

by sCD80 have increased IFNγ and IL-2 production and upregulate TCR and

CD28 signaling, resulting in an immune-reactive tumor microenvironment with

T cell killing of target tumor cells.
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(90). Mouse CD80+PD-L1+ tumor cells similarly maintained
IFNγ production by activated PD-1+ mouse T cells (91).
These results confirmed the hypothesis that CD80 might be a
useful therapeutic for preventing the anergizing of any T cells
via PD-1.

Since membrane-bound CD80 is not a feasible therapeutic,
studies were initiated to determine if a soluble form of CD80
(sCD80 or CD80-Fc) had a similar function. Using four different
human tumor cell lines, sCD80, but not an irrelevant Fc-
linked protein, maintained IFNγ production by PD-1+ CD4+

and CD8+ T cells from human donors. A comparison of
sCD80 to multiple anti-human-PD-L1 and anti-PD-1 antibodies
demonstrated that sCD80 was more effective in maintaining
IFNγ-producing activated T cells (91, 92). The latter finding in
conjunction with CD80’s known costimulatory activity, led to the
hypothesis that sCD80 may be a dual agent that simultaneously
blocks PD-1 suppression and costimulates through CD28.
This hypothesis was confirmed by demonstrating that sCD80
maintained IFNγ production by PD-1+ activated CD28-deficient
mouse T cells, but that the level of IFNγ was significantly higher
for CD28+/+ PD-1+ T cells (92). sCD80 costimulation was
further confirmed by western blotting and flow cytometry studies
demonstrating that sCD80 activates EGR1-4 transcription factors
in the CD28 activation pathway and phosphorylates MAPK, and
NF-κB in the T cell receptor signaling pathway (93). Thus, sCD80
maintains T cell activation by simultaneously blocking PD-1
suppression and costimulating through CD28. Many tumor and
other cells express PD-L1, so sCD80 has the potential to be a
generally applicable reagent and is not limited to a specific type
of tumor.

In addition to binding to PD-L1 and costimulating through
CD28, CD80 also binds to the T cell-expressed co-inhibitory
molecule CTLA-4, a receptor that decreases T cell activation
and function. The mechanism of CTLA-4-mediated suppression
is controversial. Although there is no known inhibitory motif
in the cytoplasmic region of CTLA-4, it has been proposed
that CTLA-4 functions by negative signaling into activated T
cells. Alternatively, it has been suggested that CTLA-4 suppresses
T cell function by acting as a “sink” or decoy receptor for
CD80 and thereby scavenging CD80 and preventing it from
binding to CD28 (94). To resolve if sCD80 suppressed through
CTLA-4, CTLA-4+ activated human T cells were incubated
with PD-L1+ human melanoma cells with or without sCD80
and/or blocking antibody to CTLA-4. Inclusion of anti-CTLA-4
antibody did not increase T cell activation, indicating that CTLA-
4 suppression did not occur. Although T cell-expressed CTLA-
4 did not impact T cell activation, inclusion of high levels of
CTLA-4-Fc did reduce the ability of sCD80 to maintain IFNγ

production, suggesting that mechanistically CTLA-4 serves as
a decoy receptor (93).

sCD80 injected either intratumorally or systemically delayed
tumor progression and extended survival time of syngeneic
mice carrying the B16 melanoma or the CT26 renal cell
carcinoma. Combination therapy of CT26-bearing mice with
intratumoral sCD80 plus CpG further reduced tumor growth.
Immunohistochemistry of tumors from systemically-treated

mice with CT26 tumors revealed extensive TIL in the tumors
of the sCD80-treated mice (93, 95). Studies with C57BL/6
CD28-deficient and PD-1-deficient mice carrying B16 tumors
confirmed the earlier in vitro findings that sCD80 has the
dual functions of inhibiting PD-1-mediated suppression while
activating through CD28 (93).

Figure 3 is a graphic depiction of how sCD80 concurrently
activates T cells via CD28 and prevents T cell anergy by inhibiting
PD-L1/PD-1 binding.

CONCLUSIONS

The use of antibodies to block the PD-1/PD-L1 pathway has
been a major advance in the treatment of cancer patients. Since
the efficacy of these antibodies depends on patients having
tumor-reactive T cells that can be rescued and reactivated by
the antibodies, it is essential to combine checkpoint blockade
therapy with treatments that activate T cells in patients who
do not have constitutively activated lymphocytes. Many cancer
patients appear to be in this latter category since checkpoint
blockade therapy is only effective in a subset of cancer patients.
RT is a natural choice for improving the levels of activated
T cells because it induces antitumor immunity both locally
and systemically. However, RT can also drive PD-L1 expression
and other immune suppressive mechanisms including MDSC.
The CD3xPDL1 BiTE and soluble CD80 reagents described
here not only inhibit PD-1/PD-L1 suppression, but also activate
T cells. Therefore, if combined with RT, the CD3xPDL1
BiTE or sCD80 could synergize with RT to further drive
T cell activation while concurrently neutralizing PD-1/PD-L1
immune suppression which may have been induced by the
RT. New treatments could be developed where first, ablative
hypofractionated RT is utilized to create an immunogenic
tumor and reduce MDSC. Next, these novel therapies could
be used to simultaneously block PD-L1, eliminate PD-L1+

tumor cells, and encourage expansion of TILs to eliminate the
remaining tumor.
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