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Background: While atlas segmentation (AS) has proven to be a time-saving and

promising method for radiation therapy contouring, optimal methods for its use have not

been well-established. Therefore, we investigated the relationship between the size of the

atlas patient population and the atlas segmentation auto contouring (AC) performance.

Methods: A total of 110 patients’ head planning CT images were selected. Themandible

and thyroid were selected for this study. The mandibles and thyroids of the patient

population were carefully segmented by two skilled clinicians. Of the 110 patients, 100

random patients were registered to 5 different atlas libraries as atlas patients, in groups

of 20 to 100, with increments of 20. AS was conducted for each of the remaining

10 patients, either by simultaneous atlas segmentation (SAS) or independent atlas

segmentation (IAS). The AS duration of each target patient was recorded. To validate

the accuracy of the generated contours, auto contours were compared to manually

generated contours (MC) using a volume-overlap-dependent metric, Dice Similarity

Coefficient (DSC), and a distance-dependent metric, Hausdorff Distance (HD).

Results: In both organs, as the population increased from n = 20 to n = 60, the

results showed better convergence. Generally, independent cases produced better

performance than simultaneous cases. For the mandible, the best performance was

achieved by n = 60 [DSC = 0.92 (0.01) and HD = 6.73 (1.31) mm] and the worst

by n = 100 [DSC = 0.90 (0.03) and HD = 10.10 (6.52) mm] atlas libraries. Similar

results were achieved with the thyroid; the best performance was achieved by n = 60

[DSC = 0.79 (0.06) and HD = 10.17 (2.89) mm] and the worst by n = 100 [DSC = 0.72

(0.13) and HD = 12.88 (3.94) mm] atlas libraries. Both IAS and SAS showed similar

results. Manual contouring of the mandible and thyroid required an average of 1,044

(±170.15) seconds, while AS required an average of 46.4 (±2.8) seconds.

Conclusions: The performance of AS AC generally increased as the population of the

atlas library increased. However, the performance does not drastically vary in the larger

atlas libraries in contrast to the logic that bigger atlas library should lead to better results.

In fact, the results do not vary significantly toward the larger atlas library. It is necessary

for the institutions to independently research the optimal number of subjects.
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INTRODUCTION

Manual contouring of target and critical structures is resource
intensive aspect of the radiotherapy planning process. In order
to reduce time and workload imposed on the clinicians and
operators, multiple reports have suggested the use of atlas-based
automatic segmentation (1–6). Atlas segmentation involves the
process of aligning the target patient (TP) to the “template”
patient through “template alignment” for the contours available
within the atlas library. The next step is “contour alignment”
where the selected atlas patient’s (AP) contours are aligned
with the anatomical structures of the TP. Once the contours
are aligned to the anatomical structures of TP, these contours
will undergo “label fusion” process, where deformation of the
contours of selected AP is performed to match the anatomical
structure of the TP. This overall process of atlas segmentation
enables automatic segmentation for OAR and target contouring
with considerable accuracy. However, in most cases, authors have
suggested manual correction before practical use. Furthermore,
to our knowledge, there have been no studies regarding the
optimal number of patients needed to populate an atlas library
for auto-segmentation, or regarding a reasonable explanation for
patient characteristics.

In this study, we focused on evaluating the optimal number of
atlas patients (AP) required by the atlas library to automatically
generate accurate segmentation volume for the mandible and
thyroid in head and neck cancer treatment. In addition, we
also evaluated whether atlas-segmentation resulted in significant
time-savings, based on the number of patients and on each
constituent process.

METHODS

Patient Selection
All patients selected for this study were with a brain tumor
or head and neck cancer who underwent head CT scanning.
Several exclusion criterions were considered; patients below age
20, patients who underwent surgical resection, patients without
thyroid and patients with a bite block or tracheostomy tube
during simulation were excluded from the patient group.

According to the criterions mentioned above, a total of
110 head and neck cancer patients at Yonsei Cancer Center
were randomly selected and divided into two groups (Table 1):
(a) 10 target patients (TPs) to be auto segmented by “Atlas
Segmentation” with commercially available software, MIM
Maestro 6.7 (MIM Software Inc., Cleveland, OH); and (b)
100 atlas patients (APs) were registered to MIM as atlas
atlas patients to guide performance of atlas segmentation.
The study protocol conformed to the ethical guidelines of
the 1975 Declaration of Helsinki, as revised in 1983, and
was approved by institutional review board (IRB) of Yonsei
University Health System without the IRB number. The patient

Abbreviations: AC, atlas segmentation-generated contours; DSC, Dice Similarity

Coefficient; HD, Hausdorff Distance; IAS, independent atlas segmentation; IMRT,

intensity-modulated radiation therapy; MC, manually segmented contours; MV,

majority vote; OAR, organ at risk; SAS, simultaneous atlas segmentation; AP, atlas

patients; TP, target patients.

TABLE 1 | Patient characteristics in this study.

Male Female Average

age

Dental

artifact

No teeth CT with

open

mouth

Target

patients (10)

7 3 56.3 8 1 0

Atlas

patients (100)

68 32 53.9 77 10 6

FIGURE 1 | Images of two patients with (left) and without (right) dental

artifacts.

records/information were anonymized and de-identified prior
to analysis, and informed consent was not obtained from
each participants.

All TPs were adults (age range: 33–77 years old) with brain
cancer. The slice thickness of CT images was 3mm; all CT images
were taken with a closed mouth, using different angles of head
inclination. Seven of 10 TPs were male and three were female.
Eight of ten TPs exhibited a dental artifact Figure 1.

Of 100 APs, 68 were male and 32 were female. The average
age of the AP group was 53.9 years old (range: 19–91 years old).
Of 100 APs, 77 patients’ CT images displayed a dental artifact
within 1–3 slices; six patients’ CT images were taken with an open
mouth. The slice thickness of CT images was 3mm for all APs.

Manual segmentation of the mandible and thyroid for all
110 patients involved in this study was performed by two
experienced clinicians. Manually segmented contours (MCs)
of 10 TPs were used as the gold standard for comparison
with the MIM Atlas Segmentation-generated contours (ACs)
for precision and accuracy analysis. Automatic segmentation of
the mandible and thyroid of 10 TPs was conducted with the
“Atlas Segmentation” function in MIM Maestro 6.7 software.
Five different atlas libraries, containing n = 20, 40, 60, 80, and
100 APs were created to observe the effect of the population of
atlas APs on the accuracy of AC.

We chose mandible and thyroid in the head and neck
region, as these require the most laborious work during
manual contouring. Although mandible might be considered
as comparably simple organ to draw owing to its rigid shape,
this applies if dental artifacts are not present. As proven by the
random selection of patients, in this study, majority had dental
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artifacts which caused severe difficulties in manual contouring.
Even in other OARs, each of their characteristics and the
following difficulties need to be considered during manual
contour process. Hence it is necessary to conduct a preliminary
test, for whichever organ it may be, before clinical use of atlas-
based auto segmentation.

MIM Atlas Library Build Up
Five atlas libraries were created to contain a population of APs
of size n: n = 20, 40, 60, 80, and 100. For every AP, planning CT
images and respective manual contours of mandible and thyroid
were registered to each atlas library. The entire registration
process was conducted by the author to reduce inter-observer
variability during the Template-AP alignment procedure and the
AP-TP alignment process during “Atlas Segmentation.” It should
be noted that for growing the number of n for each atlas library
(e.g., from an atlas library of n = 20 to n = 40), the previous
group’s atlas APs were kept, and an additional 20 patients were
included to generate a new atlas library.

Atlas Segmentation
ACs were generated for all TPs with each atlas library (n =

20, 40, 60, 80, and 100). During “Template Alignment” process,
TP is aligned with the “template” patient of the atlas library to
be assessed for the available contours within the atlas library.
The “template” patient is used as a reference for choosing an
appropriate atlas subject when the operator is trying to segment
a new TP. Other patients within the atlas library are aligned with
the “template” patient such that they share the same reference.
Each atlas library will have its own “template” patient, and it is
recommended that an average shaped patient of the population
within the atlas library is selected as the “template” patient. It is
desirable to avoid a really heavy or skinny person or patient with
any uncommon neck or mouth angle. The “Contour Alignment”
process involves manual alignment of selected AP’s contours to
the anatomical region of interest of TP. This process involves
further registration of a specific AP to the TP which helps
fine-tune the alignment. It is to be noted that for this study
both “Template Alignment” and “Contour Alignment” processes
were conducted manually due to decreased accuracy to the
resulting AC with automatic alignment. When the alignment
of template and AP with the TP is manually set, the best fit
atlas patients (AP) were automatically selected and the contours
were automatically deformed onto the TP’s CT scan. The “label
fusion” process is conducted which involves the deformation of
the original AP contours into the best contour shape matching
to the TP anatomy (7–9). (Figure 2 describes the steps of Atlas
Segmentation of MIM). This process describes the deformation
of the contours from each AP to the TP. The combination of
multiple contours from several AP is done by this “label fusion”
process to form a single, final contour on the TP either using
one of the two label fusion algorithms. The author would like to
denote that there are two label fusion algorithms supported by
MIM; the Majority Vote (MV) algorithm and the Simultaneous
Truth and Performance Level Estimation (STAPLE) method.
In MV method, votes are counted for each propagated label,
and the label with most votes will be selected to generate the

FIGURE 2 | Representative workflow image of MIM atlas segmentation

process. Times t1, t3, and t5 are defined as MIM time; times t2 and t4 are

defined as operator time.

final segmentation (10). STAPLE, estimates the performance
parameters and a probabilistic estimate of the true segmentation,
by iterated estimation according to the expectationmaximization
algorithm (11). In this study, MV method was used throughout
this study to maintain consistency.

Simultaneous and Independent Cases
We performed two different atlas segmentations for mandible
and thyroid. In the first, simultaneous atlas segmentation (SAS),
mandible and thyroid were both included as subject organs
to be auto-segmented and were generated by a single “Atlas
Segmentation” process. To be specific, the contour alignment
process as explained in the earlier section, involved global
alignment of two contours; mandible and thyroids at the same
time. In this case, the mismatch of mandible and thyroids
due to head inclination was neglected. To reduce this problem
of mismatching caused by head inclination difference between
patients, independent atlas segmentation (IAS) was performed
and each organ was independently segmented by running the
“Atlas Segmentation” process twice (Figure 3). In IAS, the
contour alignment process will involve alignment of individual
contour and hence needs to be performed multiple times
depending on the number of AC to generate. The results were
recorded to analyze the difference between simultaneous and
independent cases.

Time Stamp for Atlas-Based Segmentation
The time to produce AC (tAC) for each TP for all atlas libraries
was recorded and compared with manual segmentation time
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FIGURE 3 | Atlas segmentation of mandible and thyroid of target patients (TP) using MIM to generate auto-segmentation; (A) simultaneous atlas segmentation and

(B) independent atlas segmentation.

(tMC). Previous studies verified significant time-saving occurred
when atlas-based auto-segmentation was compared with manual
segmentation. Together with the standard comparison, in this
study, we aimed to record the differences in time between atlas
libraries. It should be noted that for this study, only MIM
time (t1, t3, t5) was considered for comparison, as the operator
time (t2, t4) was inconsistent between TPs and atlas libraries
(Figure 2). We tested the significance between AC generation
times for different atlas libraries by using Kruskal–Wallis and
Mann–Whitney non-parametric statistical tests.

Validation Method
AC of mandible and thyroid were compared with the MC
produced by the clinicians. Dice Similarity Coefficient (DSC) and
Hausdorff Distance (HD) metrics were used for accuracy analysis
(12, 13). DSC is an overlap-basedmetric that measures the degree
of overlap between two different volumes and is defined by
the equation:

DSC =
2(VAC ∩ VMC)

VAC + VMC

where VAC is the atlas-based auto-segmentation volume of the
organs of interest and VMC is the manual segmentation volume.

The value of DSC is expressed on a scale with a range of (0, 1); it
is an effective method for evaluating the overlap of the AC with
the gold standard MC. However, as suggested by Kim et al. (14),
DSC may be ambiguous regarding local discrepancies.

In contrast, HD considers distance differences between two
surfaces, thereby eliminating the ambiguity of the volume-wise
DSC metric. Given two point sets A = {a1, . . . , ap} and B = {b1,
. . . , bq}, HD is defined as:

H(A,B) = max(h(A,B), h(B,A))

where

h (A,B) = ‖a− b‖

The function h(A, B) is designated as the directed HD from A to
B. It identifies a point, a ∈ A, that is furthest from the nearest
neighbor in B. Effectively, it describes the most mismatched
distance of a point on A to B. If h(A, B) = d, then each point of
A must be within distance d of a given point on B. With function
H(A, B), if HD is d, then every point on Amust be within distance
d of a given point on B; the reverse function is also applicable.

For both simultaneous and independent cases, target patient
AC, generated by each atlas library, was compared with the
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TABLE 2 | Mean dice similarity coefficient and hausdorff distance values for multiple n atlas libraries.

n 20 40 60 80 100

SAS Mandible DSC (sd) 0.90 (0.03) 0.90 (0.06) 0.90 (0.01) 0.90 (0.02) 0.89 (0.02)

HD (sd) 10.72 (4.82) 10.08 (5.62) 8.33 (1.76) 10.00 (4.99) 12.07 (6.94)

Thyroid DSC (sd) 0.73 (0.08) 0.71 (0.16) 0.71 (0.16) 0.72 (0.16) 0.71 (0.14)

HD (sd) 14.52 (4.33) 14.35 (4.81) 13.55 (5.56) 14.23 (5.20) 12.28 (3.06)

IAS Mandible DSC (sd) 0.91 (0.03) 0.92 (0.01) 0.92 (0.01) 0.91 (0.02) 0.90 (0.03)

HD (sd) 9.39 (4.47) 7.55 (2.00) 6.73 (1.31) 7.46 (1.69) 10.10 (6.52)

Thyroid DSC (sd) 0.77 (0.08) 0.77 (0.07) 0.79 (0.06) 0.75 (0.07) 0.72 (0.13)

HD (sd) 11.98 (2.28) 12.37 (2.66) 10.17 (2.89) 11.65 (3.73) 12.88 (3.94)

gold standard MC, created by the clinicians. For the results of
each n group, DSC values and HD values were averaged; the
values were compared between different n population groups.
The overlap limit for automatic image segmentation suggested
by the literature is DSC > 0.75 (15). Additionally, Loi et al. (16)
suggested that, for volumes > 30ml, the suitable accepted limit
should be DSC > 0.85.

RESULTS

All 10 target patients were auto-segmented with each atlas library.
Resulting ACs of mandible and thyroid were compared with the
gold standard MCs to achieve mean DSC and mean HD. Mean
DSC and HD values obtained from AC–MC comparisons for
each library for mandible and thyroid are summarized in Table 2.
For each atlas library group, the respective mean DSC values
and mean HD values showed improvements when mandible and
thyroid were auto-segmented using IAS method. As shown in
Figure 4, IAS showed better results than SAS.

SAS
For mandible, the n = 60 atlas library produced the best result:
DSC = 0.90 (0.01) and HD = 8.33 (1.76) mm. However, for
thyroid, the best result was produced by the n = 20 atlas library;
DSC=0.73 (0.08) and HD= 14.52 (4.33) mm.Worst results were
produced by the n = 100 atlas library for the mandible, where
DSC = 0.89 (0.02) and HD = 12.07 (6.94) mm. For thyroid, the
worst result was shown by the n = 40 atlas library; DSC = 0.71
(0.16) and HD= 14.35 (4.81) mm (Table 2).

IAS
For both mandible and thyroid, the best results were produced
by the n = 60 atlas library. For mandible, the values were:
DSC = 0.92 (0.01) and HD = 6.73 (1.31) mm. For thyroid,
the values were: DSC = 0.79 (0.06) and HD = 10.17 (2.89)
mm. The worst results were produced by n = 100 atlas library
for both mandible and thyroid, where DSC = 0.90 (0.03) and
HD = 10.10 (6.52) mm for the mandible, and DSC = 0.72 (0.13)
and HD= 12.33 (3.94) mm for thyroid (Table 2).

Time Stamp
The shortest mean time was achieved by n = 20 groups for IAS
mandible, IAS thyroid, and SAS with 40.1± 2.65 s, 42.3± 3.16 s,

and 46.4± 2.85 s respectively. Although the scale of time increase
can be considered negligible, mean time to generate AC increased
as the population of the atlas library increased. For n = 100 atlas
library, for IAS mandible, IAS thyroid and SAS, the mean time
was 45.8 ± 2.45 s, 46.1 ± 1.20 s, and 49.6 ± 2.19 s respectively.
When tested for significance in SAS, a statistically significant time
difference occurred (p = 0.006) when the atlas library increased
from n = 60 to n = 80. However, no statistically significant
differences occurred between n = 20, 40, and 60, and n = 80
and 100.

Anatomical Mismatches
Anatomical mismatches between AP and TP resulted in
poor metric values. Regarding TPs specifically, generally poor
mandible metric values were observed for patient no. 3 (SAS:
DSC = 0.86 and HD = 13.65 and IAS: DSC = 0.89 and
HD= 7.81mm) due to the absence of teeth (Table 3). A separate
atlas-segmentation was conducted for open-mouth TP; who’s CT
series were originally a part of n = 100 atlas library. Selected AP
was of closed-mouth AP. Mismatch of mandible shapes resulted
in poor AC generation (Figure 5).

DISCUSSION

In this study, we randomly selected 110 patients and created five
atlas libraries with increasing numbers of patients, in increments
of 20; we aimed to observe whether the performance of atlas
segmentation increased with an increasing number of patients.
As described in the methods section, we chose mandible and
thyroid in the head and neck region, as these require the
most laborious work during manual contouring. We measured
the performance of atlas segmentation by using two important
parameters: DSC and HD. Regarding time to generate AC, there
was no significant time difference (p> 0.05) when library size was
increased from n= 60 to n= 100.The mean time increased until
n = 80 for all cases, with 48.5, 49.3, and 50.1 s for IAS mandible,
IAS thyroid, and SAS, respectively. However, for n = 100, mean
time decreased to 45.8, 46.1, and 49.6 s for IAS mandible, IAS
thyroid, and SAS, respectively. The decrease in mean time to
generate AC from n = 80 to n = 100 needs further study
with larger atlas library; i.e., n = 120, 140, and 160 to discuss
the relationship between AC generation time and the size of
the atlas library. It seems the important factor influencing the
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FIGURE 4 | Comparison of metrics among n atlas groups. Simultaneous atlas segmentation (SAS) is represented as dashed line and independent atlas segmentation

(IAS) is represented as bold line. Good overlap limit of 0.75 and 0.85 are represented as straight horizontal lines in (A,B). (A) Mean Dice Similarity Coefficient for

mandible. (B) Mean Dice Similarity Coefficient for thyroid. (C) Mean Hausdorff Distance for mandible. (D) Mean Hausdorff Distance for thyroid.

TABLE 3 | Mandible metrics for n = 80 atlas-generated atlas-based auto-segmentation: simultaneous and independent atlas segmentation (SAS and IAS).

Patient no. no. 1 no. 2 no. 3* no. 4 no. 5 no. 6 no. 7 no. 8 no. 9 no. 10 Mean (sd)

SAS DSC 0.91 0.91 0.86 0.90 0.89 0.90 0.86 0.92 0.92 0.89 0.90 (0.02)

HD (mm) 7.65 9.00 13.65 7.44 9.68 7.34 22.59 8.21 4.61 9.86 10.00 (4.99)

IAS DSC 0.93 0.91 0.89 0.90 0.89 0.93 0.93 0.91 0.90 0.89 0.91 (0.02)

HD (mm) 6.01 6.35 7.81 8.83 10.12 6.36 5.41 6.39 7.31 10.06 7.46 (1.69)

*Patient without teeth.

performance of the AS is not the number of patients in the
atlas, but the involvement of various anatomical features. In this
sense, as shown by tests with open-mouth TP, failure to choose
the appropriate AP illustrates the additional requirement for
creating a different atlas library to perform atlas segmentation
for different patients with different anatomies or postures.
Depending on CT imaging region and different postures, atlas
segmentation performance can face limited application if these
various factors are not included in the subject library. These
results are novel and could have great implications and influence
the direction of future studies regarding AC. Future studies
are required to compare the resulting AC for different atlas

libraries containing different postures. i.e., open mouth vs.
closed mouth.

As mentioned previously, a good overlap limit has been
suggested by Loi et al. For the thyroid, which is considered to be a
small-volume organ (volume <30ml), a suitable threshold value
of DSC = 0.75 has been suggested. Moreover, for the mandible,
which is substantially larger in volume, DSC= 0.85 threshold has
been suggested as a suitable threshold. As described previously,
the difference between SAS and IAS arise from the method of
contour alignment. SAS create AC based on the global alignment
of multiple contours between TP and AP, while IAS generate
AC by comparing individual contours separately, and needs to
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FIGURE 5 | Auto-segmented contour results with open mouth target patient. (A) Atlas patient CT and its contour. (B) Target patient (open mouth) CT and selected

atlas patient’s contour. (C) Atlas segmentation-generated contour (AC).

be performed multiple times depending on the total number of
organs. As shown in Figure 4, for both IAS and SAS, mandible
showed good overlap results with all atlas libraries. For thyroid,
IAS satisfied the overlap limit of 0.75 for all atlas library groups,
except for n = 100. Regarding SAS, every group failed to reach
the threshold of 0.75 for thyroid.

It is important to note that the overall shape of patient
CT images plays a critical role in AC generation. Such shapes
could include the degree of inclination of the head when CT
images were taken, as well as irregularities of organ shapes
between patients. Owing to these differences between patients,
the resulting AC greatly depended on the contours of the selected
AP. This is supported by our data, in which IAS results were
generally better than those produced by SAS. In this study, for
SAS, when TPs were aligned with selected APs, the alignment
was made by matching the tip of the mandible between patients.
Because of this aspect, the location of the thyroid often was
substantially mismatched between TP and AP when the degree of
inclination of the head was severe. Another aspect that resulted
in a large mismatch between AC and MC was irregular thyroid
shape. In this sense, a large AP contour volume matched with a
small TP thyroid volume resulted in engulfment of the vein and
artery adjacent to the thyroid. This resulted in the AC including
a certain proportion of unwanted arteries and veins, leading to
poor overlapping scores.

Another factor that could have influenced the results is the
fact that the quality of the AP groups was disregarded. Seventy-
seven of 100 APs exhibited a type of dental artifact (Figure 1),
which severely decreased the quality of the database patients
and could have affected the resulting AC. When looking at
individual sub groups of AP libraries; 20, 40, 60, 80 and 100,
the ratio of the number of patients without any dental artifacts
and those with dental artifacts were 0.15, 0.18, 0.2, 0.23, and 0.23
respectively. Although these patients were selected in random
order, the distribution of the ratio and the dispersion was regular
without a large bias, and hence would have had small effect in the
resulting AC between different atlas library groups. It is notable
that the gender and dental artifact ratios were similar in both

TP and AP groups; male: female, 7:3, and dental artifact: no
artifact, 8:2.

Regarding TPs specifically, poor mandible metric values were
observed for patient no. 3 in both IAS and SAS (Table 3). This
was the only patient without any teeth in the TP group; hence,
this patient demonstrated generally poor mandible metric scores.
The generated AC mandible volume included teeth from the
selected AP contour that were not present in the MC volume.
This suggests a critical anatomical mismatch can lead to poor
AC results with low metric scores for atlas segmentation. In a
similar sense, six CT image series in this study were taken with
the patients’ mouth open. However, in no atlas segmentation
process were these images selected to produce AC of the TP.
As a related test, one of the open-mouth APs was removed
from the atlas library (n = 100) and replaced with one of the
original TPs. CT image series of the open-mouth patient were
then used as a TP for atlas segmentation with atlas library n =

100. The resulting AC was generated with closed-mouth AP
CT and contours, resulting in a very poor AC (Figure 5). In
this respect, it could be useful to create different atlas groups
categorized by different poses and shapes to produce more
accurate AC volumes.

The author would also like to denote that a future study
is required to validate the difference in performance when
STAPLE algorithm is implemented. In the early stage of this
study, with n = 20 atlas library, MV and STAPLE algorithms
were both tested. However, we decided to stay with one
algorithm due to insignificant difference in performance
between STAPLE and MV algorithm when the scores
were compared.

Our initial question regarding the optimal number of APs
in an atlas library stays unclear. We expected the results to
converge to better metric values as n increased; however, as
shown in Figure 4, this did not occur. In contrary to the
prevailing notion, our results showed that it is not necessarily
true to have better results with increasing number of AP in
the atlas library. Unlike the increase in performance between
n = 20 and n = 60, the difference in the performance does
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not vary drastically in the larger atlas libraries and hence it
is hard to expect a huge improvement of performance in
larger atlas libraries. We come up with a hypothesis that it is
not necessarily the size of the atlas library which matters in
the resulting contours, but it might be dependent upon the
quality of the CT images of the subjects or the quality of the
relevant contours. Furthermore, the optimal size of the atlas
library may be different for different organs at risk depending
on the data base APs. It is crucial for different institutions
to carry out independent research of the optimal number of
APs in atlas library when building atlas library for atlas-based
auto segmentation. In this sense, the resulting ACs from the
study were considered a time-saving approach to produce auto-
segmentation. Furthermore, the ACs require further manual
inspection and correction by experienced clinicians before actual
use in treatment planning.

A validation procedure is required to determine if
robust performance can be achieved with other normal
organs. A similar study must be conducted with target
volumes to measure performance. If these results can be
validated, further studies will be necessary to determine
methodologies to achieve better performance of ABAS.
Additional studies are required to determine the effects
of heterogeneity and variations in anatomic features of
APs within the atlas library. Moreover, with the growing
popularity of the application of machine learning and
deep learning techniques in a wide array of fields, the
quality of automatic contouring methods may undergo
further development with the implementation of these new
techniques (17).

CONCLUSIONS

We successfully evaluated the commercial atlas-based
segmentation for mandible and thyroid in the head and
neck region, owing to the complexity and time-consuming
effort involved in manual delineation. With a cohort of 110
patients, we were able to determine the optimal number of
subjects for our clinic; moreover, we discovered some interesting
practical points in atlas-based automatic segmentation, such as
the need for individual automatic segmentation in relation to
organ positions or anatomical differences. Commercial software
is not optimized for individual clinics; moreover, every clinic
has different concepts for OAR and target delineation. The
evaluation of the optimal size of atlas library for atlas-based
segmentation should thus be performed in each clinic and for
each treatment site before clinical use.
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