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Tumor initiating stem cells (TISCs) are a subset of tumor cells, which are implicated in

cancer relapse and resistance to chemotherapy. The metabolic programs that drive

TISC functions are exquisitely unique and finely-tuned by various oncogene-driven

transcription factors to facilitate pro-cancerous adaptive challenges. While this change

in TISC metabolic machinery allows for the identification of associated molecular

targets with diagnostic and prognostic value, these molecules also have a potential

immunological application. Recent studies have shown that these TISC-associated

molecules have strong antigenic properties enabling naïve CD8+T lymphocytes to

differentiate into cytotoxic effector phenotype with anticancer potential. In spite of

the current challenges, a detailed understanding in this direction offers an immense

immunotherapeutic opportunity. In this review, we highlight the molecular targets that

characterize TISCs, the metabolic landscape of TISCs, potential antitumor immune cell

activation, and the opportunities and challenges they present in the development of new

cancer therapeutics.
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INTRODUCTION

Drug resistance remains a major challenge in long-term therapeutic success of cancer patients (1).
Current anticancer therapies target rapidly dividing cells with the assumption that cancer cells
divide at a rate 100–1000 times higher than the normal terminally differentiated cells. Considerable
debate exists to explain for the reason behind acquiring the tumorigenicity and heterogeneity of
otherwise normal cells. Two non-mutually exclusive theories are well acknowledged in the cancer
research field to explain for the tumor heterogeneity (2, 3). One theory proposes the idea that
a normal cell becomes a cancer cell due to an acquired or inherited genetic change (referred to
as a mutation) giving rise to a clone of cancerous cells. This clone further accumulates genetic
changes from environmental or other injuries (second-hit) leading to the evolution of multiple
clones, of which, only a few, due to selection pressure and/or due to their ability to escape
host immune destruction, ultimately develop into full-fledged cancer. This selection pressure on
multiple subclones explains for the tumor heterogeneity (4). Yet another theory, advances an idea
that tumors arise from otherwise quiescent progenitor stem cells with a cancer-initiating capability
(referred to as tumor initiating stem cells [TISCs]) and upon appropriate external stimulus or an
epigenetic change a subset of these stem cells transform to develop full cancers. This proliferative
ability leads to expression of markers at various phases of the progression of the stem cells and thus
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explaining for the final tumor heterogeneity (5). TISCs have
been identified in several cancers including breast cancer, brain
cancer, and colon cancer (6). TISCs are considered to be resistant
to standard chemotherapeutic regimens and play an important
role in cancer-relapse. As most of the chemotherapeutic agents
target rapidly dividing cells they have minimal effect on quiescent
TISCs. From cancer immunotherapy perspective, it is important
to note that TISCs display unique heterogeneity with expression
of TISC-associated mutated or overexpressed protein commonly
referred to as TISC-associated antigens, which open new venues
of anti-cancer immunotherapy. Further, TISCs have a distinct
metabolic phenotype which leads to overexpression of certain
enzymes which could also be utilized for the development of
targeted effector immune response. In this review, we will discuss
the metabolic phenotypes and molecular suigeneris related with
TISCs, and then, discuss the possible application of these
molecular targets in the development of vaccine and cell based
anti-cancer immunotherapeutic tools.

PHENOTYPIC DIFFERENCES BETWEEN
NORMAL STEM CELLS AND TISCS

While normal stem cells ([NSCs], such as embryonic stem
cells [ESC] and hematopoietic progenitor cells) and TISCs have
certain similarities, in that both have the ability to self-renew
and differentiate into various organ with histological features,
yet, they both have differences in various genetic, morphological
and phenotypic features (7). Specifically, there is a stark contrast
in the mitochondrial features between NSCs and TISCs, in that
mitochondria of NSCs have a lower DNA copy number, poorly
developed morphology, and minimal oxidative phosphorylation
(OXPHOS) capacity. In contrast, TISCs display increased
mitochondrial mass and mitochondrial biogenesis (8). In spite
of an increased number of mitochondria, TISCs have been
attributed with enhanced glycolytic phenotype, while, terminally
differentiated cells were considered to rely mostly on oxidative
phosphorylation (OXPHOS) (9, 10) for ATP production. Along
with upregulation of glycolysis, TISCs also utilize fatty acid β-
oxidation (FAO) and glutaminolysis (Figure 1) which occurs
through mitochondrial respiration (11). Interesting, the stem
cell features of TISCs such as cell proliferation and migration
were inhibited following chemical inhibition of glycolysis, thus
suggesting that the glycolytic phenotype of TISCs is needed
for their efficient stem-cell functionality (12). When TISCs
remain quiescent, their mitochondrial replication and metabolic
activity is suppressed (13). However, when quiescent TISCs are
subjected to a second-hit by mutation in oncogenes, such as a
targeted mutation in a negative regulator of mammalian target
of rapamycin (mTOR) complex or tuberous sclerosis complex 1
(TSC1) could lead to a colossal enhancement in the proliferation
of TISCs along with upregulation in mitochondrial metabolic
activity as evidenced by increase mitochondrial number per
cell, elevated production of reactive oxygen species (ROS) and
OXPHOS activity eventually leading to tumor relapse (14). These
multiple pieces of research evidence suggest that the malignant
transition of TISCs from a quiescent to a cancerous state

relies on a metabolic switch from glycolytic to mitochondrial-
mediated OXPHOS phenotype (15). In addition, modulations
in the expression of oncogenic transcription factors, such as
Sox2, Oct4, c-Myc, and Klf4, also noted in NSC mediated
somatic cell differentiation, are associated with the development
of teratomas in murine orthotopic transplant models (16).
These data suggest that there is significant overlap in the stem
cell signaling mechanisms between somatic cell differentiation
and carcinogenesis.

UNIQUE METABOLIC CHANGES IN TISCS

A metabolic comparison between NSCs and TISCs demonstrate
that TISCs have elevated Warburg-like glycolytic metabolism
with increased glucose consumption, lactate production, and
ATP synthesis (17). Research in this area suggests that
elevated expression of oncogenes, such as Myc expression,
plays a critical role in stem cell functionality and the
glycolytic metabolic footprint in some breast cancers (18). A
metabolic switch from OXPHOS to glycolysis is noted in TISCs
obtained from CD44+basal-like triple negative breast cancer
(19). A similar shift to glycolytic metabolism was noted in
CD133+TISCs obtained from radio-resistant nasopharyngeal
(20) and hepatocellular carcinomas (11). Interestingly, treatment
with an inhibitor of glycolysis, 3-bromopyruvate, decreased the
stem cell-like functionality and made them more amenable to
gemcitabine mediated cytotoxicity in aldehyde dehydrogenase
(ALDH) enriched in TISCs obtained from pancreatic ductal
adenocarcinomas (21). However, in contrast, CD133+TISCs
isolated from certain kinds of glioblastomas and pancreatic
cancers displayed an OXPHOS metabolic preference over
glycolysis for ATP synthesis (22). This metabolic switch to
OXPHOS in TISCs obtained from glioblastomas was shown to be
mediated by a growth factor modulating protein, IMP2, which is
a known direct enhancer of gene expression in mitochondria and
stem-like functionality promoting factors such as CD133, Nanog,
and Oct4 (23). Similarly, a metabolic switch to OXPHOS in
TISCs from pancreatic cancers was mediated by the upregulation
of the transcription factor, PGC-1 α (peroxisome proliferator-
activated receptor-γ coactivator-1α) (24). These data suggest that
while glycolysis seems to be preferred in TISCs, certain metabolic
variations do occur based on the stage and type of cancer which
require further study to delineate the molecular bases of these
variant metabolic phenotypes.

In the tumor microenvironment, tryptophan metabolism
mediated by indoleamine 2,3-dioxygenase (IDO) has a critical
immunoregulatory role leading to tumor tolerance. The IDO
pathway exerts an immunological role by controlling (inhibiting)
inflammation, along with induction of the tolerogenic arm of
adaptive immune responses in the tumor milieu. Upregulation
of IDO depletes the essential amino acid tryptophan leading to
activation of the stress-response kinase GCN2, which is a critical
molecule involved in sensing amino acid withdrawal (25). GCN2
activation in T cells can inhibit their proliferation, and can skew
naive CD4+T cells toward differentiation into a Treg phenotype.
In addition, IDO produces the soluble factor, kynurenine,
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FIGURE 1 | Interplay between TISC metabolism and overexpression of potentially immunogenic antigens. The TISC-associated metabolism enhances the expression

of enzymes which offer molecular targets for development of anti-TISC vaccines. Schematic representation of the metabolic switch toward OXPHOS, FA synthesis,

and glutaminolysis in TISCs. Upregulated enzymes and pathways are indicated in red. HK2, hexokinase-2; PK, pyruvate kinase; GDH, glutamate dehydrogenase;

GLS, glutaminase; ACACA, acetyl-CoA carboxylase; FASN, fatty acid synthase; ALDH1A1, aldehyde dehydrogenase-1A1.

which binds to and activates the aryl hydrocarbon receptor
(AhR). Activation of the AhR pathway promotes Treg cell
differentiation, and could also induce macrophage polarization
to immunosuppressive M82 phenotype. In several small animal
cancermodels, IDO, which is expressed by tumor cells, was found
to stimulate recruitment of Tregs, resulting in the impairment
of immune surveillance (26, 27). The use of IDO inhibitors
to decrease the overall accumulation of Tregs and enhance
tumor regression is an area of intense research in all solid-
organ cancers. While enhanced IDO expression was noted in
mesenchymal stem cells (28), a similar enhanced expression with
downstream immunosuppressive effect is yet to be established
in TISCs.

Fatty acid metabolism is an alternative source of energy
production used by TISCs. Studies by Wang et al. showed
that the lipid metabolism via fatty acid oxidation (FAO) is
controlled by the JAK/ STAT3 pathway, which in turn supports
breast TISCs and their resistance to conventional chemotherapy
(29). These data strongly suggest that JAK/STAT3 pathway
inhibition not only affects the self-renewal abilities of breast
TISCs, but also blocks the expression of many genes involved
in lipid metabolism, such as carnitine palmitoyl transferase
1B (CT1B). Fatty acid oxidation is also known to play a
crucial role in maintaining hematopoietic stem cells (HSCs) and
memory functionality of CD8+ T cells (30). Therefore, FAO

inhibition in HSCs has a direct negative impact on their stem
cell functionality, whereas, in T cells, this inhibition prevents
their phenotypic differentiation (31). These reports suggest that
the FAO pathway prioritizes TISC survival over rapid cell
proliferation and cancerous differentiation.

IMPACT OF TUMOR
MICROENVIRONMENT ON TISCS

The TISCs are further regulated by pro-survival molecules
released by other tumor and immune cells in the tumor
microenvironment (TME). Hypoxia in the TME seems to
be a strong promoter of TISC activity. Various studies have
demonstrated that hypoxia in the TME induces expression of
HIF-1α, which in turn mediates enhanced expression of down-
stream transcription factors with stem-like functionality such
as Oct4 and Notch signaling molecules (32, 33). Further, high
densities of cancer-associated fibroblasts (CAFs) are also known
to promote tumor growth and metastasis (34). A subset of
TISCs, CD44+CD90+TISCs, which have been shown to be in
direct contact with CAFs in breast cancers are thought to have
enhanced tumor invasive functionality (35). Similar metastatic
effect was also shown by TISCs following interaction with tumor
residing stromal cells in pancreatic cancers (36). Furthermore,
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in the TME, the interaction of TISCs with stromal cells is
suggested to induce epithelial-mesenchymal transition (EMT)
resulting in tumor proliferation and metastasis (37). Acquiring
EMT properties is a well-known precursor of TISC-induction
and cancerous differentiation through upregulation of common
pro-cancerous signaling pathways such as the Wnt-signaling
mechanism (38, 39). Further, on metabolic front, Wnt-signaling
is shown to promote glycolysis and FAO pathways through
inhibition of pyruvate dehydrogenase kinase (PDK1), along
with upregulation of enzymes such as pyruvate carboxylase,
alcohol dehydrogenase, acetyl-CoA carboxylase, and fatty acid
synthetase, all of which are associated with the promotion of
TISC-mediated EMT (40, 41).

Establishing blood supply to provide oxygen and nutrients is
imperative to tumor growth and proliferation. This process of
tumor angiogenesis is facilitated by active recruitment of pro-
angiogenic endothelial progenitor cells (42). Research on TISCs
obtained from glioblastomas have demonstrated that these TISCs
have a potential to differentiate into pro-angiogenic endothelial
cells potentially leading to vascularization of these tumors.
Molecular mechanistic studies have revealed that enhanced
expression of vascular endothelial growth factor (VEGF) by
tumor cells leads to differentiation of these TISCs into endothelial
progenitor cells (43). Further, the cytokine, interleukin-6 (IL-6),
is known to induce vascularization in tumors. Inhibition of IL-
6-mediated vascular response by inhibition by IL-6 shRNA and
IL-6-receptor blocking by tocilizumab demonstrated inhibited
cancerous differentiation and growth by CD44+ALDH+TISCs
obtained from head and neck squamous cancers (44).
These observations suggest that TISCs have angiogenic
potential by their ability to differentiate into pro-angiogenic
endothelial cells which could be utilized as a therapeutic
intervention strategy.

POTENTIAL IMPACT OF TISC-METABOLIC
PHENOTYPE ON INNATE IMMUNE
RESPONSES

Natural killer (NK) cells play a critical role in innate effector
immune responses and tumor immune surveillance. While NK
cells exert cytotoxicity of tumor cells their effect on anti-
TISC immune responses remains undefined. The TISCs have
a paradoxical effect toward induction of immune responses.
In general, stem-cells, such as TISCs and NSCs, have an
inherent immunosuppressive functionality. The TISCs due
to their inherent stem-cell functionality have the ability
to evade cytotoxic innate and adaptive immune responses.
However, in contrast, due to the expression of unique
TISC-associated antigens, TISCs could be immunogenic. This
intriguing paradoxical effect poses both a challenge and an
opportunity toward development of TISC-based anti-cancer
immunotherapeutic strategies. A recent study by Ames et al.,
utilizing orthotopic human tumor implants in immunodeficient
murine cancer models, have suggested that NK cells due to their
ability to home into non-dividing cells could preferentially target
TISCs (45). The authors have utilized the TISC-associatedmarker

ALDH1 to sort stem cells from pancreatic, breast and sarcoma
cancer cell lines. The results from this study demonstrated
that NK cells co-cultured with these ALDH1 sorted cancer
stem cells exerted their cytotoxicity upon ALDH1high cells more
effectively than the ALDH1low ones. This preferential targeting
was further confirmed on human tumor specimens in single-cell
suspension and allogeneic NK cell co-treatment. Based on the
molecular mechanistic studies performed in these experiments,
the authors conclude that TISCs due to their enhanced surface
expression of NKG2D ligands (MICA/B) were able to activate
NKG2D receptors resulting in the final NK cell cytotoxic
functionality against TISCs. Similar evidence was obtained from
other laboratories with studies on TISCs obtained from human
colorectal cancers (46). However, in contrast to the above
findings, studies with CD133+ brain TISCs demonstrated no
significant expression levels of NK cell activating ligands (MICA
and MICB), and thus making these glioma TISCs resistant to
NK cell-mediated elimination (47). Along these lines, Wang
et al., have reported that, in human breast TISCs, aberrant
expression of oncogenic miR-20a caused a downregulation of the
expression of NKG2D ligands (MICA/B) and eventually resulted
in a decreased activation of NK cell receptor NKG2D receptors
resulting in possible immune escape of these breast TISCs from
NK cell mediated tumor cytotoxicity (28). These data suggest that
TISCs probably due to their immature cell differentiation status
are not amenable to innate immune mediated tumor elimination
response. Taken together, in spite of these conflicting reports, all
these interesting observations could provide a strong platform
for futuristic NK cell-based anti-cancer immunotherapeutic
approaches to eliminate otherwise treatment-resistant TISCs.
Furthermore, currently there is only a minimal understanding of
the molecular correlation between ALDH1, a protein associated
with TISC-associated metabolism, and expression of NKG2D
ligands (MICA/B) in TISCs. Mechanistic studies in this direction
could shed better light on the potential success of NK cell
based immunotherapy.

The immune system due to its double-edged sword nature
could exert either inhibitory (tolerance) or stimulatory
(cytotoxic) responses on tumor progression. Although,
macrophages, due to their phagocytic functionality, are
generally considered part of the innate-arm of immunity,
tumor infiltrating macrophages display unique two-dimensional
plasticity to polarize into two apparently opposite phenotypes
(48). While tumor infiltrating macrophages (TAMs) under
the influence of various cytokines and chemokines in the
TME differentiate into anti-tumor M81 or pro-tumor M82
phenotypes, it is well-recognized that most TAMs display the
immunosuppressive M82 phenotype. Cancer cells induce a
M82 phenotypic polarization resulting in the secretion of
anti-inflammatory and pro-angiogenic cytokines such as, IL-10
and VEGF, which also drive TISC self-renewal by activating
cell growth and angiogenesis-related signaling pathways (49). It
has been shown that hypoxia in the tumor microenvironment
preferentially upregulates OXPHOS and FAO metabolic
pathways in the M82 TAMs (50, 51). This causes accumulation
of metabolic bi-products such as glutamine, α-ketoglutarate,
and succinate resulting in activation of the HIF-1α-mediated
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cell-self-renewal signaling pathway which is also shown to be
critical in TISC functionality (52). Further, TAMs have also been
shown to directly enhance carcinogenesis and TISC-dependent
chemoresistance through STAT3 transcription factor activation.
Other studies have shown a mutually symbiotic relationship
between TISCs and M82 TAMs, in that TISCs were considered
to play an active role in M82 polarization resulting in inhibition
of antigen presentation and anti-tumor cytotoxic CD8+T cell
responses (53).

TISC-ASSOCIATED ANTIGENS

The ability of a host to recognize TISCs as non-self and mount
an efficient effector immune response would be critical for the
development of novel TISC based immunotherapeutic strategies.
Antigen expression is essential for recognition by naïve T-
lymphocytes and efficient induction of a CD8+T lymphocyte
(CTL) response (54). Unique antigen expression profiles in TISCs
have been reported in several malignancies. TISC-associated
antigen profiles (Figure 2) could be a result of either over-
expression of antigen, expression of a differentiation antigen,
or mutation of normal somatic protein resulting in neo-
antigens (55). As TISCs are immature forms of cancer cell
differentiation, the differentiation antigens are not generally
considered as suitable targets for the development of TISC-
associated immunotherapeutic strategies. TISCs express several
overexpressed antigens, such as CEP55, COA1 etc., which are
also over-expressed in normal stem cells (56, 57). Although all
over-expressed antigens might not be strong immunotherapeutic
targets, certain other types of overexpressed antigens, such
as ALDH1A1 (58), survivin, livin, and Bcl-2 (59, 60), have
been reported in TISCs. These antigens while ubiquitous and
expressed in minimal quantities in normal organs, are over-
expressed in TISCs and play a critical role in tumorigenesis.
Along with this, organ-associated over-expression of antigens
such as, hTERT in CD44+ breast cancer TISCs (61), HER2
proto-oncogene in glioma TISCs (62), CEP55, and COA-1 (63)
in colon TISCs is well-established. These overexpressed antigens
could be novel targets for the development of TISC-associated
immunotherapeutic strategies.

Expression of neo-antigens in TISCs is a result of genomic
DNA mutations resulting in the production of tumor-associated
antigens (64, 65). As the antigenic peptide epitopes of these
neo-antigens are not significantly affected by central T-cell
tolerance compared with non-mutated self-antigens (Figure 3),
these neo-antigens could offer attractive peptide-base anti-
cancer vaccine strategies (66). With the advent of mass
spectrometry and next-generation exome sequencing tools, neo-
antigens are expected to play a critical role in personalized
cancer medicine (67, 68). However, these in silico neo-antigen
identification techniques should be supplemented by extensive
bench-work studies to determine if the mutation resulting
in a neo-antigen is a driver mutation with cell growth
advantage or passenger mutation with no cell growth advantage
(Figure 4). Further, expression of neo-antigens depends upon
the actual transcription and translation of the mutated gene,

thus, limiting the final number of neo-antigens in TISCs and
compromising the potential development of immunotherapeutic
strategies (69).

Activation and differentiation of naïve CD8+T lymphocytes
to cytotoxic effector cells requires efficient loading and
membrane surface presentation of immunodominant epitopes
by HLA class I (70). However, efficient presentation of TISC-
associated antigenic peptides is reduced due to downregulation
of surface expression of HLA class I molecules on mature cancer
cells. This helps TISCs escape host immune surveillance. Loading
of MHC class I molecules with TISC-associated antigenic
peptides requires intact antigen presenting machinery (APM)
comprised of the proteasome complex needed for cleavage of
antigenic proteins, transport of cleaved antigenic peptides into
endoplasmic reticulum (ER) through transporters associated
with antigen processing-1 and−2 (TAP1 and TAP2), further
intra-ER cleavage of peptides to appropriate length to be loaded
on to MHC class I and β2-microglobulin (B2M) complex by
endoplasmic reticulum aminopeptidase associated with antigen
processing (ERAAP), and several chaperone molecules, such as
tapasin, calreticulin, ERp57, and calnexin, needed for efficient
antigenic peptide loading onto MHC class I (71). In contrast
to tumor cells, studies by Chikamatsu et al. report that
CD44+TISCs demonstrated expression levels of the molecules
involved in antigen presentation machinery (APM), such as
LMP2, LMP7, TAP1 etc., equivalent to that of CD44 negative
stromal non-stem cells. These data clearly suggest that TISCs
have the ability to present immunodominant epitopes by HLA
class I molecules and, therefore, could potentially be killed by
TISC-associated antigen-specific cytotoxic response by CD8+T
lymphocytes (CTL) (72). Interestingly, HER2-specific peptide
vaccination reduced ALDH positive breast cancer associated
TISCs inMMTV-PyMTmurine transgenic breast cancer models,
suggesting a potential immunotherapeutic treatment strategy
against treatment resistant TISCs (73). However, there seems
to be varying evidence for the expression of HLA class I
molecules on TISCs based on the tissue origin. For example,
studies on TISCs derived from melanoma demonstrated reduced
HLA class I expression suggesting that HLA class I expression
in TISCs depends on the tumor type (74). Furthermore, even
within the same tumor type, two apparently conflicting reports
came from two different groups. While one research group
showed enhanced HLA class I expression in glioblastoma
multiform (GBM) derived TISCs isolated as sphere-forming
cells, while other research group working on similar GBM
derived TISCs as sphere-forming cells reported lower HLA class
I expression (75). Further, analysis on in vitro 3D cell cultures of
TISCs derived from GBM has demonstrated reduced expression
of immuno-stimulatory CD80 and CD86 molecules, while,
there was an enhanced expression of the immuno-inhibitory
molecule, PD-L1, and secretion of the immunosuppressive
cytokine, IL-10 (76). This immunosuppressive profile of TISCs
might contribute to creating an immune-suppressive tumor
microenvironment resulting in tumor immune escape. The
difference in HLA expression and ability to mount adaptive
immune responses amongst various cancer cell lines could
be from a difference in TISCs isolation methodology and/or
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FIGURE 2 | Overview of the antigens associated to tumors and tumor-initiating stem cells.

FIGURE 3 | Schematic representation of the antigen presentation of neoantigen derived immunodominant epitopes by MHC class I molecules to activate CD8+T cell

against tumor initiating stem cells.

varying organ-associated origin of TISCs which requires
further investigation.

TISC ANTIGEN-BASED VACCINES AND
MONOCLONAL ANTIBODIES

The enzymes overexpressed to mediate TISC-skewed metabolic
pathways are considered to be good antigenic targets for
development of anti-TISC-based immunotherapies. For example,
an isoform of aldehyde dehydrogenase (ALDH1A1) promotes
cell-survival by reducing the intracellular cytotoxic oxidative
damage mediated by oxidation of aldehydes to carboxylic
acids (77). Enhanced ALDH1A1 enzymatic activity was noted
in TISCs obtained from various solid organ tumors. In

addition, ALDH1A1 is considered to detoxify metabolic bi-
products from chemotherapy and thus conferring cancer
resistance in ALDH1A1high cancer cells (78). Dylla et al., have
demonstrated that shRNA based knock-down of ALDH1A1
mRNA significantly increased the chemo-susceptibility of TISCs
obtained from colon cancer to cyclophosphamide therapy
(79). Several groups have demonstrated that ALDH is an
attractive antigenic target for induction of anti-cancer adaptive
immune responses. Visus et al. have utilized immunodominant
epitopes derived from ALDH to generate cytotoxic effector
CD8+T cells specifically against ALDH producing cancer cells
(35, 58). Interestingly, autologous dendritic cells pulsed by
immunodominant epitopes derived fromALDHwere utilized for
in vitro stimulation of patients’ CD8+T cells to activate them into
cytotoxic cells. Similarly, in preclinical immunocompromised
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FIGURE 4 | Overview of TISC-based cancer vaccine design. The TISCs isolated from the cancer patients will be subjected to mRNA-based next generation

sequencing to identify TISC-associated overexpression or TISC-associated non-synonymous somatic mutations. The identified molecular targets will be validated by

in silico prediction algorithms and high throroughput MHC class I binding technologies to rank a list of high-valued candidate epitopes, which are further validated for

their autologous activation of naïve CD8+T cells by IFN-γ ELISpot. These validated epitopes will be utilized by biotechnology companies for development of novel

personalized vaccines and dendritic cell based immunotherapies.

murine cancermodels adoptive transfer of CD8+T cells activated
by ALDH-epitope pulsed dendritic cells reduced the tumor
growth kinetics of human cancer xenografts (80). Taken together,
these data provide compelling evidence for the future utilization
of ALDH as TISC-associated antigenic target to develop novel
peptide and DNA-based vaccine strategies. Further, in vitro
activation of dendritic cells (DCs), by antigenic epitopes
and eventual adoptive transfer of these DCs is considered a
promising anti-cancer vaccination strategy. Phuc and colleagues
reported that breast TISC-associated antigen derived DC vaccine
could lead to migration of adoptively transferred pulsed-
DCs to the spleen and activation of naïve CD8+T cells
and induce anti-tumor cytotoxicity (81). These observations,
although require further study, nevertheless, strongly suggest
the futuristic application of TISC-associated antigen pulsed DC-
based immunotherapy.

A TISC-associated membrane protein, CD44, is a 90 kDa
glycosylated type-1 p-glycoprotein which is involved in several
stem cell-like functions such as self-renewal, cell division, anti-
apoptosis, and distant metastasis (82). Targeting TISCs by
inhibiting CD44 signaling with blocking monoclonal antibodies
(mAb) has emerged as a promising anti-cancer therapy. Seiter
et al., have shown a reduced proliferation and lung metastases
of pancreatic adenocarcinoma in small animal tumor model
following treatment with mAbs against CD44v, a splice variant

ofCD44 (83). Following a similar approach, Jin et al., have
demonstrated that treatment with CD44 mAb specifically
eradicated AMLTISCs in immunodeficient murine cancer model
(84). Further, there was an 80% reduction of BxPC3 pancreatic
tumor xenografts following administration of a humanized
CD44-specific mAb (85). Human clinical trials with anti-CD44
mAb seem like a promising immunotherapeutic approach (86).
Similarly, other surface markers such as CD133, survinin, Her-
2, and CT proteins are targeted by mAbs to promote tumor
regression in various preclinical models.

CONCLUSION

Several TISC-based immunotherapeutic approaches are under
development in various stages of preclinical studies. As outlined
in this review article, a careful and more exhaustive genetic
and metabolic understanding of TISC-associated phenotypes is
critical to develop novel TISC based immunotherapies. Various
components within the tumor microenvironment such as tumor
cells, infiltrating immune cells, and supporting stromal cells
impact the TISC metabolism. This unique metabolic profile leads
to upregulation of certain enzymes and proteins such as ALDH1,
CEP55, IDOCOA1 etc., which can be utilized for development of
vaccine based anti-cancer immunotherapy. Further investigation
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of TISCs and the immunosuppressive phenotype caused by
the tumor microenvironment will provide opportunities to
not only achieve a more comprehensive understanding of
tumor biology but also develop specific medical therapies
to target the weaknesses underlying tumor development and
attack tumor cells in more effective ways. For example, various
preclinical studies have clearly demonstrated that combination
immunotherapies such as vaccines, Treg depletion, or immune
checkpoint blockade, together with chemotherapy have more
profound outcomes compared to conventional chemotherapy
alone. Further, application of novel technologies and high-
throughput platforms would be needed to identify TISC-
associated neoantigens for future development of anti-cancer

vaccine strategies. These TISC-associated strategies could also
be combined with other immunotherapies such as immune-
check-point inhibitor (PD1/CTLA-4) for enhanced anticancer
therapeutic success.
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