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The hallmark of BCR-ABL1-negative myeloproliferative neoplasms (MPNs) is the

presence of a driver mutation in JAK2, CALR, or MPL gene. These genetic alterations

represent a key feature, useful for diagnostic, prognostic and therapeutical approaches.

Molecular biology tests are now widely available with different specificity and sensitivity.

Recently, the allele burden quantification of driver mutations has become a useful

tool, both for prognostication and efficacy evaluation of therapies. Moreover, other

sub-clonal mutations have been reported in MPN patients, which are associated with

poorer prognosis. ASXL1 mutation appears to be the worst amongst them. Both

driver and sub-clonal mutations are now taken into consideration in new prognostic

scoring systems and may be better investigated using next generation sequence (NGS)

technology. In this reviewwe summarize the value of NGS and its contribution in providing

a comprehensive picture of mutational landscape to guide treatment decisions. Finally,

discussing the role that NGS has in defining the potential risk of disease development, we

forecast NGS as the standard molecular biology technique for evaluating these patients.

Keywords: BCR-ABL1-negative myeloproliferative neoplasms (MPNs), myelofibrosis (MF), JAK2 mutations,

calreticulin (CALR), MPL (W515K/L), ASXL1 mutation, High molecular risk (HMR) mutations, next generation

sequencing (NGS)

INTRODUCTION

Myeloproliferative neoplasms (MPNs) are clonal disorders of the hematopoietic stem cell, mainly
characterized by proliferative bone marrow with varying degrees of reticulin/collagen fibrosis,
extramedullary hematopoiesis, abnormal peripheral blood count, and constitutional symptoms that
are secondary to abnormally expressed inflammatory cytokines (1). Among the so-called “BCR-
ABL1-negative MPNs” polycythemia vera (PV), essential thrombocythemia (ET) and primary
myelofibrosis (PMF) are included. However, unlike chronic myeloid leukemia (which is always
characterized by the BCR–ABL1 fusion gene), they have not yet been associated with any specific
genetic abnormalities.

The discovery in 2005 of the JAK2V617F point mutation (2–5) and the subsequent identification
of other specific abnormalities, such as JAK2 exon 12 (6, 7),MPL exon 10 (8–10) and CALR exon 9
(11, 12), gave an improvement in understanding their genetic basis. All of them are now included
in the molecular diagnostic and prognostic algorithms for MPNs, leading to several revisions of the
diagnostic criteria for these diseases. In addition, they are used as markers of disease burden and as
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a measure of assessing response to various therapeutic
interventions that can target the mutant clone.

The MPN driver mutations are often mutually exclusive
and, after the detection of the common JAK2V617F mutation,
generally no further testing is performed. Nevertheless, in recent
years, several reports have suggested that driver mutations indeed
do rarely coexist (13–16), but additional studies are needed to
clarify the clinical implications of double-mutated cases.

Importantly, additional sub-clonal driver and non-driver
mutations in genes such as ASXL1, SRSF2, EZH2, IDH1, and
IDH2, among others, have been identified as being associated
with disease progression (17, 18). A wide choice of techniques
is currently available for the detection of MPN mutations, and
a continuous evolution of molecular diagnostic applications and
platforms is now ongoing.

JAK2
JAK2 is a non-receptor tyrosine kinase, which, upon ligand
binding to specific cytokine receptors, is phosphorylated and
activated, leading to regulation of gene expression involved in
cell proliferation and survival. The JAK2V617F mutation is a G
to T somatic mutation at nucleotide 1849 in exon 14, resulting
in the substitution of valine to phenylalanine at codon 617,
which triggers constitutive activation of downstream signaling
and uncontrolled cell growth (Figure 1A).

V617F mutation in exon 14 of JAK2 gene is present in the
majority of patients with PV (more than 95%) and in 60% of
those with ET or PMF (2–5). Rare insertions and deletions in
exon 12 have been described in 2 to 3% of patients with PV
(6, 7) (Figure 1A). The most widely used method for JAK2V617F
detection is based on allele-specific PCR (2). Quantitative PCR
methods (qPCR) are preferred over qualitative ones because of
greater reproducibility and sensitivity and because of the need of
quantifying the mutated clone in MPN patients.

Actually, V617F allelic burden at diagnosis provides
important prognostic information, being found to be associated
with phenotypic presentation and severity of MPNs (19–21), the
risk of thrombotic events (20, 22) and progression to secondary
myelofibrosis (MF) (23, 24). In particular, in PMF patients
JAK2V617F mutation is associated with clinical characteristics
which include older age, higher hemoglobin level, leukocytosis,
and lower platelet count (20; (25) and a low JAK2V617F allele
burden may represent a favorable prognostic factor (26). With
regards to PV, a higher JAK2V617F mutant allele burden has
been associated with more frequent thrombotic complications
(20), pruritus and fibrotic transformation (27). Moreover, V617F
allelic burden measured during the follow-up is currently used
in the course of treatment with alpha-interferon and JAK1/2
inhibitors (28–30), as well as for minimal residual disease (MRD)
evaluation after allogeneic stem cells transplantation (31). In
fact, although the ideal therapy should be able to eradicate the
malignant MPN clone, this aim has not been reached with the
current available treatments in contrast to the striking efficacy
of tyrosine kinase inhibitor monotherapy in chronic myeloid
leukemia (32).

Several quantitative methods have been developed in the
years, most of them based on real-time allele-specific PCR, with

sensitivity ranging from 0.05 to 1%, and specificity of 100%
(33–36). Digital PCR (dPCR) has also been proposed with the
aim to achieve an absolute quantification of the target gene
without the need for a standard curve, with comparable or
higher performances compared to qPCR (37–39). Recently, Next
Generation Sequencing (NGS) has been shown to allow the
detection of the V617F mutation with comparable performances,
but weaker sensitivity to qPCR, with the advantage of detection
of new potentially pathogenic JAK2 variants (40).

Regarding JAK2 exon 12 variants detection, different
approaches can be adopted; Sanger Sequencing (SS) is the most
frequently used because of the rarity and heterogeneity of these
mutations (41, 42). Nested High-Resolution Melting (HRM)
curve analysis has been proposed as highly sensitive screening
method eventually followed by SS for the precise characterization
of the mutation (36, 43).

MPL
Themyeloproliferative leukemia virus oncogene (MPL) is located
on chromosome 1p34 and encodes for the thrombopoietin
(TPO) receptor, thus assuming a crucial role in the regulation
of megakaryocyte growth and survival. In 2006, a somatic
activating mutation in exon 10 of this gene, MPLW515L,
was described in JAK2V617F-negative ET/PMF (44, 45). This
mutation is characterized by a G to T transition at nucleotide
1544, resulting in a tryptophan to leucine substitution at codon
515 of the transmembrane region of MPL, inducing constitutive
activation of the TPO receptor in a cytokine-independent fashion
(Figure 1B).

Activating mutations in MPL are reported in ∼5–10% of all
PMF patients and 1–4% of those with ET (44–46). All of them
cluster in exon 10 and in the majority of cases affect a tryptophan
in position 515 (W515L, W515K, W515A, and W515R).

The methods applied for the detection of MPL mutations
can be grouped according to different strategies: targeted
identification of specific mutations or sequencing of the entire
exon 10. Targeted analysis include allele-specific PCR, allele-
specific qPCR and Amplification Refractory Mutation System
(ARMS)-PCR; among them qPCR displays the highest sensitivity
(0.1–0.5%) (8, 9, 47–49). A multiplexed allele-specific PCR assay
for the four most frequent MPL exon 10 mutations (W515L,
W515K, W515A, and S505N) has been developed, with 100%
specificity and 2.5% sensitivity (50). Analysis of the entire exon
10 allows the detection of all the known and potentially new
mutations and can be achieved by SS, pyrosequencing or HRM
curve. The sensitivity of these approaches is lower, reaching 2–5%
for the latter method (10, 51).

Calreticulin
Calreticulin (CALR) mutations were reported for the first time at
the end of 2013 (11, 12). These mutations represent the second
most common genetic abnormality in MPNs after JAK2V617F,
even though they are absent in PV patients. On the other
hand, CALR mutations partially addressed the molecular gap in
JAK2/MPL-unmutated ET and PMF patients, accounting for 20–
25% of the overall somatic mutations. The remaining cases (i.e.,
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FIGURE 1 | (A) Schematic representation of structural domains of the JAK2. FERM indicates 4.1 Ezrin, Radixin, Moesin domain; JH1 and JH2 signal (JAK Homology

1 and 2) domains refer to tyrosine kinase and pseudo-kinase domains, respectively. SH2 indicates Src Homology 2 domain. Numbers represent amino acid positions

within the JAK2 protein: red indicates V617F mutation, in black other SNP mutations and in blue the region for insertions/deletions. (B) Structural domains and

mutations of the MPL. Extracellular domain indicates NH2 amino terminal region, TM transmembrane domain and CD cytoplasmic domain. Dashed lines highlights

exons reported mutations of MPL. W515L or W515K are indicated in red while the others hot spots variant mutations in black. Numbers represent amino acid

positions. (C) Structural domains of CALR protein. CALR includes NH2 domain (N-Domain) and Proline-rich domain (P-Domain) with chaperone lectin-like function.

COOH domain (C Domain) has aminoacids responsible for Ca++-buffering. Arrow indicates Type I (deletion) or Type II (insertion) alterations that determine loss of

KDEL aminoacids and generation of a new tail with low calcium buffering.

negative for JAK2, CALR, andMPL) are termed “triple-negative,”
representing the 5–10% of all BCR-ABL1-negative MPN patients.

CALR is a multi-functional Ca2+ binding protein with
chaperone activity mainly localized in the endoplasmic
reticulum. The localization and retention of CALR are defined
by the N-terminal signal sequence and the C-terminal ER-
retention sequence KDEL (Figure 1C). It is involved in
numerous intracellular (cytoplasm and nucleus), cell surface,
and extracellular functions such as protein quality control,
calcium metabolism, immune response, phagocytosis, cell
adhesion and others (52). CALR mutations were phenotypic
drivers in the pathogenesis of MPNs (53). Recently, studies
concerning the role of CALR mutated proteins demonstrated
that they are able to bind to the MPL receptor inducing JAK-
STAT activation and the positive aminoacid charge of the mutant
C terminus is required to mediate this interaction (54–57).

More than 50 different CALR mutations have been described
so far, with type 1 (L367fs∗46) resulted from 52-bp deletion
and type 2 (K385fs∗47) from 5-bp TTGTC insertion accounting

for ∼80% of all the cases. More type 1 (53%) than type 2
(32%) abnormalities are found in MPN patients (11), whereas
the remaining cases are classified as either type 1-like, type 2-
like, or “other type,” based on their structural similarities to the
classical mutations. Their distribution is 57% type 1(-like) and
39% type 2(-like) in ET and 83% type 1(-like) and 15% type 2(-
like) in PMF (58). All these abnormalities frequently consist of
insertions or deletions involving exon 9 of the gene, generating
a frameshift to a unique alternative reading frame; it results
in a novel C-terminus peptide sequence enriched for positively
charged residues. Furthermore, the mutated protein lacks the
KDEL signal, leading to a partial dislocation of CALR from the
endoplasmic reticulum (11).

In PMF patients the favorable prognostic impact is limited to
CALR type 1/type 1-like mutations, whereas type 2/type 2-like
are associated with a worse prognosis, similar to that of JAK2-
positive patients (59). On the contrary, in ET CALR type 1 and
type 1-like mutations are associated with an higher risk of MF
transformation (58).
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As previously published for JAK2 mutations, association
between CALR mutation allele burden and disease phenotype
has been reported (60, 61). In particular, an association between
CALR allele burden, leukocyte and platelet counts, hemoglobin
and lactate dehydrogenase levels was described. Furthermore,
the median CALR allele burden remained steady over time;
interestingly, differently from JAK2-positive cases, acute myeloid
leukemias (AML) evolving fromCALR-mutantMPNs commonly
maintained their mutational profile (61). Additional studies
are needed to better clarify the CALR mutant allele burden
clinical implications.

Given their high frequency in MPNs, screening for CALR
mutations is recommended in all JAK2V617F-negative patients
with suspected ET or PMF (36, 62, 63). Several methods have
been proposed to detect CALRmutations, including SS, fragment
length analysis, real-time qPCR, HRM, ddPCR, pyrosequencing
and NGS (64–69). Due to the heterogeneity of CALR insertions
and deletions detected, direct SS is considered to be the primary
method of testing. Indeed, SS of exon 9, providing specific
sequence change information, allowed to identify the exact type
ofCALRmutation and detailed procedures, described in previous
publications, were the most used conditions in diagnostic routine
screening laboratories.

Role of Next-Generation Sequencing
in MPNs
Nowadays, NGS has played an important role in understanding
the genetic alterations of different human cancers. There are
several number of available NGS platforms using different
sequencing technologies, which perform sequencing of millions
of small fragments of DNA in parallel (70). Nevertheless, different
sequencing chemistry and methods for signal detection, the
obtained results are comparable. Bioinformatics analyses are used
to piece together these fragments by mapping the individual
reads to the human reference genome.

This method provides several advantages compared to
different sequencing methods. First of all, NGS is a high-
throughput method as it detects concomitant mutations in the
same run. Then, the analysis requires low input of DNA/RNA
sample as compared to traditional sequencing methods (e.g.,
SS or Pyrosequencing). Moreover, NGS discriminates genomic
aberrations, which are screened simultaneously, such as
single/multiple nucleotide variants (SNVs), small and large
insertions and deletions (ins/dels) and copy-number variations
(CNV) with high sensitivity and accuracy, so reducing data
analysis and clinical reporting time (Table 1) (70).

In the last few years, NGS have been applied to many
hematological disorders such as for establishing T-cell
clonality, recurrent cytogenetic translocations and prognosis
of Philadelphia chromosome-positive acute lymphoblastic
leukemia (ALL) (70). In addition, NGS approaches can be used in
diagnostic samples to understand the possible evolution of MRD
in clonal IGH and TCR rearrangements in lymphoproliferative
disorders (71). A comparison study between the most common
technologies used to lymphoproliferative disorders, underlined
that NGS method was able to identify mutant or clonal DNA in

few tumor circulating cells. For this reason, NGS may be used to
improve MRD in post-therapy monitoring (72).

In MPNs, it was demonstrated that JAK2 V617F allele burden
identified patients with different clinical course: in PV and in
ET, variant allele frequency of JAK2 V617F, was associated with
a higher ratio of fibrotic transformation. In patients in PMF high
variant allele frequency was correlated to recurrent thrombosis
event, while low variant allele frequency was associated to short
leukemia-free survival and overall survival, probably due to
acquisition of additional driver mutations. In fact, new NGS
panels are used as predict methods to describe alterations of
several genes involved in transcriptional regulation and cell
signaling pathways (Table 2). These information can be used
to predict the risk leukemic transformation, to guide target
treatment and to speculate a personalized clinical trial (32, 73,
84). Using the high sensitivity and specificity of NGS technology,
several groups analyzed and deeply studied the genetic and
molecular profile of MPN subjects, with the aim of assessing
not only non-driver mutations, but also infrequent variants of
driver mutations (Table 2). In MPN patients negative for JAK2,
CALR, andMPL (triple-negative, TN), mutations in LNK, TET2,
DNMT3A, IDH1/2, CBL, and ASXL1 genes but also atypical
mutation in MPL (S204P) have been identified (83, 85). In this
contest, Chang et al. identified 30 missense mutations in 12 of
16 triple-negative MPN patients. In particular, in this study NGS
platform was able to identify low allelic burden and atypical
mutations of JAK2 (JAK2V626F and JAK2F556V) and MPL
(MPLS204P andMPLY591N) (86).

Furthermore, Cabagnols et al. noticed that an atypical
mutation of MPL (MPLS204P) was associated with other
alterations in ASXL1 and SRSF2 genes. The subjects with
more than one alteration were classified as myelodysplastic
syndrome (MDS) with thrombocytosis rather than ET. The
MPLS204P is a weak gain-of-function mutation that induces
constitutive STAT activation andmore prolonged ligand-induced
STAT phosphorylation than wild-typeMPL, whileMPLY591N is
associated with MPLW515A and in a mouse model induced a
more aggressive MPN behavior than that associated with a single
MPLY591N mutant (87).

Additionally, applying NGS methodology on a group
of 197 MPN patients, Lundberg et al. observed several
alterations concerning genes involved in DNA methylation
(TET2, DNMT3A, IDH1) and chromatin structure (EZH2,
ASXL1) regulation. Moreover, they analyzed the impact of
somatic mutations on clinical outcomes and found that the
concomitant somatic mutations in TP53 or TET2were correlated
to both reduction of overall survival (OS) and increased risk of
leukemic evolution (88). Also Agarwal et al., using a customized
26-gene NGS panel in a series of 171 MPN patients, highlighted
that alterations in ASXL1, EZH2, and IDH1/2 were associated
with an increasing risk of disease progression and a shorter OS
in both ET and PMF patients. In this work the authors found that
among JAK2-mutated patients, 88% of subjects presented a single
JAK2 mutation while the remaining 12% showed additional
mutations in TET2, ASXL1, and SF3B1 genes.

Finally, very recently Grinfeld et al. (89) sequencing
coding exons from 69 myeloid cancer genes in a large and
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TABLE 1 | Comparison of Real Time PCR, Digital PCR, SS, and NGS technologies in clinical molecular diagnostics.

Benefits Critical points Sensitivity

Real time PCR Detection of known mutations

Validated Methods

High input of DNA/RNA

No simultaneous screening of multiple genes in multiple samples

1%

Sanger sequencing Detection of known and unknown mutations

Validated methods

High input of DNA/RNA 10–20%

Digital PCR Low input of DNA/RNA

Detection of known mutations

Cost-effective for rapid genotyping e monitoring

No simultaneous screening of multiple genes in multiple samples 0.1–1%

NGS Low input of DNA/RNA

Massively parallel sequencing

Decreased sequencing cost/gene

Detection of known and unknown mutations

Simultaneous screening of multiple genes in multiple samples

Validation studies require

High-complexity workflow and analyzing results

Genome data analysis is time-consuming

1%

PCR, Polymerase Chain Reaction; SS, Sanger Sequencing; NGS, Next Generation Sequencing.

representative series of 2035 MPN patients, identified different
genetic subgroups with distinct clinical phenotypes, including
blood counts, risk of leukemic transformation, and event-free
survival. Integration of 63 clinical and genomic variables
allowed the authors to develop a prognostic model (https://
cancer.sanger.ac.uk/mpn-multistage/) capable of generating
personally tailored predictions of clinical outcomes in MPN
patients, even within individual categories of existing prognostic
schemas. In particular, they identified a first subgroup with
TP53 disruption or aneuploidy characterized by a poor
outcomes and high risk of transformation to AML; a second
subgroup with chromatin or spliceosome mutations that
showed an increased risk for transformation to MF and shorter
event-free survival. Patients who are not included in these
two subgroups were defined according to their dominant
phenotypic driver mutation and were the following: patients
with CALR, MPL, heterozygous JAK2, and homozygous JAK2
or NFE2 mutations. The remaining two subgroups included
instead patients with no detectable driver mutations and
those with additional driver mutations not identified in the
other six subgroups. Thus, the model provides considerable
discriminatory power that accurately generalizes to other
real-world cohorts.

Focusing on CALR-mutated cases, 56/62 (90%) of subjects
showed single mutation in CALR gene while 10% had additional
mutations in TET2 and ASXL1 (CALR type 1 mutations
were more represented in this cohort of patients than type
2 mutations). On the contrary, no additional mutations were
noticed in MPL-mutated patients (90). In addition, Song et al.
analyzed 135 MPN patients by NGS and found that JAK2,
ASXL1, and TET2 were frequently mutated in PMF, PV, and
ET; interestingly, the comparison between mutational and
cytogenetic profiles identified a possibility role in triaging and
guiding different treatments (91).

Different studies have demonstrated the utility of NGS
technologies to analyze the genetic profiles in AML patients. This
technique is applied not only to study primary but also secondary
AML, a heterogeneous group of disorders arising from MDS or
MDS/MPN. In fact, secondary AMLs are characterized by several
cytogenetic abnormalities and genetic alterations. In particular,
Hussaini et al. (92), examining 187 subjects with a diagnosis

of AML, highlighted the frequency of related-gene mutations,
where ASXL1 was the highest mutated gene, followed by TET2,
RUNX1, DNMT3A, TP53, IDH2, NRAS, FLT3, and NPM1.
Moreover, NGS analysis identified co-mutated genes (ASXL1
with RUNX1 or TET2 or NRAS) and was able to discriminate
somatic mutations associated with MDS/AML.

The prognostic impact of certain co-occurring mutations has
been associated with MPNs disease progression as well as with
the development of secondary AML (74, 93). Accordingly, the
value of NGS at present lays also in the risk stratification of
leukemic evolutions, in particular in critical and difficult cases,
thus guiding treatment decision. In this respect, in PMF patients
ASXL1 seems to be the worst sub-clonal mutation (25, 45).
Indeed, the presence of this mutation or any other among
SRSF2 and IDH1/2 gives a High Molecular Risk (HMR) to the
patient and is included in the Mutation-Enhanced International
Prognostic Score System (MIPSS70) and MIPSS70-plus, where
the number of HMR mutations is also weighted together with
driver mutation status and clinical data. The presence of two or
more HMR mutations has been associated with highly adverse
prognosis and rapid leukemic transformation (75, 76). The
association of HMR andworse prognosis has also been confirmed
in a retrospective series of elderly MF patients (77). Similarly, in
the Genetically Inspired Prognostic Scoring System (GIPSS), only
the molecular features are taken into consideration and IDH1/2
are substituted by U2AF1 mutations (78). In the same way, in
ET and PV patients IDH2, U2AF1, EZH2, TP53, SH2B3, and
SF3B1 mutations were all reported to give an adverse prognostic
value (93).

Finally, somatic mutations with frequency ranging
from 10 to 20% have been described in elderly subjects
without any clinical evidence of myeloid diseases. In 2016,
Bartels et al. used a customized NGS panel with 23 genes
mutated in both MDS and MPNs to profile 192 formalin-
fixed and paraffin-embedded (FFPE) patient samples.
In this study, the authors found overall 269 pathogenic
mutations in 125 of 185 analyzed patients and several of
these exhibited more one-gene variants. Although they
used FFPE bone marrow samples, the study demonstrated
that NGS improved diagnostic accuracy and contributed to
understanding the development, progression and therapy of
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TABLE 2 | Mutated genes in BCR-ABL1-negative myeloproliferative neoplasms (MPNs).

Gene Pathway relevance Type of mutation Frequency of mutation

(%, PV, ET, MF)

Prognostic significance References

ASXL1 Epigenetic regulation Missense 3–12% in PV 4–11% in ET

22–38% in MF

Adverse in PV and MF (17, 18, 25, 30, 32,

45, 73–82)

DNMT3A Epigenetic regulation Missense 6% in ET

5–10% in MF

None (18, 32, 73, 74, 76,

77, 82)

EZH2 Epigenetic regulation Missense 2–12% in PV

3% in ET

12% in MF

Adverse in TE and MF (18, 25, 32, 73–77,

79, 80, 82)

IDH1 Epigenetic regulation Missense 10% in PV

1% in ET

1–4% in MF

Adverse in MF (18, 25, 32, 74–77,

79, 80, 82)

IDH2 Epigenetic regulation Missense 4% in PV

1–3% in MF

Adverse in PV and MF (18, 25, 32, 74–77,

79, 80, 82)

TET2 Epigenetic regulation Insertion/ Deletion

Nonsense or Missense

10–25% in PV

16% in ET

17% in MF

Adverse in TE (18, 32, 73, 74, 76,

77, 82)

SF3B1 mRNA processing Missense 3% in PV 5% in ET

10% in MF

Adverse in TE (18, 32, 74, 77, 82)

SRSF2 mRNA processing Missense 9% in MF

<2% ET

Adverse in PV and MF (18, 25, 32, 74–77,

80–82)

U2AF1 mRNA processing Missense 1–2% in TE

10–17% in MF

Adverse in TE and MF (18, 32, 74, 77, 82)

ZRSR2 mRNA processing Missense 5% in PV

3% in ET

10% in MF

Not known (18, 32, 74, 77, 82)

CEBPA Transcriptional

regulation

Mutations 6% in PV

4% in ET

9% in MF

Adverse in MF (18, 32, 82)

RUNX1 Transcriptional

regulation

Nonsense Missense

Insertion/ Deletion

<5%

(PV, ET, MF)

Adverse in MF (18, 32, 74, 76, 77,

82)

TP53 Transcriptional

regulation

Missense or Mutation <5%

(PV, ET, MF)

Adverse in TE (18, 32, 74, 76, 77,

82)

CBL Cell signaling pathways Missense 4% in MF Adverse in MF (18, 32, 73, 74, 77,

82)

KIT Cell signaling pathways Mutations 3% in PV

2% in ET

1% in MF

Adverse in MF (18, 32, 82)

NF1 Cell signaling pathways Deletion Rare in MF Not known (18, 32, 74, 77, 82)

NRAS/KRAS Cell signaling pathways Missense 1% in ET

1–4% in MF

Not known (18, 32, 74, 77, 82)

SH2B3/LNK Cell signaling pathways Deletion or missense 9% in PV

3% in ET

11–18% in MF

Adverse in TE and MF (18, 32, 73, 74, 77,

82, 83)

For each gene the function, type of molecular alteration, frequency and prognostic significance, if known, are reported.

myeloid diseases (94). NGS technology provide additional
information to define the potential risk of development
a myeloid malignancy, understand the clinical course,
select the appropriate target therapy and predict potential
drug-resistance mechanisms.

CONCLUSIONS

The discovery of JAK2V617F mutation in BCR-ABL1-negative
MPNs by four different international cooperative groups in
2005 (2–5) led to significant insights on the pathogenesis

of these disorders. In fact, this mutation results in a gain-
of-function with activation of cytokine and growth factor
receptors, and thus of the downstream JAK-STAT pathway
(79, 95–98). The JAK2 point mutation in exon 12, present
in a small percentage of patients with PV, is able to
induce the MPN phenotype through the same pathogenic
mechanism (6, 7).

In 2006 the MPLW515L/K was reported in ET and
PMF patients (44, 45) and demonstrated to be able to
aberrantly activate JAK-STAT pathway through a gain-of
function similar to that of JAK2, thus leading to megakaryocytic
proliferation (8–10).
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More recently, in 2013 two different groups demonstrated
a spectrum of mutations in CALR gene that cause frameshifts
of one base pair in the last coding exon with a generation of
a protein with new C terminus and a tail of 36 aminoacids
(11, 12). Although it was soon clear that JAK-STAT signaling
pathway was consistently activated in CALR mutated cells (53,
99), only recently it has been demonstrated that the mutant
CALR protein is able to bind to the MPL receptor and activate
it independently of the TPO presence itself (54–57). Consistently
with the fact that all these mutations cause JAK-STAT pathway
activation, ruxolitinib, the first JAK1/2 inhibitor, is able to exert
clinical results in MF patients independently of the type of
mutation (80).

As BCR-ABL1-negative MPNs are initiated by a driver
mutation in one of JAK2, CALR or MPL genes in more than
95% of cases, there is a key relevance in diagnosis, prognosis and
therapy (12, 61, 81). Due to the fact that these mutations are
mutually exclusive, a sequential search for diagnosing purposes
starting from JAK2 is suggested (36, 62–64). Furthermore, each
of these mutations has a different prognostic impact. In ET,
JAK2 is taken into consideration in the IPSET prognostic scores
(100, 101). In JAK2-positive PMF, allele burden is relevant,
with a worse prognosis for patients with <50%, while type
1/type 1-like CALR mutations has a favorable impact (22,
26). In the new MYSEC-PM prognostic score developed for

secondary MF, CALR mutations absence is associated with a
worse outcome (102).

Since NGS studies have been performed in BCR-ABL1-
negative MPNs, especially in PMF, other mutations than the
driver ones have been reported with few particularly relevant
for prognosis and prediction of response. Sub-clonal mutations
in genes of the spliceosome machinery, regulators of chromatin
structure and histone modification and epigenetic regulators
of DNA methylation are now taken into consideration in
the new prognostic scores together with driver mutation
status and clinical data in MIPSS70 and MIPSS70-plus (75)
or in the GIPSS, where only the molecular features are
evaluated (45).

NGS analysis during the disease natural history is of key
importance to underline the eventual clonal evolution, thus
uncovering an aggressive course and possibly suggesting a change
in the therapeutic strategy (103, 104). Thus, in a near future,
due to the progressive lowering of costs and availability in more
reference laboratories, NGS will become the standard to evaluate
BCR-ABL1-negative MPN patients.
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