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Lung cancer represents a major worldwide health concern; although advances in patient

management have improved outcomes for some patients, overall 5-year survival rates

are only around 15%. In vitro studies and mouse models are commonly used to study

lung cancer and their use has increased the molecular understanding of the disease.

Unfortunately, mouse models are poor predictors of clinical outcome and seldom mimic

advanced stages of the human disease. Animal models that more accurately reflect

human disease are required for progress to be made in improving treatment outcomes

and prognosis. Similarities in pulmonary anatomy and physiology potentially make

sheep better models for studying human lung function and disease. Ovine pulmonary

adenocarcinoma (OPA) is a naturally occurring lung cancer that is caused by the

jaagsiekte sheep retrovirus. The disease is endemic in many countries throughout the

world and has several features in common with human lung adenocarcinomas, including

histological classification and activation of common cellular signaling pathways. Here we

discuss the in vivo and in vitro OPA models that are currently available and describe the

advantages of using pre-clinical naturally occurring OPA cases as a translational animal

model for human lung adenocarcinoma. The challenges and options for obtaining these

OPA cases for research purposes, along with their use in developing novel techniques for

the evaluation of chemotherapeutic agents or for monitoring the tumor microenvironment

in response to treatment, are also discussed.

Keywords: human lung cancer, jaagsiekte sheep retrovirus, ovine pulmonary adenocarcinoma, sheep lung cancer

models, comparative oncology

HUMAN LUNG CANCER

Lung cancer is the most commonly diagnosed cancer in the world, with ∼1.8 million new
cases and 1.6 million cancer-related deaths recorded each year (1). Lung cancer treatment can
be challenging as most patients are diagnosed when the disease is at an advanced stage. Poor
response rates to radio-and chemotherapy have meant that overall 5-year survival rates are only
15%. The disease is highly heterogenous and is divided into several subtypes; their classification
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is under periodic review and in 2011 a multidisciplinary
classification system was proposed by the European Respiratory
Society and International Association for the Study of Lung
Cancer (2). Their classification was based on factors such
as disease biology, pathogenesis, and histopathology, which
rendered terms such as bronchioloalveolar carcinoma (BAC) and
it’s mucinous and non-mucinous forms redundant.

Lung cancer is broadly classified into small-cell lung cancer,
originating from bronchial neuroendocrine cells, and non-small
cell lung cancer (NSCLC), originating from lung epithelial
cells. NSCLC accounts for ∼80% of cases and is subdivided
into adenocarcinomas, large-cell carcinomas, squamous cell
carcinomas, mixed, and undifferentiated tumors (3).

Adenocarcinomas are the most common form of lung
cancer, accounting for 40% of cases. Hyperplasia of lung
epithelial cells is thought to be the earliest cellular change
that occurs in adenocarcinoma tumourigenesis. Termed
“atypical adenomatous hyperplasia,” these pre-malignant lesions
can accumulate cellular genetic abnormalities causing the
cells to become pleomorphic, demonstrating a non-invasive,
lepidic growth pattern along alveolar walls (4). Although
these growths are known as adenocarcinoma-in-situ, complete
surgical resection of lesions <30mm in diameter results in
almost 100% of cases gaining 5-year disease-free survival.
However, if untreated, these lesions develop into invasive
adenocarcinomas. Minimally invasive adenocarcinomas are
lesions <30mm in diameter with an invasive component
<5mm; surgical resection of these lesions is still likely to
give an excellent prognosis. The cellular growth pattern
(lepidic, acinar, papillary, or solid) is used to classify invasive
adenocarcinomas >30mm in diameter; these invasive forms
are the most common clinical and pathological presentation
of the disease. Lepidic-predominant adenocarcinoma describes
invasive adenocarcinomas that have a predominant lepidic
pattern with an invasive component >5mm (previously termed
non-mucinous BAC). In addition, a mucinous form of lepidic
adenocarcinoma may also be encountered (previously termed
mucinous BAC); this non-invasive, minimally-invasive or
invasive disease is often bilateral and multifocal with extensive
mucous production. Patients suffering from this subtype present
with a cough and extensive mucous production that can lead to
death from respiratory failure without any evidence of invasive
disease (2).

MOUSE MODELS OF HUMAN
LUNG CANCER

Numerous animal models (primates, dogs, hamsters, mice)
have been described for lung cancer research (5, 6). Mice
have traditionally been considered the preferred model due
to cost-effectiveness and ease of genetic manipulation (7).
Many mouse models are now available, including inbred
strains exhibiting high rates of spontaneous lung tumors (8–10)
(useful for chemoprevention studies), chemical (11)/carcinogen
(5)/environmental-induced lung cancer models (12) (allowing
the study of tumor initiation and progression) and orthotopic

xenograft models (13–16) (facilitating the analysis of both
primary and metastatic tumors). Hundreds of transgenic mouse
strains which incorporate the genetic mutations that occur
in human lung cancer can now be produced. These mice
will produce tumors with greater similarity to human disease
and allow the genes that drive lung cancer development
and progression to be identified (17). These genetic changes
include tumor suppressor gene inactivation (p53, retinoblastoma,
and p16), oncogene activation (K-ras), altered growth factor
expression (18), loss of heterozygosity, and amplification of
specific chromosomal regions (17, 19). The use of bioluminescent
or fluorescent reporters in mice is also possible (20, 21).
These models allow lineage tracing to be performed and can
lead to the identification of individual oncogenes involved in
tumourigenesis and can enable the determination of the tumor
cell type origin (22).

Despite these advantages, murine models do not accurately
represent the advanced stages of lung cancer and are poor
predictors of clinical outcome. Each model also has its own
specific disadvantages, such as a lack of metastasis in genetic and
chemically induced models and the inability to examine immune
response in tumor development/progression in xenograft models
that require the use of immunodeficient mice (7). The perceived
advantages of having multiple models can also be seen as a
limitation, as no one single model can be used to examine all
stages of the disease.

COMPARATIVE HUMAN AND SHEEP
PULMONARY ANATOMY
AND PHYSIOLOGY

Similarities between human and sheep pulmonary anatomy
and physiology has led to sheep being identified as an
excellent model for investigating human lung function and
disease. Human lung anatomy consists of the left lung
divided into superior and inferior lobes and the right into
superior, middle and inferior lobes. Sheep anatomy is similar
with the left lung divided into cranial and caudal lobes
and the right into cranial, middle, caudal, and accessory
lobes. In sheep each lobe is separated by tissue septa, which
limits lobular connectivity (23) (Figure 1). Although in sheep
the right cranial lobe bronchus arises directly from the
trachea before the tracheal bifurcation (24), with respiratory
bronchioles that are poorly developed (23) the remaining
tracheobronchial tree is similar in both species, showing an
irregular dichotomous branching pattern. The distribution of
differentiated respiratory epithelial cells (25), mast cells (26),
and airway smooth muscle (27) is also comparable between
the species. Although human lungs have fewer intravascular
macrophages compared with the large number seen in sheep
lungs (28), increased numbers can occur after an endotoxic
insult. Lung development is also similar between the species;
lamb lungs show significant similarities to human infant
lungs, including prenatal alveologenesis, airway branching
patterns, bronchiolar club cell number, type II alveolar epithelial
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FIGURE 1 | Ovine and human comparative gross anatomy. (A) Ovine lower respiratory tract. (B) Human lower respiratory tract.

(pneumocytes) development, and the presence of airway
submucosal glands (29).

Similarities in lung size allow sheep models to be used
in ways not available in mouse models; techniques including
drug administration, advanced imaging (30), ultrasound (31),
endoscopy, and surgical procedures can be used in sheep as
they would in humans (32). With the correct animal handling
facilities, where appropriate, procedures can be performed in
conscious or minimally sedated animals, rather than using
general anesthesia. Repeated blood sampling and tissue collection
is easier in sheep and their longevity allows chronic conditions
to be modeled, while also enabling the evaluation of long-term
treatments. These factorsmake sheep excellentmodels for human
respiratory conditions (24) such as asthma (33), cystic fibrosis,
chronic obstructive respiratory disease (34), respiratory syncytial
virus infection (35), and now cancer (36).

OVINE PULMONARY ADENOCARCINOMA

Ovine pulmonary adenocarcinoma (OPA) is a neoplastic lung
disease caused by the jaagsiekte sheep retrovirus (JSRV) (37–40).
This betaretrovirus is the only known virus capable of inducing
the formation of naturally occurring lung adenocarcinomas.
Since the disease was first described in South Africa in the
nineteenth century (41), JSRV infection has been identified
in numerous sheep breeds and small ruminants throughout
the world, the virus however has never been shown able to
infect humans (42, 43). Although natural JSRV infection can
occur in goats this rarely results in tumor formation and
experimental infection of goat kids induces tumors with a
different macroscopic and histological appearance to those seen
in lambs (44). OPA is endemic in the UK and represents a
major economic and animal welfare concern (39, 45). Within-
flock disease incidence levels can be as high as 30%, although
levels of 2–5% are more common (46). Mortality rates of 50%
can be seen following initial disease identification within a flock
(47); however, as the disease becomes endemic rates reduce
to 1–5% (41, 48). Disease transmission occurs predominantly

through the aerosol route (41, 47, 49), meaning close contact
with infected sheep is a significant risk factor. The virus has
been detected in the milk and colostrum of infected ewes,
which poses a potential source of infection for new born
lambs (50).

JSRV BIOLOGY

JSRV particles contain two copies of single-stranded positive
sense RNA. It’s genome of ∼7,460 nucleotides contains four
genes encoding viral proteins (39). These four genes are: gag
(encoding the matrix, capsid, and nucleocapsid proteins); pro
(encoding aspartic protease); pol (encoding reverse transcriptase
and integrase enzymes); and env (encoding surface and
transmembrane envelope glycoproteins) (51, 52). An additional
open reading frame, known as orfX, which overlaps with the pol
gene, has also been identified; however, it is not required for in
vitro cellular transformation (53) or in vivo oncogenesis (54–
56). Interestingly, JSRV-induced neoplastic transformation is
mediated by the viral Env glycoprotein, although themechanisms
underlying this process are not completely understood. The
transforming activity of Env was first shown in vitro using rodent
fibroblasts (53, 57), with subsequent in vivo experiments showing
that the administration of viral vectors expressing Env to the
lungs of mice (56) and sheep (55) results in adenocarcinoma
formation. Env localization at the plasma membrane may enable
it to interact with other molecules such as protein kinases
(58), leading to the activation of downstream pathways that
promote cellular proliferation and survival. The Ras-MEK-
ERK (59, 60) and PI3K-AKT-mTOR (59, 61, 62) pathways
are commonly activated in OPA tumors; others may include
EGFR, RON-HYAL2 and heat shock proteins (63). Following
pathway activation, it is likely that further mutations are required
for tumors to develop, such as telomerase activation (62),
the activation of other cellular oncogenes or the inactivation
of tumor-suppressor genes. For a detailed description of
JSRV structure and replication cycle see the recent review by
Youssef et al. (36).
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ENDOGENOUS RETROVIRUS AND
IMMUNE RESPONSES

Endogenous retroviruses are viruses that have become integrated
into host germ-line DNA and are passed through the generations.
The sheep genome contains numerous endogenous JSRV
(enJSRV) related proviruses with over 90% sequence similarity to
exogenous JSRV (exJSRV) (64, 65). These enJSRV proviruses are
not oncogenic (they lack the oncogenic Env c-terminal domain
present in exJSRV) (37, 51, 66, 67), but are transcriptionally
active, with studies showing viral RNA and protein expression
in the female reproductive tract and in fetal tissues (67, 68).
The expression of these viral proteins may help protect the host
from exJSRV infection, either by receptor competition or through
the prevention of exJSRV viral particle transport and cellular
exit (68, 69).

JSRV infection lacks a specific cellular or humoral immune
response to viral proteins. Although neutralizing antibodies
specific for JSRV have been found in a minority of infected
animals (44, 70), the lack of a consistent adaptive response
is likely due to sheep being immunologically tolerant of JSRV
antigens as a result of the expression of enJSRV proteins in
the fetal thymus during T lymphocyte development. Tumor
cells also downregulate the expression of class I antigens of the
major histocompatibility complex, preventing their recognition
by CD8+ T lymphocytes. The influx of alveolar macrophages
following JSRV infection, which produce large amounts of
interferon gamma, also fails to activate T cells or produce a
JSRV-specific immune response. Overproduction of surfactant
proteins in OPA is also proposed to contribute to the absence of
an effective immune response (71).

OPA HISTOLOGY AND COMPARISON
WITH HUMAN LUNG ADENOCARCINOMAS

OPA tumors are composed of non-encapsulated neoplastic foci
originating from JSRV infected and transformed bronchiolar and
alveolar secretory epithelial cells (72, 73). Type II pneumocytes
are the predominant cell type, with smaller numbers of
bronchiolar club cells and undifferentiated cells present (74).
Type II pneumocytes function to synthesize, store, and secrete
alveolar surfactant, whereas bronchiolar club cells produce
protein components that line the extracellular surface of
bronchioles. Tumor cells are typically cuboidal or columnar,
with or without cytoplasmic vacuolation while also exhibiting
a low mitotic rate. However, other tumor areas may show
higher degrees of malignancy with high mitotic rates and areas
of necrosis (74, 75). Fibrovascular connective tissue surrounds
tumor cells and acts as a scaffold for the influx of inflammatory
cells. Large numbers of macrophages are typically identified (71);
however, neutrophil number can vary depending on the presence
of a bacterial co-infection (Figure 2). Tumor cell proliferation
initially occurs along alveolar septa (lepidic growth), before
extending into bronchioles through the formation of acinar or
papillary proliferations. Infected cells release JSRV virions which
spread within the lung forming new foci of infection, resulting

in a highly oligoclonal tumor (76). Neighboring tumor foci
eventually expand and coalesce to form a single large tumor.
Intrathoracic and extrathoracic metastasis is possible and has
been identified in∼10% of cases (77–80).

Although early reports detailing OPA described the disease as
having similarity to human BAC, under the current human lung
classification system early OPA lesions would fit a description
of a minimally invasive adenocarcinoma or lepidic-predominant
adenocarcinoma; whereas typical advanced lesions would more
closely resemble adenocarcinoma with a papillary or acinar-
predominant growth pattern. Importantly, OPA has the greatest
similarity to the rare multifocal, non-invasive presentation of
human lung adenocarcinoma (such as the mucinous forms), and
is less similar to the more common aggressive, metastatic forms
of the disease (36).

EXPERIMENTAL SYSTEMS FOR
STUDYING OPA

An in vivo sheep model was the first reproducible experimental
system developed to study OPA. Initial studies showed that the
injection of OPA tumor homogenates or JSRV purified from lung
fluid, into the trachea of healthy sheep, led to the appearance of
lung tumors (81, 82). It was later shown that using neonatal lambs
improved the rate of infection and decreased the time for tumors
to develop (73, 83). Further refinement of the model has been
achieved through cloning and sequencing of the JSRV genome
(51, 84) and the generation of an oncogenic and infectious
molecular clone, which has enabled virus production using in
vitro transfection of cell lines (85, 86). A JSRV replication-
defective virus (JS-RD) that expresses only the Env glycoprotein
has also been used in the in vivo lamb model system (55). As this
vector is replication defective, it can infect and transform target
cells but cannot replicate further. As these transformed cells
proliferate, they form well-isolated uniform neoplastic foci, each
being a separate transformed focus. Therefore, tumors induced
by JS-RD have a reduced degree of polyclonality compared to
naturally occurring OPA and human adenocarcinomas. This
reduced heterogeneity might add value to the experimental OPA
model, as the effects of targeting specific pathways would be
easier to identify.

The in vivo lamb model also has the potential for studying
pathogenic mechanisms in early stage disease. This is important
as human clinical tissue from early cases is generally unavailable.
However, while the lamb model is useful for studying OPA from
initial infection up to the formation of small tumors, for welfare
reasons it is not appropriate to let the disease reach an advanced
clinical stage. As such, naturally occurring cases are more suitable
for studying more advanced disease stages.

Mouse OPA models are alternative in vivo systems that do
not necessitate the use of large animal facilities. Using both
immunodeficient mice (56) and immunocompetent mice models
(87) studies have shown that the intranasal administration of
adeno-associated virus vectors encoding JSRV Env leads to the
formation of lung adenocarcinomas that are comparable to those
found in sheep and humans.
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FIGURE 2 | Histological appearance of OPA tumors. (a–c) OPA haematoxylin and eosin stained sections. (a) Columnar tumor cells can be seen lining the alveolar

septa (black arrows), forming acinar, or papillary proliferations. Two groups of neutrophils are present between the tumor cells (red arrows). (b) Alveolar macrophages

can be seen at the top right-hand side of the image and are characterized by large amounts of foamy cytoplasm. (c) Accumulation of mononuclear immune cells,

mostly lymphocytes, and plasma cells, can be observed at the top left-hand side of the image. (d) Masson’s trichrome stained section. Collagen is stained blue and

can be identified surrounding the tumor cells (yellow arrow heads), acting as a scaffold for the influx of inflammatory cells.

The lack of a cell line that can support JSRV replication
in vitro has limited the amount of in vitro research that has
been performed on OPA (88). Some studies have therefore
focused on the use of primary OPA tumor cells (62, 89, 90);
however, extended in vitro culture of these cells typically leads
to a cessation in virus production (89, 90). These alterations in
JSRV expression can be either delayed or reversed when cells are
cultured in a 3D environment (89, 91), indicating that 3D culture
models may more accurately recreate the oncogenic events that
occur in OPA. Lung tissue explants are another in vitro model
that has been developed. These precision-cut lung slices are tissue
discs 300µm thick and 8mm in diameter cut using an automated
microtome (59, 92), and are thought of as a transitional model
between the other in vitro and in vivo available systems.

OPA AS A MODEL FOR STUDYING
PULMONARY ADENOCARCINOMA
TUMOURIGENESIS

It is not clear whether human pulmonary adenocarcinoma arises
from a stem cell population that is able to differentiate into
alveolar type II pneumocytes and bronchiolar club cells, from a
lineage-specific progenitor cell, or from a fully differentiated cell
type (93). In mice putative bronchioalveolar stem cells (BASC)
have been identified which are proposed to be the cell type of
origin of lung adenocarcinomas in response to oncogenic K-ras
(94). However, the presence of BASC in humans and sheep has
not been firmly established (95). Cells displaying some features of
BASC have been described in sheep (72, 96) but their significance
in OPA tumourigenesis remains unclear.

As described in the previous section, in the in vivo
experimental lambmodel, JSRV is able to induce the formation of
OPA tumors with a short incubation period (82, 83). In contrast,
adult sheep have been shown to be resistant to experimental
induction of OPA (83). This age-related susceptibility to OPA
tumor formation is due, at least in part, to the availability of
susceptible target cells capable of being infected and transformed.
JSRV, like most retroviruses, infects dividing cells much more
efficiently than non-dividing cells (73). Normal sheep and human
adult lungs have relatively low rates of bronchioalveolar cell
division. However, the lungs of both species are not fully mature
at birth and continue to develop for a period of time resulting in
an increase in alveolar number (97, 98). One study has shown that
the cells targeted for JSRV transformation and tumourigenesis
are proliferating progenitor cells of type II pneumocyte lineage,
termed lung alveolar proliferating cells (LAPCs), rather than
mature post-mitotic type II pneumocytes, bronchiolar club cells,
or BASC. LAPCs are significantly more abundant in lambs
compared to adult sheep, therefore the age-related susceptibility
of OPA development is directly related to the abundance of
LAPCs (73).

The adult lung has significant reparative capabilities despite
the low proliferation rate of respiratory epithelial cells, LAPCs
are proposed to play an important role in tissue repair following
injury. Chemically-induced injury to the respiratory epithelium
has been shown to increase the number of LAPCs in adult
sheep, which subsequently rendered the sheep susceptible to
JSRV infection and transformation (73). This may have relevance
for naturally occurring OPA, as cases typically present with
a variety of other parasitic, bacterial, or viral infections (45).
Classically, these infections were considered as “secondary” to
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JSRV infection; however, it is possible that they are important
factors that contribute to pulmonary inflammation and tissue
damage that facilitate JSRV infection and tumorigenesis. In
humans, recent studies have identified a subpopulation of
type II pneumonocytes that exhibit properties of progenitor
cells, including self-renewal and proliferation in response to
injury (99, 100). Thus, OPA may have value as a comparative
model for understanding the role of alveolar progenitor cells
in carcinogenesis.

OPA DIAGNOSIS AND POTENTIAL
SOURCES OF EXPERIMENTAL ANIMALS

Although OPA has been identified in sheep <1 year old
the majority of naturally occurring clinical cases are seen in
sheep aged between 2 and 4 years of age. The diagnosis of
clinical OPA can usually be based on clinical signs including
pneumonia (non-responsive to antibiotic treatment), dyspnea,
and tachypnoea (especially when herded) in combination with
weight loss (despite maintaining a normal appetite) (101).
Thoracic auscultation may be of benefit for diagnosing advanced
cases, where adventitious lung sounds (crackles) can be heard
over the majority of the lung fields due to the presence of fluid
in the airways (102). Significant volumes of fluid draining from
the nostrils is a pathognomonic clinical sign of OPA (103); at
this stage tumors will typically occupy more than 30% of the lung
volume (101). Although historically these advanced tumors were
presumed to have developed over many months or years (101),
new evidence shows that some OPA tumors may develop very
rapidly (104).

Pre-clinical antemortem diagnosis is important not only for
removing infected animals from flocks but also in identifying
cases for experimental purposes; however, this diagnosis remains
a significant challenge. Pre-clinical diagnosis based on a clinical
examination is difficult as there may be a lack of adventitious
lung sounds detectable by auscultation (105). Many infected
sheep never develop clinical signs during their commercial
lifespan (106), and those that do may only do so when the
tumor is sufficiently large to compromise respiration. During
this pre-clinical period these apparently healthy animals may
be infectious and represent a source of infection for the rest of
the flock.

As JSRV infected sheep fail to produce a significant humoral
immune response to viral proteins (107), it has not been
possible to develop serological diagnostic assays. Alternative
diagnostic tests have been developed for virus detection in
blood samples using PCR technology (108); unfortunately
the numbers of virally infected blood mononuclear cells
(monocytes, B and T lymphocytes) are very low, which results
in high false negative results (109). Despite this significant
limitation, the test can be used for identifying infected flocks
rather than for testing individual animals. The same PCR
technique has been employed to detect JSRV-infected cells
in bronchoalveolar lavage samples (110), which offers better
sensitivity than the blood test. However, this method requires
sedation for sample collection, only tests a small region of

the lung (potential for missing early cases) and does not
lend itself to large-scale routine on-farm testing. Currently,
the gold standard diagnostic test for both clinical and pre-
clinical OPA remains gross pathology and histology performed
at post mortem examination. OPA tumors can be extensive,
involving the entire lung lobe, or may occur as multifocal
discrete lesions. These lesions fail to collapse upon entering
the thoracic cavity and can distort the normal architecture
of the affected lung lobe, with clear boundaries between
tumor tissue and adjacent pink aerated lung. Although the
overlying pleura can remain intact, fibrinous adhesions between
the visceral pleura and chest wall can be seen (Figure 3).
Tracheobronchial and mediastinal lymph nodes usually appear
grossly normal but may be enlarged in cases of metastasis or
pneumonia (39).

Imaging modalities such as radiography and computed
tomography (CT) have been suggested for use in OPA
diagnosis. CT is considered the gold standard imaging modality
for human lung parenchyma and has been used in studies
to monitor the development and progression of OPA in
both naturally occurring (111) and experimentally infected
animals (70). CT will detect smaller lung lesions than can
be identified using radiography, particularly if located in the
ventral margins of the cranial lung lobes that are difficult
to image using radiography (Figure 4). However, radiography
and CT are cost prohibitive for commercial flocks and require
specialized equipment and sedation/general anesthesia (101).
Ultrasonography is an extremely useful imaging technique for
OPA diagnosis and can be performed on-farm in conscious
animals. With experience, the procedure can be performed
in <1min per sheep (112), can differentiate between chronic
lung lesions and can detect OPA lesions as small as 1–2 cm
in diameter involving the visceral pleura (31). One study
conducted transthoracic ultrasound examinations of 100 sheep
presented for the investigation of weight loss with or without
respiratory signs; of these cases, 41 sheep were diagnosed as
OPA positive based on ultrasound examination alone, with
all cases having the diagnosis confirmed at post mortem. The
remaining sheep had no ultrasonographic changes characteristic
of OPA and had no gross OPA lesions at post mortem.
The study demonstrated the high specificity of transthoracic
ultrasound for OPA diagnosis in clinically affected animals,
producing no false positive or negative results (31). Although
a negative scan cannot guarantee that an animal does not
have early OPA and/or is not infected with JSRV, it has been
suggested that transthoracic ultrasound examination can be used
to confirm a suspected diagnosis, screen flock replacements, and
screen sheep in known OPA-affected flocks. It is also an ideal
method for identifying pre-clinical cases for experimental use, as
individual cases can be selected based on the size and location of
OPA lesions.

OPA AS A PRE-CLINICAL MODEL

The use of OPA as a model for monitoring the tumor
microenvironment, assessing the effectiveness of chemo-
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FIGURE 3 | Gross pathology of OPA tumors. (a,b) Large single advanced OPA tumors affecting the entire left cranial lung lobe. The lesions are gray in color with a

clear distinct boundary between neoplastic tissue and the neighboring pink aerated lung. Extensive fibrous tissue can be seen attached to the overlying pleura of the

tumor. (c) Two discrete OPA tumors within the right cranial and caudal lung lobes.

FIGURE 4 | Thoracic CT images of OPA tumors. (a) Axial, (b) Coronal, and (c) Sagittal planes. Three large areas of increased radiopacity are seen within the lung

lobes consistent with advanced OPA tumors (outlined in red). One lesion is present within the dorsal region of the left cranial lung lobe with a further lesion in the

ventral region of the left caudal lung lobe. A smaller lesion is present within the right caudal lung lobe. A patchy and hazy area of increased opacity (ground glass

appearance), with preservation of bronchial and vascular patterns, is present (outlined in yellow) between the two tumors in the left lung lobes. This area is consistent

with regions of neoplastic foci or a secondary pneumonia.

and radiotherapy or in the development of surgical techniques
has not been previously documented. However, if techniques
that are commonly used in the treatment of human lung
cancer patients such as ultrasound, general anesthesia, CT,
and surgery can be incorporated into the OPA model, this
would further demonstrate its potential as an excellent
translational research tool. One paper documented the
use of naturally occurring OPA cases combined with CT
evaluation, post mortem examination/histopathology, trace
element, and liver enzyme activity analysis in a long-term
study evaluating the impact of nutritional selenium on
tumourigenesis and progression (111). This study demonstrated
the potential for the OPA model to be integrated with
multiple techniques to provide comprehensive information
on tumor pathogenesis.

In terms of chemotherapy models, in vitro work using
rat fibroblasts has shown that through AKT degradation,
Hsp90 inhibitors can block the transformation and revert
the phenotype of cells already transformed by JSRV
Env. Hsp90 inhibitors can also reduce the proliferation

of primary and immortalized OPA cell lines (63). The
chemotherapeutic potential of agents such as Hsp90 inhibitors
could be assessed using OPA cases if techniques could be
integrated into the model to assess the tumors response
to treatment.

One current ongoing multidisciplinary project that is using
naturally occurring OPA cases as a pre-clinical translational
model is the Implantable Microsystems for Personalized Anti-
Cancer Therapy (IMPACT) programme at the University of
Edinburgh (113). This project aims to develop novelminiaturized
implantable oxygen and pH sensors that can monitor oxygen
levels and pH within a solid tumor; the identification of
hypoxic and acidic regions within a tumor can lead to more
targeted therapies against these radiation and chemo-resistant
regions. Functionality of these sensors is being validated
following their implantation into OPA tumors using a CT-
guided percutaneous method. This technique is similar to that
used for transthoracic needle biopsies in human patients. If
successful, then studies such as this will provide exciting new
translational opportunities for the OPA model to be used in
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pre-clinical research (see accompanying article, Gray et al.
manuscript submitted)1.

CONCLUSION

As outlined here, OPA has great potential to be used as
an excellent model for studying multiple aspects of human
lung cancer biology. As a result, in vivo and in vitro OPA
experimental models have been developed for the study of
JSRV Env mediated oncogenesis; these have been successfully
used to determine the molecular pathways involved in lung
cancer pathogenesis. However, the potential for OPA to be
used as a pre-clinical animal model for assessing human
lung cancer treatment strategies has yet to be fully exploited.
Naturally occurring OPA cases are readily available from infected
flocks due to the endemic nature of the disease in many
countries and pre-clinical cases can be identified by the use
of ultrasound scanning programmes. The use of naturally
occurring cases could decrease the use of experimentally
induced OPA tumors in lambs, reducing ethical concerns with

1Gray M, Sullivan P, Marland JRK, Greenhalgh SN, Meehan J, Gregson R, et al.
A novel translational ovine pulmonary adenocarcinoma model for human lung
cancer.

this model. Future studies that can integrate techniques
commonly used in the treatment of human lung cancer patients,
such as ultrasound, general anesthesia, CT, and surgery, would
further strengthen the effectiveness of OPA as a pre-clinical
cancer research model.
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