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Cancer metabolism is an essential aspect of tumorigenesis, as cancer cells have

increased energy requirements in comparison to normal cells. Thus, an enhanced

metabolism is needed in order to accommodate tumor cells’ accelerated biological

functions, including increased proliferation, vigorous migration during metastasis, and

adaptation to different tissues from the primary invasion site. In this context, the

assessment of tumor cell metabolic pathways generates crucial data pertaining to the

mechanisms through which tumor cells survive and grow in a milieu of host defense

mechanisms. Indeed, various studies have demonstrated that the metabolic signature of

tumors is heterogeneous. Furthermore, thesemetabolic changes induce the exacerbated

production of several molecules, which result in alterations that aid an inflammatory

milieu. The therapeutic armentarium for oncology should thus include metabolic and

inflammation regulators. Our expanding knowledge of the metabolic behavior of tumor

cells, whether from solid tumors or hematologic malignancies, may provide the basis for

the development of tailor-made cancer therapies.
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INTRODUCTION

Overall, a normal cell and a tumor cell have very different metabolic status, as one of
the main characteristics of the tumor cell is an altered cell metabolism. Indeed, the
dynamic metabolism of the tumor cell with increased metabolic fluxes and nutritional
needs is required in order to support an accelerated cell proliferation and to enhance
other biological functions, including migration, cell response to hypoxia due to accelerated
proliferation and adaptation to different tissue environments during the metastatic process.An
altered tumor cell metabolism induces the exacerbated production of lactate, nitric
oxide (NO), reactive oxygen species (ROS) and arachidonic acid metabolism products,
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such as prostaglandins that simultaneously contribute to
the inflammatory milieu (1). These changes in the local
inflammatory status may actually facilitate the development
of a tumor-permissive environment. Deregulated metabolism
leads to the expression of myriad dysfunctional proteins that
contribute to pro-tumorigenic processes. Therefore, altered
tumor cell metabolism supports characteristics gained by the
tumor cell during the complex process of tumorigenesis:
a deregulated cell cycle with enhanced anti-apoptotic
characteristics, deregulated cell death pathways, increased
migratory potential, and a high adaptability to the tissue
microenvironment (2).

Metabolic heterogeneity represents a hallmark in various
types of human cancer, where glucose metabolism is the
main deregulated metabolic pathway, leading to protein and
gene deregulations and hence, to tumorigenesis (3). Within
the cell, mitochondria is involved in tumorigenesis through
various pathways: ROS levels, DNA mutations and, hence,
genomic instability, autophagy control, resistance to cell
death stimuli, metabolic alterations as decreased oxidative
phosphorylation (OXPHOS) and anabolic pathways induction.
Various intracellular signaling events, such as kinase signaling
that modulate transcription factors and can further induce
epigenetic changes (4).

TUMOR CELL METABOLISM IS
SUSTAINED BY MITOCHONDRIAL
BIOCHEMICAL PATHWAYS

One of the main hallmarks of tumorigenesis is an altered cell
metabolism, where the dynamic metabolism of the tumor cell
with increased metabolic fluxes and nutritional needs is required
in order to support an accelerated cell proliferation, as well as to
enhance other tumor cell biological functions (5).

Indeed, specific metabolic reprogramming facilitates tumor
development and all these deregulations can become therapeutic
targets. Some therapeutical strategies directed to cancer cell
metabolic disturbances have been found to be highly effective,
and offer grounds for further development (5).

The main metabolic alterations of the tumor cells include
an increased aerobic glycolysis (6), pH deregulation (7), lipid
metabolism dysregulation (8, 9), increased generation of ROS
(10), as well as disturbances of enzyme activities (11–14).
These traits lead to apoptotic pathways alterations, genomic and
transcriptomic modification, finally inducing pro-tumorigenic
features (15). Moreover, several studies have proposed a link
between the altered metabolism that favors tumor cell survival
in a “hostile” milieu, such as an ischemic and/or acidic
microenvironment, an evasion from the attack of the immune
system elements and cancer stem cell resistance (16).

As summarized by Chen et al. the mitochondria exhibit an
array of metabolic deregulations in cancer cells, deregulations
that are potential therapeutic targets and display selectivity
in a cancer type-dependent manner (17). Alterations in
intracellular signaling pathways would induce profound
mitochondrial changes, followed by reorganization of other

cellular compartments. The intracellular pathways deregulation
is caused by the activation of oncogenes like Ras or Myc, by
the induction of transcription factors such as HIF1α, as well
as by the inactivation of tumor suppressor genes like p53. All
these abnormal molecular imprints induce enhanced glucose
intake and inhibition of oxidative phosphorylation system
(OXPHOS), not related to oxygen availability, summing up the
aerobic glycolysis or Warburg effect. As a direct consequence,
the activation of pentose phosphate pathway or amino acid
biosynthetic pathways generates high levels of anabolic
intermediates. In the meantime, ROS scavenging systems
are enhanced and protect tumor cells from oxidative-type of
actions. The extracellular microenvironment becomes more
acid and, thus, it increases the activity of several pro-invasive
factors (18, 19). The tumor cell has increased anabolic needs
now; therefore, there is an increased lipid biosynthesis (20)
using glutamine for fueling tricarboxylic acid (TCA) cycle. The
overall consequence is that the tumor cell proliferates even
when hypoxia is installed due to rapidly expanding tumor
mass, low blood/nutrients addition, and oscillations of redox
conditions (21, 22). This complex metabolic adaptation is
governed by mitochondria that harbor the effector systems for
the bio-energetic platform of tumor cells. This organelle is the
active inducer of metabolic rewiring of the tumor cell, such as
mutations in genes that code respiratory chain proteins which
are associated with various tumor types (4).

Another metabolic deregulation in cancer cells is an alteration
of the lipid metabolism that also supports increased cell
growth. Fatty acids (FA) are needed by cancer cells for various
functions: signaling molecules, membrane building molecules
and bioenergetic substrates. It has been recently demonstrated
that the expression of adipose triglyceride lipase (ATGL) which
catalyzes triacylglycerols (TAGs) hydrolysis is down-regulated in
major solid cancers, such as lung, muscle and pancreatic cancers
(23–25). It seems that the ATGL involvement in cancer cell
metabolism is linked to the peroxisome proliferator-activated
receptor-α (PPAR-α) signaling and to the pathways involved in
inflammation, redox homoeostasis and autophagy (26–28). As
recently discussed by Vegliante et al. these cellular processes are
strongly implicated in tumorigenesis initiation and metastasis
(29). Importantly, ATGL down-regulation can also be involved
in the switch from a mitochondrial metabolism to a glycolytic
type; this metabolic switch is characteristic to the majority of
tumors (30).

Lipid metabolism can affect mitochondrial cristae
morphology and consequently, the mitochondrial activity.
Indeed, any deregulation of the lipid metabolism will modulate
mitochondrial function due to the lipid role in the maintaining
of the bio-membranes integrity (31, 32). As the mitochondria are
intracellular organelles that play a crucial role in cell metabolism
by producing ATP through OXPHOS, a decrease in OXPHOS
expression due to mitochondrial lipid modulation will result
in OXPHOS activation and an increased alternative energy
requirement (33). Importantly, in the mitochondria, cardiolipin
accounts for a major 20% of the total lipid mitochondrial
composition. In tumor cells, an abnormal cardiolipin level
has been identified (34). As OXPHOS processes generate large

Frontiers in Oncology | www.frontiersin.org 2 May 2019 | Volume 9 | Article 348

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Neagu et al. Inflammation and Metabolism

quantities of protons that induce important pH alterations,
under normal conditions, cardiolipin traps protons within
the mitochondrial membrane, minimizing the pH changes
(35). The protective mechanism is overridden in tumor cells,
leading to mitochondrial activity dysfunction (36). Indeed, as
suggested by Kiebiesh et al. in tumor cells, lipid and electron
transport dysfunctionalities of the mitochondria are hallmarks
of metabolic deregulations (37). Of note, as normal and tumor
cells have very different energy metabolism rates, which can
be affected by in vitro conditions, caution is needed when
interpreting metabolic data of malignant vs. non-malignant cells
under in vitro/in vivo conditions (31).

Enzymes that control deregulated metabolic pathways and
proton cycles are important therapeutic targets in cancer. Thus,
upregulated enzymes involved in cancer cell bioenergetics and
biosynthesis can be shut down by specific inhibitors. In a recent
study by Yadav et al. it was reported that 3-bromopyruvate [3-
BP] can inhibit several metabolic enzymes (38). Specifically, an
in silico approach that was used indicated that 3-BP can target
glycolysis enzymes and enzymes involved in the TCA cycle.
Furthermore, derivatives of 3-BP, dibromopyruvate (DBPA), and
propionic acid (PA) were shown to have an increased binding
affinity to metabolic enzymes. This approach demonstrates the
feasibility of utilizingmetabolic enzyme inhibitors for anti-cancer
therapy (38).

As glutamine metabolism often depends on mitochondrial
glutaminase (GLS) activity, GLS has become a target molecule
for developing new potent inhibitors for GLS and, as recently
reported, CB-839 chemical compound has entered clinical trials
for advanced solid tumors and hematological malignancies (39).

The enzyme 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase 4 (PFKFB4) that controls glycolysis (40)
was shown to regulate transcriptional reprogramming through
the oncogenic steroid receptor coactivator-3 (SRC-3) (41).
Since PFKFB4 is an enzyme that stimulates glycolysis, PFKFB4-
mediated SRC-3 activation triggers the pentose phosphate
pathway and activates purine synthesis by up-regulating
transketolase (41).

Redox Status
Another metabolic trait of tumor cells is the enhanced ROS
generation. As already stated, mitochondria is one of this the
main intra-cellular ROS generation organelle and mitochondrial
ROS generation is associated with the respiratory chain
complexes (42).

As the oxidative metabolism is enhanced in cancer cells,
high quantities of ROS are produced by the mitochondrial
electron transport chain (ETC), that further activate signaling
pathways which are in the vicinity of mitochondrion system
promoting cancer cell proliferation (43). However, if the ROS
will accumulate in high quantities, cells will undergo apoptosis
(44); consequently, tumor cells will generate high quantities of
NADPH in the mitochondria and in the cytosol, in order to
limit the accumulation of ROS (45). Therefore, both glucose-
dependent metabolism andmitochondrial metabolism are highly
involved in tumor cell proliferation.

In the redox tumoral context, mitochondrial DNA (mtDNA)
and mitochondrial proteins have been shown to be extremely
ROS-sensitive due to their vicinity to the respiratory chain
(RC). Aiding tumorigenesis, the mitochondrial ROS leads to
the accumulation of oncogenic DNA abnormalities and further
activation of potentially oncogenic signaling pathways (46).

Energy Metabolism
The major biochemical task of the mitochondria is the
production of ATP, accompanied by the metabolites used for the
bioenergetic and biosynthetic necessities of the cell; this organelle
serves both as catabolic and anabolic metabolism (47).

The majority of ATP in tumor cells is produced by the
mitochondria (48) and targeting this energy metabolic loop can
be a good therapy option. As the cells from the center of solid
tumors survive in a nutrient-poor milieu with reduced glucose
and oxygen (49), if a drug is targeted to block mitochondrial ATP,
this will lead to apoptosis. Another option is for the tumors that
are highly dependent on oxidative phosphorylation for ATP, such
as cutaneous melanoma (50). In this case, tumor cells targeted
with drugs that hinder mitochondrial ATP production will enter
apoptosis because cells will not be able to have a glycolytic
compensation (51).

Another type of metabolic-driven therapy is sustained by the
inhibitors of the PI3K intracellular signaling pathway, which
synergize with therapies that diminish glycolysis (52). In these
therapeutic scenarios, compared to normal cells, tumor cells
would selectively intake the inhibitors of mitochondrial ATP
production (47). In this area, a common anti-diabetic drug,
metformin, which can inhibit complex 1 of ETC, has been tested.
An extended analysis of several studies has shown that, indeed,
patients with pancreatic cancer that were treated with metformin
had a prolonged survival (53). Nevertheless, unfortunately, this
important clinical discovery could not be duplicated in patients
with advanced pancreatic cancer (54, 55), giving research new
avenues to search for improved combined therapies (56).

INFLAMMATION AND METABOLIC
DEREGULATION

Tumor cells are obliged to alter their metabolic status in order
to adapt to increased nutritional needs and decreased oxygen
supplies in the tissue microenvironment, while sustaining their
high proliferation rate. These metabolic changes contribute, on
the one hand, to the inflammatory milieu (56–58). On the other
hand, the modulation of the tumor microenvironment affects
various metabolic processes through the regulation of hormone
bioavailability (59).

For immune cells, inflammatory immune phenotypes are
associated with increased glycolysis (60), while mitochondrial
oxidative networks are associated with immune memory
generation, but also immune-suppressive phenotypes (61). As
previously stated, cancer cells have a deregulated metabolic
system and therapies that target glycolysis, pyruvate oxidation,
and glutamine metabolism (e.g., 2-deoxyglucose, DCA, or DON)
would also protect from a chronic inflammatory status (61). In
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terms of targeting metabolic traits in immune cells and in cancer
cell, there are some differences. This divergence resides in the
metabolic difference between immune cell and tumor cell. If a
low metabolic inhibition in immune cells will immediately lead
to an inflammation abrogation, in cancer cell the deregulated
metabolic pathways must be heavily inhibited so that the cells
undergo apoptosis. Cancer cells and immune infiltrating cells
reside in a specific microenvironment that hosts inter-cellular
signaling molecules influencing the metabolic pattern of the
cells (62).

There is a series of inflammatory-mediated cells infiltrating
the tumors that aid the metabolic deregulations of the cancer
cell. One of the most studied inflammatory infiltrating cells is
the tumor-associated macrophage (TAM) (63). TAMs reprogram
their metabolism with activation of many pathways, such
as glycolysis, FAS and altered nitrogen cycle. Altering their
metabolism induces an increased production of cytokines and
angiogenic factors, aiding the pro-tumorigenic inflammatory
pattern of the tumor, thus favoring progression and metastasis
(3). A recent study documented that TAMs are “educated” by the
tumor cells in order to perform the delivery of essential elements,
e.g., iron (64). During the initiation processes of tumorigenesis
and subsequent tumor cell growth and metastasis, an adequate
iron supply is obligatory to sustain the accelerated metabolism of
the tumor cell (65), as TAMs have highly efficient mechanisms of
sequestering, transporting and storing iron by utilizing lipocalin-
2 and siderophores (64).

Another cell that is found to infiltrate tumor tissue is the T
cell comprising several populations. T lymphocytes are subjected
to various metabolic regulations during cell activation and
further when they develop their effector functions. Thus, it has
recently been shown that FAS regulates a newly discovered T-
helper sub-population, Th17 cells (66). The inhibition of early
FAS can further inhibit Th17 and promote the appearance of
regulatory suppressive Tregs cells, a cell population that favors
tumorigenesis. This mechanism was discovered by targeting
acetyl-CoA carboxylase (ACC1) (67). Indeed, recent studies have
shown that fatty acid synthase (FASN) that is downstream of
ACC, is a critical metabolic regulator in the appearance of
inflammatory Th17 lymphocytes. Therefore, by inhibiting FASN
function, studies have shown that IFN-γ production by Th1 and
Th1-like Th17 cells is increased (67).

The mitochondrion is also at the center of pro-inflammatory
signaling and likewise, the pro-inflammatory milieu can modify
mitochondrial physiology (68). DAMPs that are formed upon
mitochondria damage contribute to inflammasome formation
and caspase-1 activation (68). Various metabolic inducers,
ATP and ROS being just few of these, trigger inflammasome
activation. Importantly, metabolic-related molecules, such as
ATP, induce the assembly of the inflammasome and the
initiation of IL-1beta generation, one of the key mediators of
inflammation (68) highlighting the interaction of inflammation
and metabolism in tumor tissue (69).

As inflammation is directly associated with tumorigenesis
(70), anti-tumoral processes that involve the elements of the
immune system should be also acknowledged. Indeed, in
response to therapy, cancer cells release immune-enhancing

danger signals that facilitates the host tissue anti-tumoral
response. A specific group of mitocans, including vitamin E
analogs, has been defined; these are compounds that induce ROS
production in the mitochondria and contribute to the immune-
enhancing danger signals (71). Through this mechanism,
an array of events is triggered by the mitochondria that
ultimately activates the inflammasome and induces an anti-
tumor response (71).

Silent mating type information regulation 2 homolog (SIRT1)
and Hypoxia Inducible Factor 1 alpha (HIF1α) are two key
metabolic sensors that are highly involved in the immune
responses. Indeed, HIF1α constitutes the target of SIRT1 in
generating immune-mediated responses. It has been recently
discussed that these metabolic sensors can be involved in the two
main types of immune response (72). Thus, in innate immunity,
SIRT1 regulates the glycolytic activity of myeloid-derived
suppressor cells and influences their functional differentiation,
while inducing an increased NAD+ level in monocytes (73).
SIRT1-HIF1α tandem links innate and adaptive immunity with
SIRT1, which activates inflammatory T cell subsets through
NAD+. HIF1α stimulates glycolysis-associated genes and adjusts
the levels of ATP and ROS (74). When these metabolic sensors
induce deregulations of T-helper functions, various immune-
associated diseases arise; cancer is one of them (72).

At the organism’s level, cachexia is one of the clearest
examples linking inflammation and metabolism in cancer.
This metabolic syndrome is present in 80% of cancer patients.
The syndrome is characterized by massive weight loss with
marked muscle wasting (75, 76). Complex pathways regulate this
syndrome, including molecular and biochemical deregulation
inflammation-associated mechanisms. The communication
between the tumor and the skeletal muscle is still under
investigation; however, it has recently been shown that the
inflammatory signals which activate an increased catabolism
of the muscle are mediated by the exosomes transporting
muscle-specific miRNAs (myomiRs) (77). Indeed, myomiRs
per se modulate inflammatory pathways, and participate in
metastasis initiation through the regulation of protein synthesis
and degradation in skeletal muscle (77).

The tumor inflammatory local status regulates immune
cells toward pro-tumorigenic properties and allows therapeutic
modulation (78). Hence, novel therapeutic targets that will aim
metabolic important nodes would decrease the inflammatory
status and reprogram immune cells for an anti-tumoral response
(79). It is therefore suggested that an enhancement of the anti-
tumoral response of the immune systemwould overcome therapy
resistance (1).

DYSFUNCTIONAL
PROTEINS/DEREGULATED
TRANSCRIPTOMICS AFFECT TUMOR
CELL METABOLISM

Deregulated cell metabolism results in a myriad of dysfunctional
proteins that ultimately facilitate pro-tumorigenic processes.
Hence, aiming at specific metabolic nodes can lead to novel
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approaches in cancer therapy. For example, Verlande et al.
examined the effect of metabolic stress on ERK pathway in
melanoma cells characterized by NRAS or BRAF oncogenes
mutations (80). This approach showed that the two genomic
subtypes react differently when a higher level of metabolic stress
is induced. Metabolic stress in NRAS-mutant cells, activates
the ERK pathway while in BRAF V600E-mutant cells the
respective pathway is down regulated. Therefore, this recent
study underlines that the oncogene activation is affected by the
metabolic particularities of tumor cells (80). Likewise, KRAS
mutations detected in various human cancers, e.g., pancreatic
cancer, colorectal cancer, and non-small cell lung cancer were
shown to play a role in tumor cell aerobic glycolysis, as
recently discussed (81). Indeed, tumors with KRAS mutations
have an enhanced nutrient uptake, increased glycolysis and
glutaminolysis, and an increased synthesis of fatty acids and
nucleotides. Therefore, it is suggested that targeting metabolic
pathways can provide novel therapeutic approaches in tumors
exhibiting KRAS-mutations (81).

Another pro-tumorigenic mutation in the tumor suppressor
genes tuberous sclerosis complex (TSC)1 or TSC2 was
recently reported as being linked to metabolic disorders
(82). Importantly, the p62/sequestosome-1 (SQSTM1) protein
that accumulates in cells with increased mTORC1 with TSC1 or
TSC2 mutations, is involved in the pro-tumorigenic process (83).
Thus, Lam et al. showed that depleting p62 induces metabolic
alterations, including decreased intracellular glutamine,
glutamate and glutathione (GSH). Furthermore, p62 attenuation
induced modifications in mitochondrial morphology, reduced
mitochondrial membrane polarization, increased mitochondrial
ROS, andmitophagymarkers. All these findings indicate that p62
can be involved in the metabolic pro-tumoral pathways and thus
poses a potential therapy target (82). The starch binding domain-
containing protein 1 (Stbd1) is involved in autophagy, being a
selective autophagy receptor for glycogen. Importantly, Stbd1 is
also localized in mitochondria-associated membranes (MAMs).
Silencing this protein induced an increase in the spacing
between ER and mitochondria and an altered morphology
of the mitochondrial network, resulting in mitochondrial
dysfunction (84).

The hypoxic microenvironment of tumors induces alterations
in gene and protein expression that can lead to increased
therapeutic resistance (85). Thus, in a previous study, when HT-
29 cells that express hypoxia receptor carbonic anhydrase IX
(CA IX), were subjected to CA IX inhibitors, their proliferative
capacity was reduced. Furthermore, in a HT-29 xenograft
animal model, tumor growth inhibition was obtained upon the
utilization of the CAIX-silenced HT-29 tumor cells (86).

The type 1 alpha regulatory subunit (R1a) of cAMP-dependent
protein kinase A (PKA) (PRKAR1A) is an important regulator
of the serine-threonine kinase activity catalyzed by the PKA
holoenzyme (87). In adrenocortical lesions, the identification
of PRKAR1A, PDE11A, PDE8B mutations, and defects of
mitochondrial oxidation would lead to various tumors initiation,
as shown by Stratakis (88). In human B lymphocytes, PRKAR1A-
inactivating mutations induce an increased cell cycle rate
and decreased apoptosis, thus inactivating PRKAR1A can

influence several molecular pathways that control cell cycle and
apoptosis (89).

An important research field linking genomic alterations
and protein expression is transcriptomics, domain that is
also able to detect pro-tumorigenic metabolic traits (90).
Indeed, as discussed by Ong and Ramasamy, sirtuin 1 (SIRT1),
a member of the histone deacetylase family, inhibits p53
activity and, hence, it is involved in the main cellular
physiology processes, including aging, tumorigenesis and
reprogramming. Indeed, in aging, SIRT1 expression is closely
related to DNA damage, where aged cells are predisposed
to tumorigenesis. Interestingly, the Sirt1-p53 axis has dual
action acting both as a tumor suppressor and as a promoter,
depending on the SIRT1 localization. These authors conclude
that the SIRT1-p53 pathway is a potential regulatory axis for
aging and tumorigenesis and a possible target of therapeutic
strategies (91).

Camacho et al. have recently shown that RNA binding
proteins (RBPs) are also involved in metabolism indicating
correlation between transcriptomic traits of metabolism and
inflammation in cancer (92). These authors have demonstrated
that cold-inducible RNA binding protein (CIRP) binds to the
TLR4-MD2 complex in serum, and is a damage-associated
molecular pattern (DAMP) (92). Furthermore, while CIRP
activates the NF-κB pathway, it also alleviates mRNAs that
encode pro-inflammatory cytokines – a process important in
certain cancer types. In other pathological conditions, such as
wound healing, it decreases inflammation tissue regeneration,
suggesting that CIRP can modulate inflammation dependent on
the specific tissue context (93).

Other key players in the transcriptomics domain are
the long non-coding RNAs (lncRNAs) that have been
shown to be involved in several pathologies, including
cancer metabolism and inflammation. Under normal
conditions, lncRNAs are specific for the resident tissues
and are subject to strict regulation (94). However, in many
cancer types, the aberrant expression of lncRNAs which
controls the transcription of pro-tumorigenic genes would
drive metabolic pathways that facilitate cancer initiation
and progression. Thus, it is argued that lncRNAs can
be potential biomarkers for inflammation and metabolic
deregulation in cancer and can thus present potential therapeutic
targets (92).

Likewise, microRNA (miRNAs or miRs) are
post-transcriptional regulators of oncogene expression (95).
Recently, it has been shown that the Ras association domain
family member 1 (RASSF1) can be a tumor suppressor
controlling cell proliferation and apoptosis (96). Specifically,
it was demonstrated that the expression of RASSF1 in several
types of cancer is reduced, because of the hypermethylation
promoter. In this novel mechanism, RASSF1 expression is
regulated by miR-193a-3p binding to RASSF1-3’UTR that
suppresses mRNA generation and protein expression (96).
Thus, Pruikkonen et al. showed that following epigenetic
regulation, specific miRNA alterations can contribute to the loss
of Rassf1 in cancer cells, inducing the polyploidy of dividing
cells (96).
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METASTASIS AND ITS METABOLIC TRAIT

Tumorigenesis is a complex intermingled process where genetic
or epigenetic phenomena interact with the energetic homeostasis,
organelle activities (e.g., mitochondrial function) and the
cellular overall metabolome. These interacting processes are
perpetrated in the context of the inflammation mediated tumor
microenvironment that can either facilitate tumor progression or
dampen its evolution (97, 98). In addition, the changes of tumor
cell metabolism triggered by transcriptional programs alterations
in association with the inflammatory milieu can further render
tumor cell metastasis (99).

In terms of hindering metastasis at metabolic level, two
major therapeutic approaches have been proposed: one
focusing on increasing the extracellular pH that would obstruct
migration, invasion, and metastasis; and the other decreasing the
intracellular pH favoring apoptosis (100). In a recent study, it has
been shown that pH dysregulation in solid tumors was related to
the Warburg effect and hypoxia through the overexpression of
NHE1, H+ pump V-ATPase, CA-9, CA-12, MCT-1, and GLUT-
1. The activation of these proton exchangers and the associated
acidification of the tumor microenvironment is suggestive of
suitable therapeutic targets (101).

Another enzymatic process linked to the enhanced glycolysis
in cancer cells is the phosphorylation-induced activation
of lactate dehydrogenase A (LDHA). LDHA catalyzes the
interconversion of pyruvate and lactate and it has been recently
reported that the upstream mediators, HER2 and Src kinases
phosphorylate LDHA at tyrosine 10 (102). Importantly, in
head and neck cancer, as well as in breast cancer cell lines,
the expression of Y10-phosphorylated LDHA was positively
associated with cell invasion ability and anoikis resistance.
Generating cancer cells deficient in DHA or accomplishing
LDHA rescue expression has been shown to result in the
attenuated metastasis of these cells in a xenograft tumor model.
Importantly, the same authors determined that the level of
LDHA phosphorylation at Y10 was directly associated with the
progression of metastatic disease in a cohort of breast cancer
patient biopsies. That study suggested that LDHAY10 expression
can be utilized as a future therapeutic target and/or a prognostic
marker (102).

Recently, in the metastasis complex process, cancer stem cells
(CSC) were taken responsible for the initiation and development
of a neoplastic tissue, but moreover for the metastasis of
tumor and the therapeutic resistance. Current treatments cannot
specifically target CSCs and thus they are not successful for the
complete eradication of the tumor. Overall CSCs can survive
under genotoxic/therapeutic toxicity due to their drug efflux
pumps equipment, enhancedDNA damage repair machinery and
last, but not least special metabolic traits (103).

There are several metabolic portraits of CSC in various
solid tumors (104, 105). Thus, CSCs in liver cancer are
characterized by enhanced glycolysis, decreased fatty acid
biosynthesis (FAS) and OXPHOS. Glycolysis and OXPHOS
levels can be found both either increased or decreased in
glioma CSCs, whereas their FAS levels are increased. CSCs in
breast cancer have an enhanced glycolysis and FAS levels, but

decreased OXPHOS. Last, but not least, CSCs in colorectal
cancer are characterized by enhanced glycolysis and decreased
OXPHOS. These distinct CSC metabolic phenotypes suggest the
importance of a thorough investigation when drugs directed
toward metabolic deregulations are searched (105).

In a recent report, it has been shown in various metastatic
cell lines that by silencing the expression of the mitochondrial
protein VDAC1, human glioblastoma (U-87MG), lung cancer
(A549), and triple negative breast cancer (MDA-MB-231) cell
lines have had an inhibited proliferation. Moreover, by silencing
this protein, stemness was inhibited and hence the capacity
to develop metastasis. It is interesting that VDAC1 silencing
increased the expression of p53 and decreased the expression of
HIF-1a and c-Myc; this silencing practically rewired cancer cell
metabolism in various types of cancer (e.g., breast, lung cancer,
and glioblastoma) (106).

As metastasis is one of the major processes in cancer,
leading to tumor cells spreading to other tissues, there is an
increased need to understand metabolic requirements of the
metastasizing tumor cell as its specific metabolic pathways that
further influence on cell signaling and differentiation. Moreover,
knowing that tumors are highly heterogeneous, when searching
to improve therapy, different metabolic traits characterize
resident populations; therefore, different therapeutical targets
should be accounted.

THERAPY HIGHLIGHTS FOR TARGETING
MITOCHONDRIA IN APOPTOSIS
INDUCTION

As elaborated in the previous sections, mitochondria is involved
in tumorigenesis through the following main mechanisms:
mitochondrial ROS inducing the accumulation of oncogenic
DNA mutations and activation of oncogenic signaling pathways
(46), accumulation of particular mitochondrial metabolites
[e.g., fumarate, succinate, 2-hydroxyglutarate (2-HG), with
pro-tumorigenic action (107)] and functional deficits in
mitochondrial permeability transition (MPT) that induce the
survival of tumor cells (108, 109).

All these mechanisms that are governed by mitochondria are
targeted for apoptosis induction in the tumor cell.

Apoptosis is an intrinsic process that regulates physiological
events, such as the removal of damaged/un-needed cells and
is obligatory for tissue homeostasis (110). This process is fine-
tuned in order to differentiate between normal and abnormal
cells, including neoplastic cells. During the apoptotic process,
the cells die in a controlled manner, in contrast to necrosis,
that is an uncontrolled cellular event. Indeed, there are several
types of programmed cell death, e.g., autophagic cell death,
necroptosis and pyroptosis; however, the only cell death process
dependent on mitochondrial pathways that is also caspase-3, -6
and 7-dependent, is apoptosis (111). Apoptosis is sustained by
complex regulatory mechanisms and, in oncology, this is one
of the biological pathways that controls the number of tumor
cells, and hence, tumor growth. Indeed, neoplastic-transformed
cells acquire, during their transformation, numerous deregulated

Frontiers in Oncology | www.frontiersin.org 6 May 2019 | Volume 9 | Article 348

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Neagu et al. Inflammation and Metabolism

intracellular pathways that disrupt the physiology of an array
of cellular organelles. Thus, the mitochondria, endoplasmic
reticulum, Golgi apparatus, proteasomes, and lysosomes have
been reported to exhibit multiple deregulations in tumor cells and
subsequently, to present possible therapeutic targets in oncology
(112). In fact, in 2018, the Nomenclature Committee on Cell
Death (NCCD) had issued important guidelines that provide
the hallmarks of cell death characterized by morphological,
biochemical and functional parameters; the overview of the
main characteristics of cell death hallmarks are presented in
Table 1 and reviewed in several papers (113, 114, 116, 124).
In all the presented cell death pathways, the complex system
of mitochondria is one of the most important, if not the
central organelle.

There is an array of compounds, known as mitocans, which
target various mitochondrial components in the attempt to
induce apoptotic fluxes (125, 126). Therefore, hexokinase
inhibitors target hexokinase that is expressed at higher levels
in cancer cells, binding both ATP and glucose and resulting in
the production of glucose-6-phosphate (G6P), a substrate for
the main metabolic pathways. Another class of mitocans, BH3
mimetics are compounds that mimic the Bcl-2 homology-3
(BH3) domains, integral parts of Bcl-2 family of proteins.
BH3-only proteins, important players of the mitochondrial-
related pathway, can stimulate directly pro-apoptotic Bax-like
proteins or can interfere with antiapoptotic Bcl-2 proteins
(127). Indeed, Pokrzywinski et al. showed in 2016 that
mitochondria-targeted agents (MTA) [e.g., mitoquinone—
MitoQ, triphenylphosphonium (TPP+) conjugated agents], can
kill breast and lung cancer cells by enhancing ROS production.
It was demonstrated that MTAs decrease mitochondrial DNA
(mtDNA) integrity in MDA-MB-231 and H23 tumor cell
lines, the destruction of these cancer cell lines being based
on hindering mitochondrial homeostasis (128). Thiol redox
inhibitors, agents targeting voltage-dependent anionic channel
(VDAC), and adenine nucleotide translocase (ANT) represent
another group of mitocans (129). Importantly, cancer cells have
high intrinsic levels of ROS; therefore, compounds that shunt
the anti-oxidative potential, such as compounds that oxidize the
thiol group or deplete the mitochondrial GSH will increase the
ROS-mediated apoptosis of the cell (130).

Another class of mitocans comprises compounds that affect
the mitochondrial ETC (131) and tamoxifen in breast cancer
cells will induce apoptosis by hindering FAD-binding site in
ETC (132). Importantly, lipophilic cations can directly target the
mitochondrial inner membrane. Cancer cells have a high trans-
membrane potential compared to non-transformed cells and
thus, this type of cations will preferentially target transformed
cells (133). Compounds that directly affect the TCA (Krebs
cycle) will also affect the electrons streaming into ETC. An
example of this compound type is the one that affects the
conversion of pyruvate to acetyl-CoA, during TCA. As shown
by Truksa et al. some of these compounds comprise the ones
that interfere with mtDNA, some affect DNA polymerases,
whereas others suppress the D-loop transcript levels (134). A
schematic overview of the main mitocan classes is presented
in Figure 1. It is promising that several of these compounds

have already received clinical approval for the therapy of certain
cancer types, including the combination of metformin and 2-
deoxyglucose in prostate cancer (135), while BH3 mimetics was
approved for chronic lymphocytic leukemia (136). Finally, as
alreadymentioned, tamoxifen, a known drug in estrogen-positive
breast cancer, actually interferes with the mitochondrial complex
I, namely by the FAD-binding site (132, 137).

Various small molecule classes have been utilized for the
induction of the mitochondrial-dependent apoptosis processes
(138). Another viable strategy discussed by Fulda is the
combination of apoptosis-inducing factors, such as small
molecules that antagonize anti-apoptotic Bcl-2 proteins (BH3
mimetics) with drugs targeting the PI3K/Akt/mTOR signaling
cascade (139). Indeed, antisense compounds that inhibit Bcl-2
protein production combined with antibodies that bind to death
receptors (tumor necrosis factor-related apoptosis-inducing
ligand), to MHC (HLA-DR), initiate cancer cell apoptosis. Many
types of neoplasias evade pro-apoptotic signals, increasing anti-
apoptotic proteins BCL-2, BCL-XL or MCL-1. Therefore, it is
concluded that BH3 mimetic drugs can drive the mitochondrial
apoptotic pathway in cancer cells; however, given that most
cancers can evade apoptotic pathways by different methods,
these drugs should be associated with other apoptosis-inducing
pathways, such as the PI3K/Akt/mTOR signaling cascade (139).
Importantly, BH3 mimetics are gaining increased interest, being
currently assessed in clinical trials (140).

The inhibition of the expression of SRC-3 or PFKFB4 in
animal models of breast cancer has been shown to lead to
reduced tumor growth and metastasis. In breast cancer patients,
PFKFB4 expression is increased along with enhanced levels
of phosphorylated SRC-3 mainly in estrogen receptor-positive
tumors and is associated with a poor survival. Therefore, the
results of that study couple the enzyme PFKFB4, an effector of
the Warburg pathway, with tumor aggressiveness (41).

The reduction of ATGL enhances oxidative stress and
proinflammatory cytokine synthesis metabolically designing an
inflammatory tissue microenvironment (29). In this milieu,
fibroblasts, endothelial cells and leucocytes are prone to
uncontrolled proliferation, further increasing the redox pattern
that contributes to tumorigenesis, as proven in medulloblastoma
cell lines (30). In hematological malignancies, it has been shown
that shingolipid metabolism can be a future therapy target. Thus,
reduced cellular ceramide level correlates with tumorigenesis and
drug resistance. Drugs that can regulate sphingolipid metabolism
can have anti-cancer potency, augmenting the efficacy of
additional anti-cancer therapeutics (141).

ROS-dependent therapies that target mitochondria, range
from photodynamic therapy, to compounds such as retinoic acid
and arsenic trioxide that directly target sub-structures (142). It
has been recently shown that ROS can modulate microtubule
dynamics in the course of the EB1 phosphorylation process (143).

MPT, a polyprotein complex, regulates mitochondrial
homeostasis and apoptosis-related processes, among which
is the translocation of the pro-apoptotic proteins Bax/Bcl-2
into the cytosol (144). Therefore, as discussed by Deniaud
et al. the permeability transition pore can be an interesting
therapeutic target in cancer, as peptides aimed to this complex
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TABLE 1 | Main cellular death pathways and their characteristics.

Cell death pathway Specific features References

Intrinsic apoptosis - Induced by various alterations of the extracellular or intracellular milieu and delineated by

mitochondrial outer membrane permeabilization.

- The key molecule in intrinsic apoptosis is caspase-3

- Plasma membrane integrity is preserved, whereas metabolic activity is partially preserved

- During the evolution of the process, rapid clearance by phagocytes (e.g., macrophages) is

observed, a process usually known as efferocytosis.

- A specific variant of intrinsic apoptosis is anoikis, which is initiated by the loss of

integrin-dependent attachment to the extracellular matrix.

(110)

Extrinsic apoptosis - Is initiated by distress signals originating from the extracellular setting and detected by plasma

membrane receptors, intracellurarly transmitted by caspase-8 and mainly executed by

caspase-3, similar to intrinsic apoptosis.

- Death receptors activated by appropriate ligand binding and dependence receptors activated by

a specific expression of their respective ligands are involved in extrinsic apoptosis

(110)

Mitochondrial permeability transition

(MPT)-driven necrosis

- It is triggered by severe intracellular microenvironment perturbations, such as oxidative stress and

cytosolic Ca2+ overload

- Displays a necrotic morphotype/phenotype

- It mostly relies on cyclophilin D as one of the main regulator of the permeability transition pore

complex functioning

(113)

Necroptosis - Initiated by extracellular/intracellular homeostasis alterations

- Is a caspase-independent regulated cell death accomplished by the receptor-interacting protein

kinases and mixed lineage kinase domain-like protein

(114)

Ferroptosis - Viewed sometimes as a form of necroptosis, it is initiated by oxidative deregulations at an

intracellular level

- Reduced glutathione (GSH)-dependent enzyme glutathione peroxidase 4 exerts a constitutive

control in ferroptosis

- Process inhibitors: Iron chelators and lipophilic antioxidants

(115)

Pyroptosis - It is a caspase-1-dependent pro-inflammatory cell death induced by alarmins activation

- It is executed via inflammasome setting

- It is accomplished through membrane integrity loss resulting in extracellular release of

pro-inflammatory cytokines, ROS and other intracellular contents

(116)

Parthanatos - Initiated by the hyperactivation of a specific component of DNA damage response mechanism,

namely poly(ADP-ribose) polymerase 1

- Correlated DNA fragmentation is mainly caused by apoptosis inducing factor mitochondria

associated 1 and Macrophage migration inhibitory factor

- It occurs as a consequence of severe alkylating DNA injury, and as a response to oxidative stress,

hypoxia or inflammatory signals

(117)

Entotic cell death - Type IV cell death or cellular cannibalism

- Entosis is defined by a cell-in-cell structure in which viable cells engulf other cells

- Engulfed cells are subjected to lysosomal degradation by host cells.

- Often tumor cells are eliminated by entosis suggesting a tumor suppressive role

(118)

NETotic cell death - Initially described in neutrophils where neutrophil extracellular traps (NETs) performed NETosis for

trapping and degrading various microbes

- Now considered as a type of cell death restricted to cell of hematopoietic origin, with

ROS involvement

(119)

Lysosome-dependent cell death - Lysosome membrane permeabilization is a key event

- Accelerated by cathepsins, while caspases and mitochondrial outer membrane permeabilization

could be an optional event

(120)

Mitotic death - Merely a variant of intrinsic apoptosis

- Led by mitotic catastrophe which is viewed as a control mechanism for mitosis-incompetent cells

(121)

Autophagy-dependent cell death Type of cell death strongly relying on autophagic machinery (122)

Immunogenic cell death Lethal process that activates an adaptive immune response in immunocompetent hosts (123)

can induce targeted apoptosis (145). Likewise, Constance
and Lim have argued that the disruption of protein-protein
interactions with therapy peptides can initiate mitochondrion
apoptosis (146). Furthermore, it is well-established that drugs
which induce DNA damage can stimulate caspase-independent
mitochondrial biogenesis, which further induces both cellular

and mitochondrial ROS production. Consequently, these
events hinder mitochondrial protein-folding equipment (147).
Indeed, Yadav et al. showed that anti-cancer agents that
deregulate caspase activation induce the decreased release of
mitochondrial cytochrome c in complex-I-deficient cells. Of
note, doxorubicin, a DNA-damaging mediator exhibits high
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FIGURE 1 | Schematic presentation of strategies utilized in mitochondrial therapeutic targeting. There are several types of mitocans that can target components

appending to the outer mitochondrial membrane, to the inter-membrane space, to the cristae membrane and to the matrix. Hexokinase (HK), voltage-dependent

anionic channel (VDAC) and adenine nucleotide translocase (ANT) can be targeted by inhibitors that will disrupt main metabolic pathways and the anti-oxidative

potential of tumor cells (48, 106, 129); The mitochondrial electron transport chain, producing energy by transporting electrons can be targeted by specific inhibitors

(131, 132); BH3 mimetics can impair the function of the anti-apoptotic Bcl-2 and Bcl-x2 family proteins (76, 127); lipophilic cations can directly target the

mitochondrial inner membrane and hinder mitochondrial transmembrane potential; compounds that affect directly the tricarboxylic acid cycle (Krebs cycle), affect the

electrons stream into the electron transport chain (133); inhibitors that target the conversion of pyruvate (Pyr) to acetyl-CoA (AcCoA) hinder the tricarboxylic acid cycle

(67); inhibitors that interfere with the mitochondrial DNA (mtDNA) affecting DNA polymerases or transcript levels (46, 83) (green arrows).

affinity to mitochondria, attenuated by complex-I-deficiency but
not by complex-II-deficiency. Yadav et al. therefore point out the
need to apply subtle strategies upon targeting the mitochondria
in cancer therapy (148). Moreover, it has been argued that as
pyruvate dehydrogenase kinase (PDK) converts pyruvate to
mitochondrial acetyl-CoA, fueling Krebs’ cycle, inhibiting this
enzyme with, e.g., small interfering RNAs or dichloroacetate
(DCA), would shunt glycolysis to glucose oxidation and favor
apoptosis (149). Bim, a pro-apoptotic molecule has also been
examined as a cancer therapeutic strategy (150). Indeed, Bim
favors anoikis, a form of programmed cell death that occurs
in anchorage-dependent cells when they detach from the
surrounding extracellular matrix. In many tumor cells (e.g., lung
cancer, breast cancer, osteosarcoma and melanoma) Bim has
been proven to favor anoikis. Tyrosine kinase inhibitors, such as
imatinib, gefitinib, or proteasome inhibitors, such as bortezomib,
have been investigated as Bim-targeting agents, as recently
discussed (151). Moreover, links between mitochondria and
other cellular organelles have been scrutinized for anti-cancer
therapies. Hence, drugs that hinder microtubule physiology are
inducing mitochondrial intrinsic apoptotic pathways. Distinct
interconnections between mitochondrial and microtubule
intracellular networks would further improve the efficacy of
therapeutic drugs (152).

NO, a type of reactive oxygen species (ROS), is an important
cellular mediator in both normal cells and neoplastic cells (153).
In vivo, NO produced by the enzyme NO synthetase (NOS),
has been proven to be involved in altered an metabolism,
invasiveness, chemoresistance and immune evasion (152, 153).
Recently, as discussed by Salimian Rizi et al. in the tumor
microenvironment, NO plays a dual role. It can mediate

immune responses, while it can induce post-translational protein
modifications and tumor-promoting epigenetic modifications.
Salimian Rizi et al. suggest that NO metabolism is a potential
therapy target in cancer along with other metabolic pathways
(154). Likewise, the expression/activity of other ROS-related
enzymes, including the antioxidant enzyme catalase can be
altered in tumors and, as cancer cells have a high ROS
production, this antioxidant enzyme should be thoroughly
investigated. Indeed, Glorieux and Calderon discuss that the
redox status of tumors and the therapeutic control of catalase
expression can aid standard therapy (155).

A recent development in the field is the involvement
of autophagy in the process of tumorigenesis (156). In
this process, the mitochondria is highly involved, autophagy
supplying substrates for mitochondrial metabolic function.
The inhibition of TCA alters the production of metabolites
that can further deregulate dioxygenases, inducing epigenetic
alterations driving tumorigenesis. By contrast, the inhibition of
mitochondrial respiratory function and ETC can be injurious to
tumorigenesis (157).

A novel mitochondrial inhibitor entered phase I clinical
study in patients with pancreatic cancer. CPI-613 is an
analog that hinders two mitochondrial enzymes: pyruvate
dehydrogenase and α-ketoglutarate dehydrogenase (158, 159).
This new mitochondria-related drug was given in combination
withmodified FOLFIRINOX (160). The disease control, response
and complete response rates were improved in comparison
to FOLFIRINOX (161). As the results were positive in 2019,
continuation of testing in phase II and III are expected (55).

As apoptosis is such an important process in oncology,
apoptotic inducers constitute one of the major players in
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FIGURE 2 | The characteristics of tumor cells and respective targeted therapies. Deregulated metabolism can be targeted with pro-aerobiotic glycolysis inhibitors

(52); deregulated cell cycle and increased uncontrolled cellular proliferation can be targeted with pro-apoptotic BH3 mimetics (76, 127); acquired genome instability

can be targeted with PARP inhibitors (164); the evasion mechanisms of tumor cell from the anti-tumoral immune response can be controlled by immune activating

mAbs (165); enhanced migration capacity of the tumor cell can be targeted with inhibitors HGF/c-Met (166); the angiogenic capacity can be shunted using inhibitors

for VEGF signaling; pro-inflammatory properties of the tumor cell can be hindered by selective anti-inflammatory drugs (167).

anti-tumoral therapeutical approaches. The development of
multi-cellular tumors proves the acquired apoptosis resistance
of the tumor cell. The therapeutical armentarium inducing
apoptosis implies the use of small molecules, antisense
oligonucleotides, monoclonal antibodies, recombinant proteins
and various chemical compounds (162) to overcome the
adaptability of tumor cells within the established tumor tissue.

Probably the main problem when targeting mitochondria is
the modality to differentiate tumor cells in the context where
these cells are in close contact with anti-tumor immune cells, in
particular CD8+ cytotoxic T lymphocytes. Refined therapeutic
approaches where tumor cell are reprogrammed to enter cell
growth arrest while immune cells are at least rendered with
insensitiveness would have a serious therapeutic potential for
cancer therapy (163).

SUMMARY

Cancer metabolism has been the focus of many researchers over
the past years. This has resulted in the introduction of metabolic
markers to clinical practice for disease monitoring and for the
assessment of the therapeutic response. Importantly, a majority
of 80% of tumor cells use intracellular signaling pathways that
develop aerobic glycolysis, the so-called Warburg effect. Cancer

cells utilize enzymes with recently discovered functions, such as
PFKFB4, that introduces phosphate groups to proteins, which
may contribute to the tumorigenesis of various solid cancers.
Moreover, the changes of metabolism can trigger transcriptional
programs alterations associated with the inflammatory milieu,
accelerated cellular proliferation and metastasis (41). Indeed,
deregulated metabolism affects many tumor cell functions, which
may constitute therapeutic targets (Figure 2).

One of the major goals of anti-cancer therapy is the induction
of the apoptotic machinery and, as the mitochondrial pathway
of apoptosis is the main route in this process, mitochondrion
physio/pathology is the core of developing novel anti-cancer
drugs. There is a panel of molecules that are structurally
and functionally appended to the mitochondria and all these
molecules can be targeted in anti-cancer therapies. Importantly,
these drugs can multi-functionally target the cancer cells. There
are various mitochondrial targets that are developed and some of
these have already been tested in clinical trials1. These drugs can
be used individually or in combination with other therapeutic
agents. Thus, the development of novel mitochondrial drug
delivery systems, nanostructures or multifunctional chemical
compounds for targeted cancer therapy is imminent (168).

1https://clinicaltrials.gov/ct2/results/details?recrs=a&intr=mitochondria&age=1
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Jointly, the information gathered over the past decades has
strengthened the role of the mitochondria in normal physiology
and in pathology, a recognition that is highlighted by the
emergence of “Mitochondrial Medicine” (169). Recently
emphasized, tumorigenesis per se was shown as a mitochondrial
disease where metabolically high jacked mitochondria becomes
highly dependent on glucose and glutamine and, through
mitochondrial therapy targets, new therapeutical avenues can be
opened (170).

The mechanisms that link metabolic reprogramming,
transcriptional regulation, and pro-inflammatory picture of
tumorigenesis remain to be elucidated in order to design
multi-targeted therapies in cancer.
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