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Decades of research have disclosed a plethora of alterations in protein glycosylation that

decisively impact in all stages of disease and ultimately contribute to more aggressive

cell phenotypes. The biosynthesis of cancer-associated glycans and its reflection in the

glycoproteome is driven by microenvironmental cues and these events act synergistically

toward disease evolution. Such intricate crosstalk provides the molecular foundations

for the activation of relevant oncogenic pathways and leads to functional alterations

driving invasion and disease dissemination. However, it also provides an important source

of relevant glyco(neo)epitopes holding tremendous potential for clinical intervention.

Therefore, we highlight the transversal nature of glycans throughout the currently

accepted cancer hallmarks, with emphasis on the crosstalk between glycans and the

tumor microenvironment stromal components. Focus is also set on the pressing need

to include glycans and glycoconjugates in comprehensive panomics models envisaging

molecular-based precision medicine capable of improving patient care. We foresee

that this may provide the necessary rationale for more comprehensive studies and

molecular-based intervention.
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INTRODUCTION

Genetic and epigenetic alterations are considered primary causes of cancer development, with
downstream phenotypic changes at the protein level being amongst the driving forces of cancer
progression and dissemination. Specifically, post-translational modifications, as glycosylation,
impact on protein trafficking, stability and folding, ultimately altering its biochemical, and
biophysical properties (1, 2). Moreover, glycans dictate proteolysis patterns and directly mediate
ligand-receptor interactions, oncogenic signaling transduction, immune recognition, migration
and both cell-cell and cell-matrix adhesion (3–5). In addition, intracellularO-GlcNAc glycosylation
(in Ser/Thr residues) of proteins plays a major role in cell physiology and signaling by direct
competition with phosphorylation (6). As such, several studies have so far disclosed a plethora
of glycans that confer selective advantage to tumor cells, while providing important surrogate
biomarkers for specific biological milieus (7, 8). Moreover, while there are few evidences of
mutations in genes involved in glycosylation pathways, it is well known that transcriptional
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and metabolic reprograming of cancer cells has tremendous
impact on their glycome and glycoproteome, leading not only
to the overexpression but also to the de novo expression of
specific glycoepitopes (9, 10). Despite its sour side, cancer-specific
alterations in protein glycosylation provide a unique opportunity
for clinical intervention. The uniqueness of the createdmolecular
features may be explored to selectively target tumor cells or may
provide non-invasive biomarkers after secretion or shedding into
body fluids from tumor sites (11, 12).

Building on these findings, the glycobiology field has
been progressing toward a more functional understanding of
glycosylation impact on cancer biology, disease progression, and
dissemination. While specific details on the biosynthesis and
diversity of cancer-associated glycans may be found in recent
reviews (7, 8), the following sections attempts to highlight the
transversal nature of glycans, glycoproteins, and glycan-binding
proteins throughout currently accepted cancer hallmarks,
with emphasis on the crosstalk between glycans and the
stromal components of the tumor microenvironment (Figure 2).
These comprehend: (i) sustained proliferative signaling; (ii)
resistance to cell death; (iii) deregulated cellular energetics;
(iv) evasion of growth suppressors; (v) genome instability
and mutations; (vi) replicative immortality; (vii) induction of
angiogenesis; (viii) activation of invasion and metastasis; (ix)
tumor-promoting inflammation; and (x) immune escape (13).
Moreover, we highlight the significance of the most promising
protein glycosignatures in cancer arising from the cancer cells-
microenvironment crosstalk, its relevance and main milestones
facing clinical translation and personalized medicine, as well as
the opportunities provided by high-throughput glycomics and
glycoproteomics toward molecular-based precision oncology.
We foresee that this may provide the necessary rationale for more
comprehensive studies and molecular-based intervention.

PROTEIN GLYCOSYLATION IN CANCER

Glycosylation is the most common, structurally diverse and
complex posttranslational modification of membrane-bound
proteins, being a non-templated but highly regulated process that
rapidly changes in response to physiological and pathological
contexts. Glycans result from the highly coordinated action
of nucleotide sugar transporters, glycosyltransferases (GTs) and
glycosidases in the endoplasmic reticulum (ER) and Golgi
apparatus (GA). Two main classes of glycans can be found
in membrane and extracellular glycoproteins: (i) O-GalNAc
glycans, initiated in the GA by the attachment of a GalNAc
to the hydroxyl groups of serine (Ser) or threonine (Thr)
residues, forming the simplest O-glycan Tn antigen (GalNAcα-
Ser/Thr). The Tn antigen may be further elongated into different
core structures that serve as scaffolds for more complex O-
GalNAc glycans; (ii) N-glycans, whose biosynthesis starts in
the ER with the addition of an oligosaccharide chain to an
asparagine (Asn) residue in a peptide consensus sequence of
Asn-X-Ser/Thr (X denotes any amino acid except proline). N-
glycans experience further structural maturation in the GA
to yield either partially unprocessed oligomannose antenna or,

more frequently, complex or hybrid type structures, which
frequently experience further elongation. Both O- and N-
glycan chains are generally branched and/or elongated and
may present sialic acids, Lewis blood group related antigens or
ABO(H) blood group determinants as terminal structures (8).
Further glycan diversity results from several modifications in
individual sugars, including O-Acetylation of sialic acids and O-
Sulfation of galactose and N-acetylglucosamine residues. Mature
glycans may still experience structural remodeling at the cell-
surface by extracellular glycosyltransferases and glycosidases
freely circulating in the plasma or carried by platelets, further
increasing the glycome’s structural complexity and dynamic
nature (14–16). In addition, other less abundant and far less
studied classes of protein glycans can be found at the cell
membrane, including O-Fucosylation, O-Mannosylation, O-
glucosylation, and C-Mannosylation (17–19). This provides a
wide array of potential posttranslational modifications that
decisively contribute to define protein functional roles.

In addition to the structural modification of extracellular
and cell membrane proteins, intracellular proteins can
also be glycosylated with functional implications. Namely,
intracellular glycosylation results from the reversible attachment
of a N-acetylglucosamine moiety (β-linked GlcNAc) to
Ser or Thr residues in cytoplasmic and nuclear proteins
(20–22). The GlcNAc residue is generally not elongated
or modified to generate complex structures (23). The
dynamic cycling of O-GlcNAcylation is catalyzed by two
ubiquitously expressed and highly conserved enzymes:
uridine diphospho-N-acetylglucosamine:polypeptide β-N-
acetylglucosaminyltransferase (O-GlcNAc transferase, OGT),
which adds GlcNAc to the hydroxyl side chain of Ser and
Thr, and N-acetyl-β-D-glucosaminidase (O-GlcNAcase, OGA),
the enzyme that removes O-GlcNAc. This posttranslational
modification has regulatory functions akin to phosphorylation,
modulating protein conformation, stability, and reversible
multimeric protein assembly (24). Moreover, it functions as a
nutrient sensor, providing a biochemical switch to enable the
cell adaptation to glucose level alterations and hormonal cues,
while regulating a myriad of cellular processes like cellular
adhesion, DNA transcription, translation, nuclear transport, and
cytoskeletal assembly (25, 26). Interestingly; different isoforms
of OGT and OGA vary in length and subcellular localization,
suggesting that they target distinct subsets of the proteome (27).

It has been long known that advanced tumors present severe
dysregulations in glycosylation pathways, with tumor-associated
carbohydrates arising from incomplete or neo-synthesis
processes (28). Of note, incomplete synthesis originating
truncated structures is more common in early carcinogenesis
(29, 30), while the de novo synthesis of neoantigens is more
frequent in advanced stages of several cancers (31). The most
reported alterations associated to cancer include the over- and/or
de novo expression of short-chain O-GalNAc glycans (Tn, T,
Sialyl-T, and Sialyl-Tn), Lewis blood group related antigens
and their sialylated counterparts [sialyl-Lewis A (SLea) and
X (SLex)], as well as complex branched N-glycans (32–34)
(Figure 1). Many of these structural features are common to
most advanced solid tumors and often associate with poor
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FIGURE 1 | Main classes of glycans modulating cancer hallmarks. N-glycans, whose biosynthesis starts in the endoplasmic reticulum (ER) with the addition of an

oligosaccharide chain to an asparagine (Asn) residue, experience further structural maturation in the golgi apparatus (GA) to yield complex bisected and branched

structures. O-GalNAc glycans, initiated in the GA by the attachment of a GalNAc to the hydroxyl groups of serine (Ser) or threonine (Thr) residues, forming the simplest

O-glycan Tn antigen (GalNAcα-Ser/Thr), may be further elongated into different core structures that serve as scaffolds for more complex O-GalNAc glycans. Both O-

and N-glycan chains are generally branched and/or elongated and may present sialic acids, Lewis blood group related antigens and/or their sialylated counterparts as

terminal structures. Proteoglycans constitute another class of functionally complex glycoconjugates found as transmembrane, basement membrane and extracellular

matrix (ECM) components, exhibiting one or several high molecular weight glycosaminoglycan (GAG) chains covalently attached to a protein core. The figure highlights

the structures of some of the most relevant glycans and glycoconjugates driving cancer hallmarks.

prognosis, suggesting common molecular mechanisms, which
is yet to be proven. Nevertheless, distinct proteome signatures,
glycosylation density, and glycosite distribution may ultimately
dictate organ, cell-type and cancer-specific molecular signatures
and clinically relevant glycoforms.

Another class of cell-surface glycoconjugates that populate
the cell surface and extracellular matrix are proteoglycans,
generally composed of one or several high molecular weight
glycosaminoglycan (GAG) chains, and composed of sulphated
disaccharide repeating units of chondroitin sulfate (CS), heparan
sulfate (HS), or dermatan sulfate (DS) covalently attached to
a protein core (Figure 1). These polymers can be found as
transmembrane, basement membrane and extracellular matrix
(ECM) components, presenting high affinities for various ECM
constituents and cell adhesion molecules. As such, proteoglycans
largely contribute to the acquisition of cancer hallmarks by
playing a role in intercellular and ECM interactions, as well as
in cellular signaling, especially as co-receptors for growth factors
and tyrosine kinase receptors (35, 36).

Overall, the most widely occurring glycosylation
modifications in cancer stem from alterations in glycan
length, often toward shorter O-glycans and more branched
N-glycans. This is accompanied by critical changes in
glycans sialylation and fucosylation that impact on the
nature of terminal epitopes at glycan chains. In addition,
several changes in glycan chains have been reported for
glycosaminoglycans (GAG). The structural nature of glycan
alteration in cancer and underlying biosynthesis mechanisms
have been comprehensively reviewed in recent years (7, 8, 37)
and will not be covered in detail here. Aberrant glycosylation
actively contributes to tumor progression by regulating tumor
proliferation, invasion, metastasis, and angiogenesis (7, 38),
being frequently cited as a hallmark of cancer (39). As such,
we reinforce this notion by highlighting aberrant glycosylation
as an integral part of all recognized cancer hallmark traits.
Furthermore, we include the cabal contribution of stromal
cells and microenvironmental features for tumor progression
and aggressiveness.
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TUMOR MICROENVIRONMENT AND
GLYCOSYLATION CROSSTALK TOWARD
THE HALLMARKS OF CANCER

The glycocalyx, combining glycoproteins and sugar moieties
located on the external side of the plasma membrane, drives the
interplay between cancer cells and the tumor microenvironment
(TME), a complex scaffold of extracellular matrix (ECM)
and various cell types. Both glycans, glycoconjugates and
the TME actively contribute to the acquisition of cancer
hallmarks, adding another dimension of complexity to cancer
progression by influencing cell adhesion and cell-cell recognition,
as well as intracellular signaling and ECM interactions
(8, 40, 41). Herein, we will highlight the glycosylation-
mediated promotion of cancer hallmarks, including the role of
stromal cells.

Sustained Proliferative Signaling
Malignant cells are characterized by uncontrolled proliferation,
largely due to the loss of homeostasis in the production,
release, and affinity for growth-promoting signals. That said,
cancer cells may rely on autocrine proliferative signaling or
stimulate stromal cells to supply them with mitotic factors to
sustain proliferation. For instance, endothelial and infiltrating
immune cells secrete growth-promoting factors that paracrinaly
stimulate neoplastic cells proliferation independently from
blood-borne factors (42, 43). Moreover, tumor and immune
cells-promoted ECM remodeling uncages mitogenic agents
while disabling growth suppressing adhesion complexes, thereby
maintaining the proliferative potential of cancer cells (44).
Furthermore, several ECM proteoglycans, mainly produced
by cancer-associated fibroblast (CAF), regulate proliferative
signaling in adjacent tumor cells (Figure 2A). For instance,
CAF-derived proteoglycans syndecan-1 and versican promote
proliferation of human breast cancer cells (45–47) and myeloma
tumors (48), mainly by influencing EGF receptor signaling.
Likewise, transmembrane syndecan-2 expression appears to
be critical for colon carcinoma cell behavior by mediating
increased adhesion and proliferation (49). Also, the ECM
multifunctional heparan sulfate proteoglycan perlecan strongly
augments the binding and mitogenic activity of basic fibroblast
growth factor (bFGF), contributing to sustained tumor cell
proliferation by FGF pathway activation (50). In line with this,
fibroblast-derived hyaluronic acid (HA) paracrinally enhances
the in vitro proliferation of melanoma cells, while proteins
secreted by tumor cells further increase HA synthesis in CAFs
in a phosphatidylinositol 3/mitogen-activated protein-kinase-
dependent manner (51). On the other hand, the small leucine-
rich proteoglycan decorin, expressed primarily by myofibroblast,
autocrinally, and paracrinally reduces tumor growth and
metastasis in murine xenograft models by downregulating EGFR
and Met receptors (52), while inhibiting tumor growth factor
β (TGF-β) signaling (53). Decorin also activates ERBB4, which
blocks the phosphorylation of heterodimers containing either
ERBB2 or ERBB3, thereby suppressing cell growth in mammary
carcinoma cells (54). These findings suggest that CAF-derived

proteoglycans mainly act as positive regulators of sustained
proliferative signaling. In line with this, adipocyte-derived
ECM collagen VI affects early mammary tumor progression
in vivo via signaling through the NG2/chondroitin sulfate
proteoglycan receptor expressed on tumor cells (55). Thereby,
stromal adipocytes also constitute active players in driving
tumor cell proliferation. Of note, the mechanisms through which
proteoglycans enforce their action are not fully elucidated and the
true implications of GAG chains are yet to be fully clarified. Given
these insights, the reciprocal communication between neoplastic
and stromal cells is essential to maintain mitogenic factors supply
to sustain cellular proliferation.

Glycosylation adds a second level of proliferation regulation
by mediating growth factor receptor activation and structural
alterations (Figure 2A). Namely, the O-GlcNAc modification
of transcription factors involved in cell cycle progression,
such as factor forkhead protein M1 (FoxM1), cyclin D1,
and c-MYC, stabilizes them and contributes to oncogenesis
(56, 57) (Figure 2A). Moreover, numerous cell-surface tyrosine
kinase receptors (RTK), including EGFR, FGFR, PDGF, c-
MET, ERBB2/HER2, and IGFR are known to be regulated
by cancer-associated glycans (58–60), glycosyltransferases (61),
and proteoglycans (62–65). For instance, the degree of N-
glycan branching of several RTKs contributes to its capability
to induce or arrest cellular proliferation (66, 67). Showcasing
this, studies with CHO cells demonstrated that the Asn418-
linked N-glycan in ERBB3 plays an essential role in regulating
receptor heterodimerization with ERBB2 (59), providing a
pivotal checkpoint where N-glycans may regulate key cellular
processes involved in cell proliferation and transformation.

Moreover, core 1 β1,3-galactosyltransferase (C1GALT1,
responsible for Tn antigen biosynthesis) overexpression in
hepatocellular carcinoma activates hepatocyte growth factor
(HGF) signaling via modulation of MET kinase O-glycosylation
and dimerization, thereby enhancing cell proliferation in vivo
and in vitro (61). Contrastingly, overexpression of β1,4-N-
acetylglucosaminyltransferase III (MGAT3), which adds β1,4
bisecting branches to N-glycans, appears to inhibit EGFR
sensitivity to EGF in glioma cells (58), thereby reducing
cellular response to the proliferative effects of EGF. In turn,
β1,6-N-acetylglucosaminyltransferase V (MGAT5) knockout
mice were shown less prone to mammary tumor growth
and metastasis, while showing poor PI3K/AKT activation,
emphasizing the importance of β1,6-GlcNAc-branched N-
glycans in proliferative signaling pathways (68). Also, ABO
glycosyltransferase mRNA downregulation in normal and
malignant urothelium is associated with EGF stimulation,
resulting in decreased cell proliferation (69). Together, these
findings highlight the relevance of glycosyltransferases in tumor
cell proliferative signaling.

In turn, the short-chain O-GalNAc STn antigen is mainly
observed in non-proliferative tumor areas of highly proliferative
bladder tumors (70), while being overexpressed in less
proliferative hypoxic bladder cancer models (29), suggesting
a yet unknown indirect regulation of proliferation by O-
glycosylation in bladder cancer. In ovarian cancer cells, the
knockout of core 1 synthase chaperone Cosmc, resulting in
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FIGURE 2 | Role of glycans, glycoproteins, glycan-binding proteins, and proteoglycans across currently accepted cancer hallmarks. Glycans (sTn, sLeA/X,

Neu5Gc,β1,6-branched N-glycans), glycoproteins (Fas, TRAIL-R, integrin α3β1, VEGFR2, ATM, p53, Rb), proteoglycans (decorin, neuropilin-1,-2, hyaluronic acid,

versican, perlecan, hyaluronic acid), lectins (Gal-3 and Gal-1), and O-GlcNAcylated transcription factors (c-Myc, Fox M1, cyclin D1, NF-κB) are mechanistically

implicated in cancer hallmarks acquisition and thus represented. Overall, the illustrations focus on particular molecular mechanisms driving hallmark acquisition;

namely (A) sustaining proliferative signaling, (B) resistance to cell death, (C) deregulated cellular energetics; (D) evasion of growth suppression; (E) genome instability

and mutation; (F) angiogenesis, (G) invasion and metastasis, (H) tumor-promoting inflammation, and (I) Immune scape. Stromal and immune cells providing the

soluble factors driving cancer hallmarks are also highlighted, namely tumor-associated macrophages, dendritic cells, adipocytes, and fibroblasts.

Tn and STn O-glycans expression, leads to a reduction in
cellular proliferation compared to the parental cell lines (71).
Moreover, the use of O-glycan inhibitors in colorectal cancer
cell lines promptly blocks proliferation in a so far unexplored
manner (72). Overall, short-chain O-glycans expression seem
to reduce tumor cell growth. This process might actually confer
selective advantage to tumor cells which are rendered less

responsive to conventional chemotherapy that mostly targets
highly proliferative clones (73).

In addition to alterations in core O- or N-glycans, changes
in terminal glycan structures may likewise induce changes in
cell proliferation. For instance, in aggressive non-small cell lung
cancer cell lines, knockdown of α1,6-fucosyltransferase 8 (FUT8),
catalyzing the addition of fucose in alpha 1-6 linkage to GlcNAc
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residues, significantly inhibits cell proliferation (74). Moreover,
overexpression of sialyltransferases and α1,3-fucosyltransferases
(FUT4 or FUT6) would suppress EGFR dimerization and
phosphorylation upon EGF treatment, decreasing lung cancer
cells proliferation (60). In line with this, enhanced α2–6
sialylation, secondary to overexpression of ganglioside-specific
ST6GalNAcV, inhibits glioma growth in vivo (75, 76). Altogether,
these findings demonstrate the pleiotropic and occasionally
opposing effects of altered glycosylation in cell proliferation.

In summary, these examples demonstrate how the
microenvironment and glycosylation can sustain proliferative
signals. Overall, the crosstalk between neoplastic cells and
the TME ensures the positive feedback look of growth factors
supply and ECM remodeling, while glycosylation promotes the
exposure and interaction of protein domains with RTKs as well
as the constitutive activation of oncogenic pathways through
kinases modification.

Resistance to Cell Death
The TME aids programmed cell death evasion by providing
survival signals and offering a physical barrier against pro-
apoptotic factors such as chemotherapy. First, endothelial cells
establish vasculature to attenuate cell death that would otherwise
result from hypoxia and lack of serum-derived nutrients (77).
However, when neovascularization cannot keep up with nutrient
demand, an hypoxic microenvironment is established where
HIF-1α drives antiapoptotic changes (78). In addition, infiltrating
macrophages circumvent apoptosis of cancer cells by shielding
them from external apoptotic factors and chemotherapy (79).
Similarly, CAFs are highly implicated in apoptotic signaling
evasion by secreting paracrine survival factors and inducing
ECM remodeling (80–82). Moreover, CAF-derived chondroitin
sulfate proteoglycan serglycin (SRGN) induces lung cancer
chemoresistance and anoikis-resistance, promoting malignant
phenotypes through interaction with tumor cell receptor CD44
(83). In addition, ECM proteoglycans as the small leucine-rich
lumican promote melanoma cells apoptosis, ultimately inhibiting
metastasis to the lungs (84). Consistent with the changes in
ECM composition and topography, expression of many ECM
remodeling enzymes is often deregulated in human cancers as
tumor cells acquire anchorage independence for survival (85). In
this context, tumor cell-ECM interactions control malignant cells
subversion of positional information and basement membrane
dependence to evade apoptosis upon ECM detachment during
cancer progression (86, 87). Furthermore, the ECM also aids
tumor cells chemotherapy-induced apoptosis evasion (88–90).
Likewise, cancer-associated adipocytes are an abundant source
of pro-survival factors and extracellular matrix components,
specially collagen VI which confers resistance to cisplatin-
induced death in ovarian cancer cells (90, 91).

Glycosylation mostly influences the extrinsic apoptotic
program, involving both TRAILR and Fas death receptors, as
well as integrin and galectin-mediated signaling (Figure 2B).
Several glycans, glycosyltransferases, and glycosidases play
critical roles in programmed cell death (92) by hindering
ligand–receptor interactions, which influences the formation
of signaling complexes, and modulating ligand secretion

from effector cells (92, 93). For instance, the tumor necrosis
factor–related apoptosis-inducing ligand (Apo2L/TRAIL)
promotes tumor cell apoptosis through the death receptors
TRAIL-R1 and TRAIL-R2, whose O-glycosylation status
determines its sensitivity to the ligand. Specifically, the O-
glycosylation initiating enzyme GALNT14 showed a strong
link to TRAIL sensitivity in pancreatic carcinoma, NSCLC
and melanoma, whereas expression of GALNT3, along with
the O-glycan processing enzymes FUT3 and FUT6, correlated
with responsiveness in colorectal cancer cells, rendering helpful
data for identifying cancer patients who are more likely to
respond to TRAIL-based therapies (93). Consistent with these
observations, a lower degree of fucosylation, which occurs
by mutation of the GDP-mannose-4-6-dehydratase (GMDS)
gene, increases resistance to TRAIL-induced apoptosis in
colon cancer cells, followed by immune escape (94). Moreover,
N-glycosylation also plays an important regulatory role in
TRAIL-R1-mediated apoptosis, but not for TRAIL-R2, which
is devoid of N-glycans. In this context, defective apoptotic
signaling by N-glycan-deficient TRAIL receptors was associated
with lower TRAIL receptor aggregation and reduced death-
inducing signaling complex (DISC) formation, but not with
reduced TRAIL-binding affinity (95).

In turn, the death receptor Fas (CD95/APO-1) has two N-
glycosylation sites at N136 and N118 moderately affecting Fas-
induced apoptosis. Specifically, the addition of sialic acids by
ST6Gal-I in an α2-6 linkage to the N-glycans of Fas provides
protection against Fas-mediated apoptosis in colon carcinoma
cells. Namely, α2-6 sialylation of Fas prevents FasL-induced
apoptosis by decreased activation of caspases 8 and 3, blockage of
Fas–Fas-associated death domain (FADD) association with Fas
cytoplasmic tails, and inhibition of Fas internalization (96). In
line with this, high-grade tumors, which are known to express
high levels of O-6 sialylation, significantly overexpress Fas, but
are insensitive to Fas-ligand, thereby avoiding immune cell-
mediated apoptosis (30, 97, 98). Moreover, N-deglycosylation of
Fas leads to the slowing down of procaspase-8 activation at the
DISC complex, with no impact on DISC formation or FADD
recruitment (99). Overall, these findings demonstrate that, in
contrast to the TRAIL-R O-linked glycan moiety, the Fas N-
glycan structure contributes to a smaller extent to the initiation
of the apoptotic signaling leading to cell death.

Glycosyltransferases, as N-acetylgalactosaminyltransferase
1 (GALNT1), also contribute to activate survival signals
that supress apoptosis. Specifically, overexpression of N-
acetylgalactosaminyltransferase 1 (GALNT1) contributes
to aberrant glycosylation of integrin α3β1, changing the
conformation of integrin heterodimers, and initiating signal
transduction to induce focal adhesion kinase (FAK) activation
in bladder cancer cells (100). Accordingly, both the knockdown
of FAK and suppression of FAK phosphorylation were able to
induce apoptosis in BC cells through caspase-3 recruitment
and Src phosphorylation, respectively (101). The suppression
of FAK phosphorylation also inhibited the PI3K/AKT signaling
pathway, suggesting it acts downstream of FAK to regulate
apoptosis (101). Interestingly, FAK is overexpressed in a variety
of human tumors where it mediates survival signaling, and
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these findings might point an intervention strategy to regulate
apoptotic stimuli through glycosyltransferases modulation.

In addition, several studies suggest that hyper-O-
GlcNAcylation in cancer may play an anti-apoptotic
role (Figure 2B). For instance, human pancreatic ductal
adenocarcinoma cells are supported by oncogenic NF-κB
transcriptional activity and both NF-κB p65 subunit and
upstream kinases IKKα/IKKβ are O-GlcNAcylated. As
such, reducing hyper-O-GlcNAcylation decreases NF-κB
transcriptional activity and target gene expression, driving
apoptosis (102). Furthermore, increasing O-GlcNAc in
pancreatic cancer cells protects against suspension-induced
apoptosis (102). Moreover, hyper-O-GlcNAcylation could
contribute to cancer cell survival by mitigating ER stress through
the inhibition of the folding enzyme chaperone CHOP (103).

Another important molecular mechanism relating protein
glycosylation to apoptosis in cancer cells results from the
crosstalk between lectins and death receptors. Classically, the
effect of Galectin-3 (Gal-3) in the regulation of apoptosis depends
on its subcellular localization. Accordingly, cytoplasmic Gal-
3 is anti-apoptotic, whereas nuclear Gal-3 is pro-apoptotic
(104). Upon extracellular secretion via a non-classical pathway
(105), Gal-3 may bind to cell surface glycans, increasing cell
signaling and cell-matrix interactions (106, 107). Interestingly,
overexpression of STn results in decreased Gal-3 at the cell
surface in colon cancer cells, promoting an accumulation of
Gal-3 in the cytoplasm and reducing chemotherapy induced
apoptosis (108). Moreover, it has been shown thatO-6-sialylation
of integrin β1 N-glycans, mediated by ST6Gal-I, completely
blocked its recognition by Gal-3; conversely O-3-sialylation did
not affect Gal-3 recognition in gastric cancer (108, 109). These
observations suggest that Gal-3 binding to glycans is dependent
on sialylation and that decoding the sialome of cancer cells may
bring new insights on programmed cell death pathways.

Together, these findings demonstrate that both glycosidic
and microenvironmental cues aid tumor cells to circumvent
apoptosis. Interestingly, the tumor microenvironment mostly
provides factors to evade intrinsic apoptotic signaling, while
glycosylation mostly regulates the extrinsic signaling pathway
initiated by binding of a death ligand to a death receptor on the
cell surface.

Deregulated Cellular Energetics
The microenvironmental modulation of tumor cell energetics is
crucial to drive metabolic adaptation and survival of neoplastic
cells. As such, CAFs and endothelial cells are able to create
collaborative metabolic domains by activating complementary
metabolic pathways to buffer and recycle metabolites of tumor
cells in order to maintain stromal and tumoral growth (110,
111). Adipocytes also engage in this metabolic crosstalk by
providing fatty acids utilized by cancer cells to generate ATP
via mitochondrial β-oxidation in metastatic ovarian cancer
(112). Another pivotal microenvironmental feature driving
energetic adaptation is hypoxia, resulting from uncontrolled
proliferation and inefficient neovascularization. Hypoxic stress
within a tumor leads to a shift from aerobic oxidative
phosphorylation to anaerobic glycolysis, with high rates of

glucose and glutamine uptake (the Warburg effect) (113).
In this context, adaptation to hypoxia and cellular energetic
reprograming occurs mostly in a HIF-1α-dependent manner,
being frequently accompanied by cell dedifferentiation and
acquisition of mesenchymal characteristics (29). Briefly, to
compensate the reduction of intracellular ATP levels under
hypoxic conditions, HIF-1α upregulates the expression of glucose
transporters-1 and 3 (GLUT1, GLUT3), allowing the intracellular
uptake and phosphorylation of glucose (114–116). Subsequently,
Glc-6-P enters one of several possible biosynthetic pathways,
namely glycolysis, hexosamine biosynthetic pathway (HBP),
pentose phosphate pathway (PPP), or glycogen synthesis, all of
which substantially regulated by HIF-1α (117–124) (Figure 2C).
Simultaneously, HIF-1α decreases O2 consumption and reactive
oxygen species (ROS) generation within the mitochondria (125–
127) to circumvent oxidative stress.

By regulating the flux through the HBP and PPP pathways,
HIF-1α dramatically affects glycosylation, either by altering
precursor production or by governing enzymatic activity.
Specifically, HIF-1α has significant impact on HBP by inhibiting
the TCA cycle and suppressing the addition of acetyl groups,
that would otherwise arise from that pathway, to glucosamine,
leading to an overall reduction in the glycosylation precursor
UDP-N-Acetylglucosamine (UDP-GlcNAc) production (128–
130). Another branch of the HBP, the CMP-NeuAc nucleotide
sugar biosynthesis pathway, is activated under hypoxia through
the epimerization of UDP-GlcNAc by UDP-GlcNAc 2-epimerase
(GNE), ultimately enabling cell surface sialylation in a HIF-1α-
dependent manner (131) (Figure 2C).

Moreover, during acute hypoxia, the production of
ATP, GTP, UTP, and CTP nucleotides through the PPP is
decreased, compromising the addition of UDP to GlcNAc (132).
Interestingly, while hypoxia causes downregulation of the rate
limiting enzyme of the PPP Glucose-6-phosphate dehydrogenase
(G6PD) in several cancers (133), glycosylation promotes G6PD
activity and increases glucose flux through the PPP, providing
precursors for nucleotide and lipid biosynthesis, and reducing
equivalents for antioxidant defense. Particularly, G6PD is
dynamically O-GlcNAcylated in response to hypoxia, and
blocking G6PD glycosylation reduces cancer cell proliferation
in vitro and in vivo (134), most likely through energetic
unbalance. On the same note, blockage of hypoxia induced
O-GlcNAcylation at serine 529 of phosphofructokinase 1 (PFK1)
reduced cancer cell proliferation in vitro and impaired tumor
formation in vivo (135). Of note, it has been reported that
elevated O-GlcNAcylation in cancer cells stabilizes HIF-1α in an
indirect manner, thereby reinforcing the Warburg effect (103) in
what appears to be negative feedback loop toward homeostatic
O-GlcNAcylation levels.

In addition to intracellular glucose metabolism modifications,
decreased 1,2-fucosylation of cell-surface glycans, galectin
overexpression, and glycosyltransferases as well as glycosidases
modulation toward the expression of short-chain sialylated
O-glycans are some consequences of the hypoxic tumor
microenvironment. Additionally, increased expression of
gangliosides carrying N-glycolyl sialic acids can also be
significantly affected by hypoxia (29, 136). For all these
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reasons, it is possible to realize that hypoxia strongly alters
glycobiologic events within tumors, resulting in increased
O-GlcNAcylation and sialylation; thereby leading to more
aggressive phenotypes (136–138).

Besides regulating glycolytic enzymes in the context
of hypoxia, O-GlcNAcylation also governs transcription
factors activity (ChREBP, carbohydrate-responsive element-
binding protein, Sp, and c-MYC) toward increased aerobic
glycolysis, anaplerotic resupply of TCA intermediates used in
biosynthesis, nucleotide metabolism and lipogenesis (139–144).
Together, these findings suggest that hyper-O-GlcNAcylation
contributes to oncogenicity through metabolic reprograming
and stabilization of oncogenic transcription factors.

Based on these insights, hypoxia is a major driving force
of the energetic reprograming of cancer cells, largely affecting
glycosylation in a HIF-1α-dependent manner. As such, both
O-GlcNAc modifications and HIF-1α transcriptional activity
emerge as key metabolic modulators, while stromal cells promote
a metabolic symbiosis with tumor cells envisaging tumor survival
and growth.

Evasion of Growth Suppressors
To prevail, cancer cells not only induce and maintain stimulatory
growth signals but also develop the ability to evade the negative
regulation of tumor suppressor genes (145). Even though tumor
growth suppression is mostly regulated by intrinsic mechanisms
involving p53 and retinoblastoma (RB) pathways, some stromal
and microenvironmental components have been implicated
in growth arrest evasion by inhibiting adhesion complexes
and promoting clonal selection. Namely, proteolytic enzymes
produced by stromal cells are able to disrupt cell-cell or cell-ECM
adhesion complexes significantly contributing to uncontrolled
cell proliferation and progressive distortion of normal tissue
architecture (85, 146, 147). Moreover, tumor hypoxia selects
clones expressing mutant p53, facilitating the clonal expansion of
cells that have a dominant-negative effect on the wild-type cells,
thus evading growth suppression (148).

Interestingly, the two canonical suppressors of cell
proliferation, p53 and RB, are regulated by O-GlcNAcylation
(149, 150) (Figure 2D). Particularly, it was demonstrated
that p53 O-GlcNAcylation on Ser149 limits both ubiquitin-
dependent proteasome degradation and the interaction with
E3 ubiquitin-protein ligase MDM2 (149). Contrariwise,
overexpression of O-GlcNAcase (OGA) results in increased
MDM2 phosphorylation at Ser166, stimulating MDM2-p300
interactions and resulting in p53 degradation (151). In turn, RB
activity is regulated by the dynamic crosstalk between O-GlcNAc
modification and phosphorylation (150). Retinoblastoma binds
E2F-1 transcription factor preventing co-activator complexes
from binding E2F-1, thereby arresting cell cycle in the G1
phase. Particularly, RB is densely modified with O-GlcNAc in
the G1 phase, which prevents its phosphorylation and sustains
its activity. During mid- to late-G1, a shift toward increased
phosphorylation leads to the release of E2F-1 from RB and
E2F-1-dependent transcriptional activation of essential S-phase
genes, allowing cell cycle progression (150).

In summary, cancer cells circumvent growth suppression
by negatively regulating the two canonical suppressors of
proliferation p53 and RB through glycosidic modifications, while
stromal cells and hypoxia aid tumor cell growth by abrogating the
suppressive role of adhesion complexes and selecting for more
proliferative clones.

Genome Instability and Mutations
During uncontrolled cell division, random mutations, and
chromosomal instability promote genomic alterations, which
coupled with disruption of genome integrity checkpoints
culminate in selective advantage of tumor cells (152). In this
context, intratumoral hypoxia leads to increased mutation rates
and altered DNA damage response, while HIF-1α interplays with
oncoproteins such as c-MYC to drive malignant progression
(153–155). In addition, recent evidence shows that oxidative
stress in CAFs induces genomic instability in adjacent breast
cancer cells via mutagenic evolution, potentially increasing their
aggressive behavior (156). Together, these findings suggest that
tumor progression is prompted by the orchestrated interaction of
malignant cells and the TME, which promotes genetic instability
toward more aggressive phenotypes.

It is known that the tumor suppressor p53 plays a central role
in genomic stability maintenance (157). However, stabilization
of previously mutated p53 by O-GlcNAcylation is not expected
to lead to tumor suppression (149). Nevertheless, SILAC-based
quantitative proteomics of O-GlcNAc transferase wild-type and
Null cells has demonstrated the O-GlcNAcylation regulation of
the ATM (ataxia-telangiectasia mutated)-mediated DNA damage
response pathway through ATM and its downstream targets
H2AX, and Chk2 (158) (Figure 2E). Other molecular studies
have reinforced that ATM interacts with O-GlcNAc transferase,
with its activation and recovery states being affected by O-
GlcNAcylation (159).

Importantly, genetics is not the only factor contributing
to genetic instability. Epigenetic modifications through DNA
methylation, posttranslational modification of histone proteins,
and interactions of non-coding RNAs with proteins or other
nucleic acids also largely drive cancer progression (160, 161).
Interestingly, histones H2A, H2B, and H4 are O-GlcNAcylated
in vivo, making O-GlcNAc modifications a part of the histone
code regulating gene transcription (162). Although no specific
links between hyper-O-GlcNAcylation and cancer cell epigenetic
contribution to transformation have been established, some
clonal expansions may well be triggered by these non-mutational
changes affecting the regulation of gene expression.

In summary, tumor microenvironmental features and stromal
cells contribute to a mutagenic environment through the
production of oxygen and nitrogen reactive species, while
altering transcription and translation of several DNA damage
response and repair genes. In turn, glycosylation modulates
DNA damage response pathway components and possibly non-
mutational changes affecting the regulation of gene expression.

Replicative Immortality
The maintenance of telomerase lengths by DNA polymerase
telomerase is a key event contributing to the unlimited
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replicative potential of cancer cells (163). Recently, hotspot
point mutations in the regulatory region of the telomerase
reverse transcriptase (TERT) gene, encoding the core catalytic
component of telomerase, was identified as a novel mechanism
to activate telomerase in cancer (164, 165). Interestingly, there
is currently no substantive evidence of microenvironmental
contributions to telomere stabilization in cancer cells. However,
there is evidence that hypoxia up-regulates telomerase activity
in cancer cells via MAPK cascade signaling activation as a
stress response against hypoxia-induced genotoxicity (166).
Moreover, hypoxia induces c-MYC activation, which, in turn,
transactivates TERT (167). So far, TERT has not been described
as a glycoprotein; nevertheless, there could be an indirect link
between glycosylation and telomerase activation through c-MYC
O-GlcNAcylation regulation (57). As such, future studies should
investigate whether O-GlcNAc-mediated stabilization of c-MYC
can indirectly influence telomerase activation and contribute to
replicative immortality.

In conclusion, both glycosylation and microenvironmental
factors allow successive cell cycles mostly by circumventing
cell death, while having little to do with avoiding senescence
and regulating telomere length. However, tumor hypoxia
might contribute to immortalization by indirectly influencing
kinase cascades and transcriptions factors, while glycosylation
modifications have a more modest impact in transcription
factor regulation.

Angiogenesis
The formation of neovasculature through angiogenic processes
is vital for cancer cell proliferation and tumor progression
to metastasis (168). Historically, tumor angiogenesis was
perceived as being primarily regulated by cancer cells
expressing proangiogenic factors; however, now it becomes
increasingly clear that the tumor microenvironment is a key
factor inducing and sustaining chronic angiogenesis, including
in a glycosylation-dependent manner. First, tumor hypoxia
upregulates multiple pro-angiogenic pathways mediating key
aspects of stromal, endothelial cell (EC) and vascular support
cell biology to influence neovessel patterning, maturation, and
function (169). Concomitantly, stromal innate immune cells
and CAFs synthesize or release through ECM remodeling
several angiogenic soluble factors driving the expansion of
the pre-existing vascular supply (170–174). In line with this,
stromal cells-derived proteoglycans and ECM molecules are
also active angiogenesis regulators (Figure 2F). For instance,
heparan sulfate (HS) proteoglycans inhibition hampers pro-
angiogenic signaling and neovessel formation by effecting the
bioactivity, diffusion, half-life and interaction of VEGF with
its tyrosine kinase receptors (175, 176). In ovarian cancer,
HS has also been shown to impact angiogenesis through
EGF receptor signaling and by influencing the expression
of angiogenic cytokines (177). Particularly, CAF-derived HS
proteoglycan syndecan-1 expression stimulates breast tumor
angiogenesis, being correlated with both vessel density and
total vessel area (178). Furthermore, Neuropilin-1 (NRP-1)
and Neuropilin-2 (NRP-2) transmembrane proteoglycans, as
well as hyaluronic acid (HA) fragments resulting from the

hydrolysis of carbohydrate chains in proteoglycans by HYAL
hyaluronidase, also display pro-angiogenic properties in several
cancer models (179–182). Contrastingly, stromal decorin
angiogenic role seems to be context dependent. Namely, it
blocks tumor cell-mediated angiogenesis by downregulating
VEGFA production, as well as Met and downstream angiogenic
networks in some tumor models (183, 184), while being required
for efficient tube formation by EC and inflammation-induced
angiogenesis in others (185). In turn, the basal lamina lumican,
a class II small leucine-rich proteoglycan, inhibits melanoma
angiogenesis by compromising the migratory capacity of EC
and pseudotubes formation, supressing lung metastasis (84).
Moreover, lumican affects angiogenesis by interfering with
α2β1 integrin receptor activity and downregulating proteolytic
activity associated with surface membranes of EC (186). In
line with this, several studies highlight that lumican inhibits
EC invasion, angiogenic sprouting, and vessel formation, while
enhancing Fas mediated EC apoptosis (187–190). Collectively,
these findings provide new insights into how ECM remodeling
regulates angiogenesis activation and resolution, as well as
identify proteoglycans as effectors modulating angiogenesis both
in vitro and in vivo.

Glycans and glycan-binding proteins, as galectins, add
another level of positive regulation of angiogenesis by
modulating EC migration, branching, survival, and vascular
permeability (191–193). For instance, a glycosylation-dependent
pathway that preserves angiogenesis in response to VEGF
blockade was identified, in which galectin-1 (Gal-1) binds
β1-6GlcNAc branched N-glycans present on VEGFR2 in EC
surface to activate a VEGF-like signaling (Figure 2F). Moreover,
vessels within anti-VEGF-sensitive tumors exhibited high levels
of α2-6-linked sialic acids, which prevented Gal-1 binding
and VEGFR2 activation (192). Moreover, interruption of β1-
6GlcNAc branching in EC or silencing of tumor-derived Gal-1
converted refractory tumors into anti-VEGF-sensitive (192).
Importantly, this could allow pinpointing patients better served
by anti-VEGF therapy and targeting glycosylation-dependent
lectin-receptor interactions envisaging increased treatment
efficacy in refractory patients (194, 195).

In addition, reduced O-GlcNAcylation in prostate cancer
cells has been associated with decreased expression of several
angiogenic factors, such as matrix metalloproteinases MMP-2
and MMP-9, and VEGF, resulting in inhibition of angiogenesis
(196). Moreover, glycosydic cues as O-glucose, O-GlcNAc, and
O-GalNAc glycans affect Notch signaling, thereby regulating
angiogenesis (197). Also, α2,6-sialic acids are necessary for
the cell-surface residency of platelet endothelial cell adhesion
molecule (PECAM), a member of the immunoglobulin
superfamily that plays multiple roles in EC adhesion, mechanical
stress sensing, anti-apoptosis, and EC-mediated angiogenesis
(198). Together these finding highlight the glycosylation
modulation of tumor angiogenesis.

In summary, the tumor microenvironment ensures the supply
of pro-angiogenic factors, while upregulating multiple pro-
angiogenic pathways governing the maturation and survival
of endothelial cells. In turn, glycans and glycoconjugates
can be angiogenic per se or alter the affinity of angiogenic

Frontiers in Oncology | www.frontiersin.org 9 May 2019 | Volume 9 | Article 380

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Peixoto et al. Glycans and the Tumor Microenvironment

factor receptors for their ligands toward a pro-angiogenic
phenotype of EC.

Invasion and Metastasis
Throughout the course of disease, cancer cells often acquire
more motile phenotypes, as well as the capability to invade
surrounding tissues and adjacent organs. Subsequently, cancer
cells reach lymph and blood vessels, entering circulation
and eventually metastasizing to distant locations. Interestingly,
metastatic tumor cells may even travel from the primary site
to the secondary location with stromal components, including
activated fibroblasts, achieving a very favorable outcome in the
colonization step of tumor progression (199). In this context,
stroma, ECM, and microenvironmental cues often facilitate
invasion and the establishment of metastatic colonies by tumor
cells. For instance, tumor hypoxia aids migration and invasion
of tumor cells by influencing angiogenesis, immune tolerance,
epithelial-to-mesenchymal transition (EMT), and regulating
adhesion molecules expression and glycosylation (200). At a
distance, hypoxia contributes to the production of diffusible
factors and exosomes involved in premetastatic niche formation,
while regulating metabolic and survival pathways that allow
cells to adapt to distant microenvironments (201). Within the
tumor stroma, infiltrating immune cells and CAFs promote ECM
remodeling while producing pro-invasive and EMT promoting
factors (172, 202–204). Namely, the CAF-derived proteoglycans
versican and serglycin promote tumor invasion and metastasis
in breast, ovarian, and prostate cancer (47, 205, 206), as well as
NSCLC cells EMT, migration, invasion and liver colonization,
respectively (83). Similarly, the ECM hyaluronic acid (HA) and
biglycan are directly involved in the metastatic potential of
breast and prostate tumor cells (207, 208) as well as melanoma
cells (209), respectively. Moreover, metastatic tumor cells must
acquire the capability to autonomously synthesize, assemble,
and process their own “portable” HA-rich microenvironments
to survive in circulation, metastasize to ectopic sites, and
escape therapeutic intervention. As such, strategies to disrupt
the HA machinery of primary tumor and circulating tumor
cells may enhance the effectiveness of current conventional
and targeted therapies (210, 211). On the other hand, triple-
negative orthotopic breast carcinoma systemic treatment with the
proteoglycan decorin induced the tumor suppressor cell adhesion
molecule 1 (Cadm1), favoring a less metastatic phenotype
(212, 213). Altogether, these findings highlight stromal-derived
proteoglycans as major players driving the metastatic potential
of tumor cells. Concomitantly, in vitro studies suggested
that stromal derived TGFβ-induced EMT alters glycogenes
expression and consequently promotes N-glycan remodeling,
including decreased bi-, tri- and tetra-antennary complex N-
glycans and increased expression of hybrid-type N-glycans
and fucosylation (214); thereby showing a correlation between
microenvironmental soluble factors and glycosylation changes.

In line with glycoconjugate regulation of invasion and
metastasis, glycans add another dimension of regulation to
the acquisition of this cancer hallmark. Namely, it has been
proposed that increased sialylation, accompanying malignant
transformation, promotes cell detachment from the primary

tumor through electrostatic repulsion of negative charges,
physically disrupting cell adhesion (215, 216). In line with
this, the STn antigen reduces cell adhesion in prostate cancer
(217), while increasing migration and invasion in bladder
(29), breast (218), and gastric (219, 220) carcinomas in
a ST6GalNAc.I-dependent manner. Also, the increased and
de novo expression of the STn antigen in bladder cancer
cells is part of an array of molecular events underlying the
establishment of mesenchymal traits (29). Moreover, STn was
mainly found in densely O-glycosylated adhesion proteins
such as integrins and cadherins (29, 30). It is likely that
the transition from extended to shorter and heavily sialylated
structures may impair these proteins normal function and
induce molecular and spatial reorganization at the cell-cell and
cell-matrix interfaces. In agreement with these observations,
STn expressing cells are frequently simultaneously observed in
invasion fronts, near blood vessels and corresponding lymph
nodes, as well as in distant metastasis (70, 221). Moreover,
it has been recently reported that most circulating tumor
cells (CTC) in the blood of metastatic bladder cancer patients
present a highly undifferentiated and more aggressive basal
phenotype, while overexpressing the STn antigen (221). As such,
STn expression seems to confer a competitive advantage to
neoplastic bladder cells by enabling not only invasion but also
the necessary mechanisms for successful cancer dissemination.
Similarly, ST6Gal.I-mediated α2,6-sialylation of breast cancer
cells mediates reduced cell-cell adhesion and enhanced invasion
capacity (222). Overall, immature truncated O-glycophenotype
of cancer cells directly induces oncogenic features, including
enhanced migration and invasive capacity (223).

Reinforcing the key role played by sialic acids in cell-
cell adhesion, sialylated α3β1 integrin, displaying numerous
sialylated tetra-antennary complex type glycans, exhibited
significantly lower fibronectin-binding capability than its
unsialylated counterpart and showed migration ability
through fibronectin in vitro (224). Apart from integrins, E-
cadherin aberrant glycosylation highly affects its function and
cellular localization, frequently culminating in epithelial
cell invasion in gastric cancer (225, 226). Namely, N-
acetylglucosaminyltransferase III (GnT-III, MGAT3) and
N-acetylglucosaminyltransferase V (GnT-V, MGAT5)
competitively modify E-cadherin N-glycans, adding bisecting
GlcNAc structures and β1,6-GlcNAc branches, respectively.
Wild-type E-cadherin positively regulates the metastasis
suppressor MGAT3 gene, resulting in increased GnT-III
expression and bisecting GlcNAc N-glycans addition to the
plasmamembrane-bound protein (225). Conversely, the addition
of β1,6-GlcNAc branches by GnT-V, specially at Asn-554, drives
E-cadherin translocation to the cytoplasm, alters cis-dimer
formation and molecular assembly, and drives instability of
the adherens junctions. Furthermore, preventing Asn-554
N-glycosylation, either by a mutation or by silencing GnT-V,
resulted in a protective effect on E-cadherin, precluding its
functional dysregulation and contributing to tumor suppression
(226, 227). Another study demonstrated a novel pathway of
GnT-V-mediated metastasis via the addition of β1,6-GlcNAc
branches to matriptase, thereby stabilizing it and activating
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invasion effectors as urokinase-type plasminogen activator
and hepatocyte growth factor (HGF) (228). Overall, these
findings suggest that aberrant N-linked β1,6- GlcNAc branching
occurring during oncogenesis can lessen cell-cell adhesion,
contributing to increased cellular motility and invasiveness
(Figure 2G). However, some glycosydic modifications can
promote tumor cell adhesion and still favor tumor progression.
For instance, tumor cells also overexpress SLea/x antigens,
which are specific ligands for E- and P-selectins upregulated
in activated endothelial cells. Selectins and SLea/x interactions
are key regulators of the metastatic cascade by promoting the
recruitment of malignant cells to vessels, rolling of tumor cells on
the endothelial surface, and arrest of CTCs in distant locations
(229–231) (Figure 2G). Besides the establishment of metastatic
colonies, these ligands also mediate tumor growth, invasion,
angiogenesis, and inflammation in numerous other tumor types
(232–236). In addition, slightly altered forms of these antigens
also have important biological features. Namely, the addition
of a sulfate group at the sixth position of GlcNAc generates
6-sulfo-sLeX, which is considered the physiologic ligand for
L-selectin (237) but also E-selectin in bladder cancer (238).
Herein, it has a dual role by promoting tumor cell adhesion to
vascular endothelial cells, while favoring lymphocyte recruitment
to enhance anti-tumor immune responses (238). In agreement
with these observations, Lex-positive cell lines from invasive
bladder tumors with metastatic potential show high levels of
alpha1,3-fucosyltransferase VI (FT-VI) and FT-VII, two enzymes
involved in SLex synthesis, and display E-selectin dependent
adhesion (232).

Glycosyltransferases may also play a key role in mediating
cancer cell metastization. Namely, the sialyltransferase
ST6GalNAcII was identified as a novel metastasis suppressor,
while ST6GalNAcV and N-Acetylgalactosaminyltransferase
GalNT9 identify metastatic potential in breast cancer (239–241).

In summary, cancer-associated glycosylation changes
and stromal cells aid tumor cell invasion, distant organ
colonization, and metastasis by supplying pro-metastatic factors,
compromising vasculature integrity and the stromal barrier to
tumor cell migration, promoting EMT and by tethering tumor
cells to improve colonization at distant sites. Concomitantly, the
highly regulated balance between loss of adhesive properties and
the ability to anchor at metastatic sites defines the metastatic
potential of tumor cells.

Tumor-Promoting Inflammation
Tumor-associated stromal cells have been found to secrete a
variety of pro-inflammatory cytokines, chemokines and matrix-
remodeling enzymes favoring the establishment of immune cell
infiltrates (242, 243). Particularly, CAFs and mature adipocytes
promote sustained inflammation by producing large amounts
of pro-inflammatory IL-6, IL-1β, TNF-alpha, and CXCL1 to
drive chemoattraction of monocytic immune cells (244), while
favoring tumor growth and metastasis (245–250). Another
pivotal microenvironmental factor driving cancer-associated
inflammation is hypoxia, which is essential for granulocytes and
monocytes/macrophages infiltration and activation in vivo in a
HIF-1α-dependent manner (251).

Glycome alterations also decisively contribute to the
establishment and maintenance of tumor-promoting
inflammation. Namely, E-, P-, and L-Selectins interactions
with SLea/x not only control the establishment of metastatic
cancer cells colonies but also the recruitment of circulating
lymphocytes into peripheral lymph nodes and inflamed tissues
(238, 252, 253) (Figure 2H). Moreover, several inflammatory
mediators are regulated by its glycosylation state. Namely, NF-κB
is activated by O-GlcNAcylation at Ser350 of its c-Rel subunit
(254), while the proinflammatory cytokine Cyclooxygenase-2
(COX-2) turnover depends on Asn570 glycosylation, negatively
affecting the efficacy of certain COX-2 inhibitors (255, 256).
Furthermore, recent studies have described that non-human N-
glycolyl-neuraminic acid (Neu5Gc) can be incorporated into cell
surface glycans instead of N-acetyl-neuraminic acid (Neu5Ac),
leading to autoimmune systemic inflammation associated with
cancer initiation and progression (257–259).

Importantly, in the same way glycans govern inflammation,
the inflammatory tumor microenvironment is also able to induce
changes in tumor cells glycosylation. For instance, pancreatic
and gastric carcinomas are characterized by an abundant
stroma containing several pro-inflammatory cytokines, as
IL-1β and IL-6, which regulate the expression of biosynthetic
glycosyltransferases to increase the expression sialylated antigens
as SLea/x (260, 261). Furthermore, the extracellular matrix
proteoglycan versican has been shown to promote bladder
cancer-derived lung metastasis through enhanced tumor cell
migration and creation of an inflammatory environment
involving macrophages and pro-tumor CCL2/CCR2 signaling
axis (262, 263), providing another the involvement of
glycoconjugates in macrophage-mediated inflammation.

These findings highlight the relevance of tumor stromal
cells, glycans, and glycoconjugates as mediators of tumor-
promoting inflammation by providing pro-inflammatory factors
and allowing the recruitment of circulating lymphocytes into
tumor sites.

Immune Escape
Several stromal components of the tumor microenvironment
aid tumor cell immune scape, either by recruiting
immunosuppressive immune cells or by driving the acquisition
of tolerogenic phenotypes. In this context, tumor-infiltrating
immune cells frequently develop immunosuppressive activities,
differentiating into regulatory T cells (Tregs), immature
monocytes, and alternatively activated macrophages, mast cells,
neutrophils, dendritic cells (DC), and T helper 2 (TH2)-CD4+

T cells, all of which producing a multitude of factors aiding
tumor growth and survival (264). Specifically, endothelial cells
lining the tumor vasculature can suppress T cell activity, target
them for destruction, and block them from entering the tumor
through the deregulation of adhesion molecules (265). Moreover,
the CAF secretome can also shape T cell-dependent antitumor
immune responses by negatively affecting DCs, myeloid-derived
suppressor cells, TH17, and CD8+ T cells functions. Activated
fibroblasts can also drive the switch of CD4+ T lymphocytes
from a TH1 to a TH2 phenotype, while expressing some
ligands of immune checkpoint receptors (266). CAF-derived
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proteoglycans, as decorin, further suppress immunomodulatory
genes in triple-negative orthotopic breast carcinoma xenografts,
including Siglec (Sialic acid binding Ig-like lectin), Lipg (IFNγ

inducible GTPase), and Il1b (Interleukin 1β) (213). These
findings suggest that targeting CAFs or their secretome may
probably reduce immune effector cell dysfunctions as well
as decrease the recruitment of immunosuppressive cells.
Other ECM molecules, as HA, are known to determine the
trafficking of tumor-associated macrophages (TAM) through
tumor stromal areas. In line with this, HA deficiency in tumor
stroma impairs not only macrophage trafficking but also tumor
angiogenesis and lymphangiogenesis, ultimately compromising
immune cells access to tumor sites and aiding immune scape
(267). Furthermore, recent studies in myeloma tumors have
demonstrated the immunomodulatory roles of the ECM
proteoglycan versican proteolytic processing. In this context,
the interplay between stromal cells and myeloid cells generates
versikine, a novel bioactive damage-associated molecular pattern
that may facilitate immune sensing of myeloma tumors and
modulate the tolerogenic consequences of intact versican
accumulation (268).

As described in previous sections, advanced stage tumors
are frequently characterized by profound deregulations in
glycosylation pathways, resulting in the presentation of aberrant
structures at the cell surface. Importantly, these structures only
render cancer cells mildly antigenic and rarely immunogenic
(269). This may occur because most cancer-associated structures
have an embryonic origin or are mildly expressed in healthy
tissues, allowing them to be perceived as “self ” by immune system
effector cells (270). Furthermore, specialized B lymphocytes
producing high-affinity antibodies against these structures might
even be eliminated during development (271). However, glycans
play a key role in the regulation of various aspects of
immune response, ultimately enabling immune suppression by
interacting with lectin receptors in immune cells. For instance,
fucosylated blood group related Lewis antigens interact with C-
type lectin DC-SIGN (dendritic cell-specific ICAM-3-grabbing
non-integrin; also known as CD209) on macrophages and DC
to upregulate the anti-inflammatory cytokines IL-10 and IL-
27. This ultimately induces TH2, T follicular helper (TFH) or
Treg cells, highlighting the immune suppressive nature of Lewis
antigens (272, 273). Similarly to fucosylation, enhanced tumor
sialylation often culminates in immune suppression and anti-
inflammatory microenvironments. Accordingly, the presence of
sialylated structures on melanoma cells impedes T cell mediated
anti-tumor responses while promoting tumor-associated Treg
cells and decreased NK cell activity (274) (Figure 2I). Moreover,
sialoglycans interact with sialic acid-binding immunoglobulin-
like lectins (SIGLECs) to induce an antigen-specific tolerogenic
programming, enhancing Treg cells and reducing the generation
and propagation of inflammatory T cells (275). For instance,
macrophage associated Siglec-15 preferentially binds the STn
antigen in myeloid tumor cells, resulting in increased TGF-
β secretion into the tumor microenvironment and tumor
progression (276). Moreover, in bladder cancer, STn expression
has led to impaired DC maturation while significantly reducing
the production of Th1-inducing cytokines IL-12 and TNF-α

(277) (Figure 2I). Consistent with this tolerogenic profile, T
cells primed by DCs pulsed with STn-expressing glycoproteins
displayed a FoxP3(high) IFN-γ(low) phenotype and little
capacity to trigger protective anti-tumor T cell responses
(277). More importantly, blocking STn-MUC1 and CD44
glycoforms partially reverted DC maturation, suggesting that
targeting STn-expressing glycoproteins may allow circumventing
tumor-induced tolerogenic mechanisms. Similarly, sialylation
of the T antigen in MUC1 on breast cancer cells creates the
MUC1–ST antigen which engages Singlec-9 on tumor-associated
macrophages to initiate inhibitory immune signaling through the
activation of the MAPK/ERK pathway (278). In line with this,
sialylated ligands of singlec-7 and−9 are expressed on cancer
cells of different histological types and interactions between these
lectin receptors and its ligands influence NK cell-dependent
tumor immunosurveillance (279). Moreover, hypersialylation
of tumor ligands for NKG2D receptors, expressed by NK
cells, NK1.1+ T cells, γδ T cells, activated CD8+αβ T cells
and macrophages, is thought to repulse their interaction via
highly negative charge repulsions, hampering immune response
(280, 281). Tumor-derived sialoglycans also inhibit CD8+ T
cell cytotoxicity by interfering with lytic granule trafficking
and exocytosis in response to TCR engagement (282). Thus,
hypersialylation often observed on tumor cells may ultimately
be amongst the mechanisms by which tumors evade immune
system recognition (30, 70, 216, 283). Also, C2GnT-expressing
bladder tumor cells express heavily core 2 O-glycosylated MUC1
which interacts with Gal-3 to attenuate the interaction of tumor
cells with NK cells, allowing tumor cells to survive longer in host
blood circulation and potentially metastasize (284). Given these
insights, sialylated and fucosylated antigens contribute to create
an immunosuppressive microenvironment toward tumor cell
immune escape. Furthermore, the structure and function of well-
known immune checkpoint molecules as PD-L1 can be stabilized
by N-glycosylation, reducing its proteasomal degradation and
consequently enhancing its immunosuppressive activity over T-
cells (285). These findings highlight the disseminated role of
glucans and glycoconjugates in tumor cell immune scape.

In summary, the tumor microenvironment increasingly
becomes more immunosuppressive, resulting in tumor cell
survival andmetastasis. Concomitantly, tumor cells glycosylation
promotes immune scape by being simple and “self ”-like, by
inducing tolerogenic immune cell phenotypes, and by effectively
shielding tumor cells from effector immune cells, culminating in
tumor progression.

SIGNIFICANCE OF GLYCOSIGNATURES
FOR PERSONALIZED MEDICINE

The previous sections have highlighted that changes in glycans
and glycoconjugates drive several biological processes in tumor
cells, culminating in the acquisition of cancer hallmarks and
increasingly aggressive disease. Glycosylation changes reflect not
only the genomic, transcriptomic, proteomic and metabolomic
state of cells but also its external microenvironment, making
glycosignatures highly context-specific and attractive targets for
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personalized medicine affecting tumor and stromal cells. At a
systemic level, glycosignatures provide a global reflection on an
individual’s health/disease status and can function as predictive
indicators for treatment success. In this context, several
serological markers have emerged, with several FDA-approved
cancer glycobiomarkers currently used in clinical practice
recently revised by kirwan et al. (286). To circumvent relatively
low specificity and sensitivity issues, more comprehensive
approaches propose combinations of glycobiomarkers achieving
remarkable sensitivity and specificity values (287). Another
strategy to improve specificity consists in narrowing the cancer
cell proteome to clinically relevant glycoforms. Showcasing
this aspect, a recent targeted investigation of the bladder
cancer glycoproteome highlighted that specific MUC16
glycoforms (CA125 antigen) could be used to define subsets
of chemoresistant patients, whereas no associations could
be found based solely on the presence of the protein (30).
Moreover, the field of liquid biopsies is rapidly evolving from
classical approaches, focusing on a single or few protein
biomarkers, toward multiplex settings that will likely improve
on these preliminary findings (Figure 3). The detection of
minor amounts of circulating tumor nucleic acids, exosomes,
circulating tumor cells (CTC) and stromal components, which
decisively contribute to the pre-metastatic and metastatic
niches, will pave the way for improving the management of
advanced stage patients. In this context, deeper insights on their
molecular nature may provide the necessary means for real-time
disease monitoring and early intervention, guiding therapeutic
decision and, more importantly, designing novel therapeutics
(Figure 3). Accordingly, explorative studies have demonstrated
that exosomes, responsible by pre-metastatic signaling, present
distinct glycosylation patterns (288, 289). Furthermore, pioneer
work using a recently developed microfluidics device has
demonstrated that over 90% of bladder cancer CTC yield the
STn antigen (221). More importantly, the STn antigen was not
detected in blood cells from healthy individuals, reinforcing
its cancer-associated nature. Downstream molecular analysis
confirmed the basal nature of STn-positive CTC in molecular
mimicry of the primary tumor and corresponding metastasis
(221). Therefore, the STn may allow targeting bladder CTC,
which has been a challenging enterprise given the scarce
knowledge about their molecular nature.

Despite these promising advances, current diagnostic
strategies are based onmeasuring proteinmarker concentrations,
disregarding its glycosylation status, even though it might
provide key information to improve diagnosis and stratify
patients. This might be due to the lack of user-friendly tools
allowing health care technicians to obtain this information in
sufficient specificity and sensitivity within the standard capacities
of a clinical laboratory. Moreover, the glyco-heterogeneity of
protein markers, arising from multiple glycosylation sites and
glycosylation patterns, might further hamper selectivity. As such,
the profound knowledge of cancer-specific glycan signatures
and glycosites, as well as its status within a healthy population
represent the first crucial steps toward including glycosylation in
the diagnostic process. From the bench side, current glycobiology
rationale is mostly built on immunoaffinity-based studies

addressing conventionally accepted glycan-biomarkers and
involving small and often biased patient cohorts. Heterogeneous
protocols, including different sample processing and detection
methods, as well as the lack of endpoint standardization have
also constituted major drawbacks. Moreover, most studies
fail to provide complementary functional assays capable of
pinpointing clinically relevant glycobiomarkers. These aspects
are often further aggravated by the lack of untargeted approaches
capable of broadening our understanding on the glycome
and glycoproteome. Moreover, few efforts were undertaken
to incorporate glycans in broad biomarker panels of different
molecular natures, envisaging highly sensitive and specific
detection methods. Facing these challenges, significant efforts are
ongoing to standardize glycomics and glycoproteomics protocols
and implement robust high-throughput mass spectrometry-
based glycoanalytical platforms (290, 291). As such, it is now
possible to extract significant structural information from
minute amounts of clinical samples (nanomolar-fentomolar
range), including from challenging starting materials such
as formalin-fixed paraffin-embedded (FFPE) tissues available
in many hospital archives (30, 292), which will enable large
scale retrospective analysis of well characterized clinical
samples. Moreover, advances in MALDI Imaging Mass
Spectrometry has allowed obtaining structural information
from glycans with significant spatial resolution (293). Important
bioinformatics tools and databases are already available and
novel improvements are emerging for supporting glycans and
glycopeptide mass spectrometry data interpretation, which
is a critical matter facing big datasets (294). Altogether, the
technological set-up and structural knowledge envisaging the
engagement in multicenter randomized glycan-based trials have
been overcome; nevertheless, a more ambitious focus should be
set on integrative panomics applications (295). This knowledge
will foster the development of glycan-based therapeutic
strategies and novel immunotherapeutics, including inhibitors
of glycosyltransferases catalytic activity (296) and theragnostic
antibodies against cancer-specific glycoepitopes. The later
should be capable of inducing antibody-dependent cellular
cytotoxicity and/or overcoming the immunotolerance generated
by cancer-associated glycoconjugates and microenvironmental
cues (297). Moreover, glycan-based antibodies may be used
to guide emerging nanotherapies (298, 299) or serve has
basis for developing genetically modified T cells expressing
chimeric antigen receptors (CAR-T) (300), while allowing cancer
detection and identification of patients better-served by these
therapies. In addition, blocking tumor-associated glycan–lectin
interactions could prevent the activation of inhibitory immune
receptors toward more efficient immunotherapies. Regarding
personalized immunotherapies, in recent years, the targeting of
DCs has emerged as an interesting approach for the induction
of antitumor immunity. Namely, glycopeptides targeting DC-
SIGN in DCs are easily internalized and cross-presented to
stimulate tumor-specific CD4+ and CD8+ T cell responses.
Finally, anticancer multicomponent glycoconjugate vaccines,
based on glycan antigens coupled to T-cell peptide epitopes or
immunostimulant epitopes, have been demonstrated effective in
circumventing cancer immunotolerance (301, 302), providing
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FIGURE 3 | Glycan-based therapeutic strategies. Successful clinical implementation of glycan-based therapeutic strategies could include inhibitors of

glycosyltransferases catalytic activity, as well as theragnostic antibodies against cancer glycoepitopes capable of cancer detection, antibody-dependent cellular

cytotoxicity induction, and abrogation of immunotolerance generated by cancer-associated glycoconjugates. Moreover, glycan-based antibodies may be used to

guide emerging nanotherapies or serve has basis for developing genetically modified T cells expressing chimeric antigen receptors (CART-T). In addition,

glycopeptides can be used for in vivo targeting of dendritic cells (DCs) to induce tumor-specific CD4+ and CD8+ T cells. Finally, glycan antigens coupled to T-cell

peptide epitopes or immunostimulant epitopes can form fully synthetic multicomponent glycoconjugate vaccines able to circumvent cancer immunotolerance.

an appealing option for the much-awaited development of new
glycan-based therapeutic agents.

In summary, analytical hurdles related with sample
preparation, data acquisition and automated analysis that
can also be handled by non-glycobiologists represent key steps to
overcome to introduce glycomics and glycoproteomics as routine
clinical parameters. To achieve this goal, the development of new
and clinic-friendly techniques, as well as glycobiology-focused
bioinformatics tools open new avenues to predict the tumor
glyco-code. In addition, stratification and large-scale validation
of potential diagnostic targets will also be indispensable
to successfully translate promising research results into solid
clinical tests. In a distant future, an inclusive approach combining
the increasing amount of glycomics and glycoproteomics data
with patient’s genomics, transcriptomics, proteomics, and
metabolomics will have a major impact on the unraveling of
novel targets and strategies for early diagnosis, prognosis, patient
stratification and improved cancer management.

CONCLUDING REMARKS

As thoroughly described in the previous sections, tumor stromal
cells and ECM components have a preliminary regulatory role in
the acquisition of hallmark capabilities, mostly by supplying the
soluble factors that drive adaptation or shielding tumor cells from
external stress. Glycosylation ads a second level of regulation by
governing structural alterations in major receptors, by modifying
soluble factors and/or by modulating intracellular kinase
cascades (Figure 4). Showcasing this, proliferative signaling

is sustained by stromal cells that supply mitogenic factors,
while glycosylation promotes growth factor receptor activation
and positively regulates intracellular kinases pathways. Besides
sustained growth, tumor cells must circumvent programmed
cell death to ensure cancer progression. Envisaging this,
stromal cells and ECM remodeling provide diffusible paracrine
survival factors and non-diffusible survival signals, while
offering a physical barrier against pro-apoptotic factors such as
chemotherapy. In line with this, glycosylation determines the
sensitivity of death receptors to their ligands and drives the
initiation of pro-survival cascades, while altering transcription
factor activity. Concomitantly, sustained proliferation and
programmed cell death evasion culminate in highly energy
demanding tumors that establish symbiotic relationships with
stromal cells that activate complementary metabolic pathways
to buffer and recycle tumor-derived metabolites. Moreover, to
sustain growth and survival in the face of hypoxia, HIF-1α
strongly regulates glucose metabolism throughout the several
biosynthesis pathways, culminating in altered glycosylation
precursor expression as well as increased sialylation and O-
GlcNAcylation toward more aggressive clones. Simultaneously,
tumor cells evade growth suppression by abrogating the
suppressive role of adhesion complexes with the ECM, mostly by
the action of stromal-derived proteolytic enzymes. At the same
time, the two canonical suppressors of proliferation p53 and RB
are negatively regulated through O-GlcNAc modifications. All
the above-mentioned events are largely driven by the genomic
instability of cancer cells, culminating in advantageous random
mutations. This variability thrives much as a consequence
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FIGURE 4 | Transversal nature of glycans, glycoproteins, glycan-binding proteins, and proteoglycans throughout the 10 currently accepted cancer hallmarks.

Aberrantly expressed glycans (O-GlcNAc, Le, SLe, Neu5Gc, Sialic acids (Sia), fucose residues (Fuc), ST, STn), glycoproteins (integrin α3β1, VEGFR2), and

proteoglycans (Perlecan, Decorin, Neuropilin-1,-2, Syndecan-1,−2, Hyaluronic acid fragments (HA), Versican, Lumican, Serglycin) are mechanistically involved in

cancer hallmarks acquisition. The illustration highlights the most common glycosylation modifications throughout the cancer hallmarks, transmitting the empiric notion

that a great number of glycosylation aberrations mostly contribute to disease dissemination through increased angiogenesis and potentiation of invasion and

metastasis. Moreover, the post-translational modification β-O-N-acetyl-d-glucosamine (O-GlcNAc) emerges as a key regulator of cellular activities through the

modulation of signal transduction and protein stabilization. In conclusion, glycans and glycoconjugates are not bystanders to malignant transformation but major

players, making then attractive targets to drive molecular-based clinical intervention.

of the DNA damage promoted by the mutagenic/oxidative
microenvironment indorsed by stromal cells. Also, hypoxia
alters the transcription and translation of several DNA damage
response and repair genes. In turn, glycosylation modulates
DNA damage response pathway components, reinforcing the
genomic instability of tumor cells. Interestingly, both the tumor

microenvironment and glycosylation have little to do with the
replicative immortality of tumor cells, their contribution is
mainly based on the indirect regulation of the transcription
factor c-MYC and kinase cascades. Importantly, to sustain
proliferation and the energetic demands of ever-growing tumors,
a pro-angiogenic environment must be established. As such, to
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ensure neovascularization, stromal cells supply pro-angiogenic
factors and upregulatemultiple angiogenic pathways culminating
in the maturation and survival of endothelial cells. In turn,
angiogenic glycans and glycoconjugates alter the affinity of
angiogenic factor receptors for their ligands toward a pro-
angiogenic phenotype of EC. Advanced stage tumors frequently
progress to invasion and metastasis, which is facilitated by
the compromised vascular and stromal barriers to tumor cell
migration. Moreover, stromal cells can promote EMT in tumor
cells and tether these cells to improve colonization at distant sites.
Concomitantly, glycosylation changes in tumor cells physically
disrupt cell adhesion by upregulating sialylated antigens and N-
linked β1,6-GlcNAc branches, contributing to increased cellular
motility and invasiveness. On the other hand, glycosylation can
promote adhesion of tumor cells and still favor the establishment
of metastatic colonies. Namely, tumor cells overexpressing SLea/x

are able to roll on the endothelial surface and extravasate into
circulation, while arresting its movement in distant locations
by interacting with selectins expressed by endothelial cells.
Some glycosyltransferases expression also defines the metastatic
potential of tumor cells, acting as metastasis suppressors
or enablers.

In the meantime, tumor-associated stromal cells contribute
to tumor-promoting inflammation by supplying several pro-
inflammatory cytokines and chemokines, ultimately driving
tumor growth, neovascularization, immune cell recruitment,
and glycosyltransferases expression. Furthermore, glycosylation
changes not only contribute to the recruitment of circulating
lymphocytes into peripheral lymph nodes and inflamed tissues
but also regulate the activity of several inflammatory mediators
and the polarization of immune cells into immunosuppressor
phenotypes. In line with this, the tumor microenvironment
increasingly becomes populated with immunosuppressive
immune cells. Concomitantly, tumor cells glycosylation, mostly
characterized by hypersialylation, promotes immune scape by
being simple and “self ”-like, by inducing tolerogenic immune
cell phenotypes, and by effectively shielding tumor cells from
effector immune cells, culminating in tumor progression.

Based on these insights, glycosylation changes reflect not
only the genomic, transcriptomic, proteomic, and metabolomic
state of cells but also its external microenvironment, making
glycosignatures highly context-specific and attractive targets
for personalized medicine. Several evidences support the
existence of a unique repertoire of glycans associated with
disease progression and dissemination, decisively reflecting
on virtually all cancer hallmarks (Figure 4). Changes in O-
GlcNAcylation is the most common glycosylation modification
throughout cancer hallmarks, providing a dynamic but
highly regulated sensor driving protein stabilization and
signal transduction. Sialic acids and, particularly sialylated
short-chain O-glycans are also amongst the most common
structures driving invasion and immune escape, clearly marking
more aggressive tumor cell phenotypes. Moreover, the major
bulk of glycosylation modifications accompanying malignant
transformation seem to contribute to disease dissemination
through increased angiogenesis and potentiation of invasion and
metastasis. Notwithstanding, little is known about glycosylation

contribution to key aspects of neoplastic transformation as the
acquisition of genomic instability and replicative immortality,
opening an avenue for novel research (Figure 4). The sweet
side to this sour end resides on the possibility of exploring
the extracellular nature of glycans for targeting tumor and
stromal cells using more effective non-invasive tools. As such, we
intend to reinforce the need to concentrate efforts to incorporate
glycans in broad biomarker panels of different molecular natures,
envisaging highly sensitive and specific detection methods for
disease monitoring and early intervention. Moreover, by
integrating microenvironmental information, glycosignatures
will most likely provide the necessary key for designing highly
specific cancer ligands envisaging theragnostic applications;
thereby allowing guiding therapeutic decision and, more
importantly, designing novel therapeutics. Notwithstanding,
significant room lays beyond targeted approaches, specially
facing the recent advances in glycomics and glycoproteomics.
Therefore, it is now possible to engage on a comprehensive
study of the glycome and glycoproteome envisaging the
necessary glycobiology landscape for intervention. Of note,
selectin and galectin antagonists, including glycomimetic
compounds, antibodies, aptamers, and peptides are currently
in FDA clinical trials and near-clinical trials for the treatment
of blood-related cancers and solid tumors metastasis (303).
Moreover, the high sensitivity and resolution of new generation
mass-spectrometers will allow obtaining structural information
almost to a single-cell level, enabling the analysis of exosomes,
CTC, and stromal components, which will be crucial for
addressing metastatic disease. Overall, we believe that the
necessary context has been created to foster more in-depth
studies on the glycobiology of tumors and its microenvironment
envisaging molecular-based precision medicine and improved
patient care.
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